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Abstract. In this paper, a method is given that obtains a full rank factorization of a rectangular

matrix. It is studied when a matrix has a full rank factorization in echelon form. If this factorization

exists, it is proven to be unique. Applying the full rank factorization in echelon form the Flanders

theorem and its converse in a particular case are proven.
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1. Introduction. Triangular factorizations of matrices play an important role
in solving linear systems. It is known that the LDU factorization is unique for square
nonsingular matrices and for full row rank rectangular matrices. In any other case,
the LDU factorization is not unique and the orders of L, D and U are greater than
the rank of the initial matrix.

We focus our attention on matrices A ∈ R
n×m with rank(A) = r ≤ min{n,m},

where the LDU factorization of A is not unique. For this kind of matrices, it is
useful to consider the full rank factorization of A, that is, a decomposition in the
form A = FG with F ∈ R

n×r, G ∈ R
r×m and rank(F ) = rank(G) = r. The full rank

factorization of any nonzero matrix is not unique. In addition, if A = FG is a full
rank factorization of A, then any other full rank factorization can be written in the
form A = (FM−1)(MG), where M ∈ R

r×r is a nonsingular matrix.

If the full rank factorization of A is given by A = LDU , where L ∈ R
n×r is in

lower echelon form, D = diag(d1, d2, . . . , dr) is nonsingular and U ∈ R
r×m is in upper

echelon form, then this factorization is called a full rank factorization in echelon form
of A.

In this paper we give a method to obtain a full rank factorization of a rectangular
matrix and we study when this decomposition can be in echelon form. Moreover, if
the factorization in echelon form exists, we prove that it is unique. Finally, applying
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the full rank factorization in echelon form, we give a simple proof of the Flanders
theorem [4] for matrices A ∈ R

n×r and B ∈ R
r×n with rank(A) = rank(B) = r, as

well as of the converse result.

The full rank factorization of matrices has different applications, for instance,
in control theory to obtain minimal realizations of polynomial transfer matrices by
using the Silverman-Ho algorithm [2, 3]; in numerical analysis to obtain a Cholesky
full rank factorization or to extend the thin QR factorization to rectangular matrices
without full rank [6]; in matrix analysis to obtain the nonzero eigenvalues and their
associated eigenvectors or the singular values of a matrix.

Moreover, this factorization allows us to characterize some particular classes of
matrices because not all matrices have a full rank factorization in echelon form. Specif-
ically, in [1, 5] it is proven that totally positive (resp., strictly totally positive) ma-
trices, that is matrices with all theirs minors greater than or equal to zero (resp.,
greater than zero), and totally nonpositive (resp. negative) matrices, that is matrices
with all theirs minors less than or equal to zero (resp. less than zero), have full rank
factorizations in echelon form. Totally positive (or strictly totally positive) matrices
appear in numerical mathematics, economics, statistics etc., whereas totally nonposi-
tive (or negative) matrices are a generalization of N -matrices which have applications
in economic problems.

2. Quasi-Gauss elimination process. It is known that the Gauss elimination
process consists of producing zeros in a column of a matrix by adding to each row
an appropriate multiple of a fixed row, and the Neville elimination method obtains
the zeros in a column by adding to each row an appropriate multiple of the previous
one. In both processes, reordering of rows may be necessary. In this sense, the
Gauss elimination method can be considered more general than the Neville elimination
process, because if the Neville process with no pivoting can be applied, then the Gauss
process with no pivoting can also be applied, but the converse is not true in general.

When we can apply the Gauss elimination process with no pivoting to a singular
matrix, the factorization obtained is not unique and it is not a full rank factorization.
Therefore, in this paper we consider a new method which allows us to obtain a full
rank factorization of a singular matrix. This method, which we call quasi-Gauss
elimination process, is based on the Gaussian and the quasi-Neville elimination [5].

Moreover, as in the Gauss and Neville processes, we can assure that the quasi-
Gauss elimination process is more general than the quasi-Neville elimination process,
as we will see in Remark 2.3.

We denote by F
{j1,j2,...,jk}
n (resp., C

{j1,j2,...,jk}
n ) the matrix obtained from the

n× n identity matrix by deleting the columns (resp., rows) j1, j2, . . . , jk, and we can
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suppose, without loss of generality, that A has no zero rows or columns. This is
so because, if A has the j1, j2, · · · , js zero rows and the i1, i2, · · · , ir zero columns,
1 ≤ s ≤ n, 1 ≤ r ≤ m, using F

{j1,j2,···,js}
n and C

{i1,i2,···,ir}
m we obtain

A = F {j1,j2,···,js}
n ÃC{i1,i2,···,ir}

m ,

where Ã ∈ R
(n−s)×(m−r) has no zero rows or columns. If L̃D̃Ũ is a full rank factor-

ization of Ã then

LDU =
(
F {j1,j2,···,js}

n L̃
)
D̃

(
ŨC{i1,i2,···,ir}

m

)
(2.1)

is a full rank factorization of A. Note that if L̃D̃Ũ is a full rank factorization in
echelon form of Ã, then (2.1) is a full rank factorization in echelon form of A.

From now on, we denote by Ei,j(mij) the elementary matrix which differs from
the identity matrix only in its (i, j) entry mij .

Algorithm 2.1 (Quasi-Gauss elimination process ).

• Consider A ∈ R
n×m with rank(A) = r ≤ min{n,m}. If A has no zero rows

let Ā = A. Otherwise, Ā is obtained from A by deleting its zero rows, that
is, A = F

{i1,i2,...,is}
n Ā, where i1, i2, . . . , is are the indices of the zero rows of

A.
• Apply the first iteration of the Gauss elimination process to Ā to obtain

A(1) = E(1)Ā, where E(1) is the product of the corresponding elementary
matrices in the first iteration of the Gauss algorithm, i.e.,

E(1) = E
(1)
n,1(mn1)E

(1)
n−1,1(mn−1,1) . . . E

(1)
2,1(m21).

• If A(1) has no zero rows, then Ā(1) = A(1). Otherwise, obtain Ā(1) from A(1)

by deleting the zero rows.
• Continue in this way until an r×m matrix DU is obtained, where D ∈ R

r×r

is a nonsingular diagonal matrix and U ∈ R
r×m is an upper echelon matrix

with rank(U) = r.

Note that, since the Gauss elimination process has been applied, it follows that
A = LDU , where L ∈ R

n×r with rank(L) = r. Moreover, when pivoting is not
necessary, L is a lower echelon matrix and the full rank LDU factorization obtained
is in echelon form, as explained in the following example.

Example 2.2. Consider the matrix

A =




1 1 −2 2 5
−1 −1 2 −2 −5
2 3 −1 0 −2
2 3 5 −1 2
0 1 4 0 −1



.
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Since A has no zero rows, we have Ā = A. Then by applying the first iteration
of the Gauss elimination process

A(1) = E
(1)
4,1(−2)E(1)

3,1(−2)E(1)
2,1(1)Ā =




1 1 −2 2 5
0 0 0 0 0
0 1 3 −4 −12
0 1 9 −5 −8
0 1 4 0 −1



.

By deleting the zero row we obtain

A(1) = F
{2}
5



1 1 −2 2 5
0 1 3 −4 −12
0 1 9 −5 −8
0 1 4 0 −1


 = F

{2}
5 Ā(1).

Now the second iteration of the Gauss process is applied to Ā(1) giving

A(2) = E
(2)
4,2(−1)E(2)

3,2(−1)Ā(1) =



1 1 −2 2 5
0 1 3 −4 −12
0 0 6 −1 4
0 0 1 4 11


 .

This matrix has no zero row, so Ā(2) = A(2) and following with the third iteration of
the Gauss elimination process we obtain

A(3) = E
(3)
4,3(−1/6)Ā(2) =



1 1 −2 2 5
0 1 3 −4 −12
0 0 6 −1 4
0 0 0 25/6 31/3




which can be written as

A(3) =



1 0 0 0
0 1 0 0
0 0 6 0
0 0 0 25/6






1 1 −2 2 5
0 1 3 −4 −12
0 0 1 −1/6 2/3
0 0 0 1 62/25


 = DU,

where D ∈ R
4×4 is a nonsingular diagonal matrix and U ∈ R

4×5 is an upper echelon
matrix with rank(U) = 4. Finally, we have that the full rank factorization in echelon
form of A is

A =
(
E

(1)
2,1(−1)E(1)

3,1(2)E
(1)
4,1(2)F

{2}
5 E

(2)
3,2(1)E

(2)
4,2(1)E

(3)
4,3(1/6)

)
DU = LDU,
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where L ∈ R
5×4 is the following lower echelon matrix with rank(L) = 4,

L = E
(1)
2,1(−1)E(1)

3,1(2)E
(1)
4,1(2)F

{2}
5 E

(2)
3,2(1)E

(2)
4,2(1)E

(3)
4,3(1/6) =




1 0 0 0
−1 0 0 0
2 1 0 0
2 1 1 0
0 1 1/6 1



.

Remark 2.3. Note that it is not possible to apply the quasi-Neville elimination
process to A without pivoting. Therefore, the full rank factorization of A obtained
applying this method is not a full rank factorization in echelon form. Specifically, if
we apply the quasi-Neville elimination process to A we have that

A(1) = E
(1)
2 (1)E(1)

3 (−2)E(1)
4 (−1)Ā =




1 1 −2 2 5
0 0 0 0 0
0 1 3 −4 −12
0 0 6 −1 4
0 1 4 0 −1



= F

{2}
5 Ā(1),

where

Ā(1) =



1 1 −2 2 5
0 1 3 −4 −12
0 0 6 −1 4
0 1 4 0 −1


 .

Now, it is not possible to apply the quasi-Neville elimination process to Ā(1) without
interchange of rows. Finally, the full rank factorization of A that we obtain applying
this method is

A =




1 0 0 0
−1 0 0 0
2 1 0 0
2 1 6 1
0 1 1 0






1 1 −2 2 5
0 1 3 −4 −12
0 0 1 4 11
0 0 0 −25 −62


 = FG

which is not in echelon form. Therefore, as we comment at the beginning of this
section, we can conclude that the quasi-Gauss elimination process is more general
that the quasi-Neville elimination process.

3. Full rank factorization in echelon form. In this section we derive a nec-
essary and sufficient condition for a matrix to have full rank decomposition in echelon
form. Moreover, we prove that if the full rank factorization in echelon form exists
then it is unique.
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Theorem 3.1. Let A ∈ R
n×m be a matrix with rank(A) = r ≤ min{n,m}. Then

A admits a full rank factorization in echelon form if and only if the upper echelon
form of the first r linearly independent rows of A can be obtained with no pivoting.

Proof. Let A1 ∈ R
r×m be the matrix formed by the r first linearly independent

rows of A. Then, there exists a unique reduced lower echelon matrix F1 ∈ R
n×r such

that A = F1A1.

Suppose A1 is transformed to an upper echelon form with no pivoting, so there
exists a unique factorization L1D1U1, where L1 ∈ R

r×r is a unit lower triangular
matrix, D1 ∈ R

r×r is a nonsingular diagonal matrix and U1 ∈ R
r×m is an upper

echelon matrix with rank(U) = r. Therefore,

A = F1(L1D1U1) = (F1L1)D1U1 = LDU,

where L = F1L1 ∈ R
n×r is a lower echelon matrix, D = D1 ∈ R

r×r is a nonsin-
gular diagonal matrix, U = U1 ∈ R

r×m is an upper echelon matrix and rank(U) =
rank(L) = r.

Now, suppose that A has the full rank factorization in echelon form A = LDU ,
where L ∈ R

n×r is a lower echelon matrix, U ∈ R
r×m is an upper echelon matrix,

rank(L) = rank(U) = r and D ∈ R
r×r is a nonsingular matrix. The lower echelon

matrix L has the following structure

L =




L11 O · · · O

L21 L22 · · · O
...

...
...

Lr1 Lr2 · · · Lrr




s1

s2

...
sr

s1 + s2 + · · ·+ sr = n,

where

Lij =




ls1+s2+···+si−1+1,j

ls1+s2+···+si−1+2,j

...
ls1+s2+···+si−1+si,j


 ∈ R

si×1,

for i, j = 1, 2, . . . , r with j < i, and

Lii =




1
ls1+s2+···+si−1+2,i

ls1+s2+···+si−1+3,i

...
ls1+s2+···+si−1+si,i



∈ R

si×1

for i = j = 1, 2, . . . , r.
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From this structure we have that rows 1, s1+1, s1+s2+1, . . ., s1+s2+. . .+sr−1+1
of A are linearly independent, whereas rows s1 + s2 + · · ·+ si−1 + 2, s1 + s2 + · · ·+
si−1 + 3, . . ., s1 + s2 + · · · + si−1 + si are linear combinations of the rows 1, s1 + 1,
s1+s2+1, . . ., s1+s2+ . . .+si−1+1, for i = 1, 2, . . . , r, where we put s0 = 0 if i = 1.

Moreover, L can be written as L = FL̄, where F is a matrix in reduced lower
echelon form, with the leading 1’s in the corresponding first linearly independent rows
of A, i.e., rows 1, s1 + 1, s1 + s2 + 1, . . ., s1 + s2 + . . .+ sr−1 + 1, and L̄ is equal to

L̄ =




1 0 · · · 0 0
ls1+1,1 1 · · · 0 0

ls1+s2+1,1 ls1+s2+1,2 · · · 0 0
...

...
...

...
ls1+s2+...+sr−2+1,1 ls1+s2+...+sr−2+1,2 · · · 1 0
ls1+s2+...+sr−1+1,1 ls1+s2+...+sr−1+1,2 · · · ls1+s2+...+sr−1+1,r−1 1



.

Consequently it follows that

A[{1, s1 + 1, s1 + s2 + 1, . . . , s1 + s2 + . . . sr−1 + 1}|{1, 2, . . . ,m}] = L̄DU.

In other words, the upper echelon form of the first r linearly independent rows of A
can be obtained without interchange of rows.

Remark 3.2. If the leading principal submatrices of the first r linearly indepen-
dent rows are nonsingular, then the matrix formed by these rows is reducible with no
pivoting. So this is a sufficient condition to guarantee that the upper echelon form of
the matrix formed by the first r linearly independent rows of A can be obtained with
no pivoting, but not, in general, a necessary condition.

If A1 ∈ R
r×m is the submatrix formed by the first r linearly independent rows,

it is not difficult to prove that the necessary and sufficient conditions for this matrix
to be reducible to the echelon form with no pivoting are:

1. If r = m : detA1[1, 2, . . . , k] 
= 0, ∀k = 1, 2, . . . , r.
2. If r < m, suppose that A1[1, 2, . . . , k + 1] is the first leading principal sub-
matrix such that detA1[1, 2, . . . , k+1] = 0. Since A1 has full row rank there
exists, at least, an index j, k + 1 < j ≤ m such that

detA1[1, 2, . . . , k, k + 1|1, 2, . . . , k, j] 
= 0.

Let j0 be the first index for which inequality holds, then we need that

detA1[1, 2, . . . , k, s|1, 2, . . . , k, t] = 0,

for all s = k + 2, k + 3, . . . , r and t = k + 1, k + 2, . . . , j0 − 1.
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Remark 3.3. The full rank factorization in echelon form allows us to know,
from the rows of L with a leading 1, the linear independent rows beginning from the
top of A. Therefore, if we have two different full rank factorizations in echelon form,
then one row can be independent or dependent of the rows above it at the same time,
which is absurd. Taking into account this comment, we can give the following result.

Theorem 3.4. Let A ∈ R
n×m be a matrix with rank(A) = r ≤ min{n,m}. If A

has a full rank factorization in echelon form, then this factorization is unique.

Proof. Suppose that there exist two full rank factorizations in echelon form of A

A = L1D1U1 = L2D2U2,

where L1, L2 ∈ R
n×r are lower echelon matrices with rank(L1) = rank(L2) = r,

D1 = diag(d11, d12, . . . , d1r) and D2 = diag(d21, d22, . . . , d2r) nonsingular matrices
and U1, U2 ∈ R

r×m are upper echelon matrices with rank(U1) = rank(U2) = r.

From Remark 3.3 we have that necessarily L1 = L2 = L. Then,

A = LD1U1 = LD2U2.

Since L can be written, in a unique way, as L = FL11, where F is a reduced lower
echelon matrix and L11 is a unit lower triangular matrix, then

A = FL11D1U1 = FL11D2U2.

From this equality L11D1U1 and L11D2U2 are two different factorizations with no
pivoting of the submatrix A1 ∈ R

r×m formed by the first r linearly independent rows
of A, which it is not possible. Therefore, D1 = D2 and U1 = U2.

Remark 3.5. We have proven that the full rank factorization in echelon form
of A exists if the upper echelon form of the first r linearly independent rows can be
obtained with no pivoting, and in this case we have obtained the factorization. We
want to point that if Ã1 is the submatrix formed by any r linear independent rows of
A and the full rank factorization in echelon form of A exists, then it can be obtained
from Ã1 if the following conditions hold:

(i) The matrix F1, such that A = F1Ã1, is in lower echelon form.
(ii) The echelon form of Ã1 can be obtained without interchange of rows.

4. The Flanders theorem. The full rank factorization in echelon form allows
us to give a simple prove of the Flanders theorem in the case that A ∈ R

n×r, B ∈ R
r×n

and rank(A) = rank(B) = r. Flanders [4] proved that the difference between the
Jordan blocks sizes associated with the eigenvalue zero of matrices AB and BA is
−1, 0 or 1 for all blocks. We prove that this difference is always equal to 1 in this
particular case.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 352-363, July 2009



ELA
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Theorem 4.1. Let C = AB ∈ R
n×n and D = BA ∈ R

r×r be matrices with
A ∈ R

n×r, B ∈ R
r×n and rank(A) = rank(B) = r. Then C and D have the same

elementary divisors with nonzero roots. Moreover, if k1 ≥ k2 ≥ · · · ≥ kp (resp.
k′
1 ≥ k′

2 ≥ · · · ≥ k′
p) are the Jordan blocks sizes associated with the eigenvalue zero in

AB (resp. BA), then ki − k′
i = 1 for all i.

Proof. Since rank(C) = r, the product AB is a full rank factorization of C.
Suppose that its Jordan form is

JC =
[

JC0 O

O Jt

]
,

where Jt ∈ R
nt×nt is the block containing the Jordan blocks associated with the

eigenvalues λi 
= 0, JC0 is the Jordan block associated with the eigenvalue λ = 0,
with k1 ≥ k2 ≥ · · · ≥ kp ≥ 1 are the sizes of the corresponding Jordan blocks, that is,

JC0 =




J
(k1)
0 O . . . O

O J
(k2)
0 . . . O

...
...

...
O O . . . J

(kp)
0


 .

Suppose that k1 ≥ k2 ≥ · · · ≥ kq > kq+1 = · · · = kp = 1. The full rank factorization
in echelon form of JC is LJCUJC , where LJC ∈ R

(k1+···+kq+c+nt)×(k1−1+···+kq−1+nt)

and UJC ∈ R
(k1−1+···+kq−1+nt)×(k1+···+kq+c+nt), with c = kq+1 + · · · + kp, are the

following matrices:

LJC =




Ik1−1 O . . . O O

0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0
O Ik2−1 . . . O O

0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0
...

...
...

...
O O . . . Ikq−1 O

0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0
O O . . . O O

O O . . . O Jt




,

UJC =




0 Ik1−1 0 O · · · 0 O O O

0 O 0 Ik2−1 · · · 0 O O O
...

...
...

...
...

...
...

...
0 O 0 O · · · 0 Ikq−1 O O

0 O 0 O · · · 0 O O Int



.
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Let S be the nonsingular matrix such that

S−1CS = JC = LJCUJC .

From this expression we have

C = (SLJC)(UJCS−1) = FCGC ,

that is, FCGC is a full rank factorization of C. Since AB is also a full rank factoriza-
tion of C there exists a nonsingular matrix M such that

C = FCM−1MGC = (SLJC)M
−1M(UJCS−1) = (SLJCM−1)(MUJCS−1) = AB.

Then

D = BA = (MUJCS−1)(SLJCM−1) = (MUJC)(LJCM−1) =

=M(UJCLJC )M
−1 =M

[
JD0 O

O Jt

]
M−1,

where

JD0 =




J
(k1−1)
0 O . . . O

O J
(k2−1)
0 . . . O

...
...

...
O O . . . J

(kq−1)
0


 .

Therefore, the result holds.

Observe that

1. If k1 = k2 = · · · = kp = 1 then JC0 = O and D is similar to Jt.
2. rank(D) = rank(C2).

Remark 4.2. Consider A ∈ R
n×n with rank(A) = r < n. Let A = FU be a full

rank factorization of A, with F ∈ R
n×r, U ∈ R

r×n and rank(F ) = rank(U) = r. If
A2 = UF , then by Theorem 4.1 we have rank(A2) = rank(A2). In the case where A2

is singular, we apply Theorem 4.1 again and we obtain a new matrix A3 such that
rank(A3) = rank(A2

2) = rank(A3). Proceeding in this way, we construct a sequence
of matrices A2, A3, . . . , Aw such that

rank(Ai) = rank(Ai), i = 2, 3, . . . , w

with Aw nonsingular. If we know the Jordan structure of Aw, and taking into account
the rank of the matrices Ai, i = 2, 3, . . . , w − 1, w, we obtain the Jordan structure of
A.
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Now we obtain the converse result.

Theorem 4.3. Let C and D be matrices with the same elementary divisors with
nonzero root and let k1 ≥ k2 ≥ · · · ≥ kp, k′

1 ≥ k′
2 ≥ · · · ≥ k′

p be the Jordan blocks sizes
associated with the eigenvalue zero in C and D, respectively, such that ki − k′

i = 1
for all i. Then there exist two matrices A and B with full column and row rank,
respectively, such that both AB = C and BA = D exist.

Proof. By the hypothesis the Jordan form of C is

JC =
[

JC0 O

O Jt

]
=




J
(k1)
0 O . . . O O

O J
(k2)
0 . . . O O

...
...

...
...

O O . . . J
(kp)
0 O

O O . . . O Jt



.

If we suppose that k1 ≥ k2 ≥ · · · ≥ kq > kq+1 = · · · = kp = 1, then rank(C) =
(k1 − 1)+ (k2 − 1)+ · · ·+(kq − 1)+ nt = r. By theorem 4.1, JC admits the following
full rank factorization in echelon form

JC = LJCUJC ,

where LJC ∈ R
n×r and UJC ∈ R

r×n, with n the order of C.

Let Sc ∈ R
n×n be the nonsingular matrix such that

S−1
c CSc = JC = LJCUJC =⇒ C = (ScLJC )

(
UJCS−1

c

)
= FCGC ,

where FC ∈ R
n×r has full column rank and GC ∈ R

r×n has full row rank.

On the other hand, since the Jordan form of D is

JD =
[

JD0 O

O Jt

]
=




J
(k1−1)
0 O . . . O O

O J
(k2−1)
0 . . . O O

...
...

...
...

O O . . . J
(kq−1)
0 O

O O . . . O Jt



= UJCLJC ,

we have that D ∈ R
r×r and rank(D) = (k1 − 2) + (k2 − 2) + · · · + (kq − 2) + nt =

r − q = rank(C2).

Let Sd ∈ R
r×r be the nonsingular matrix such that

D = SdJDS−1
d = SdUJCLJCS−1

d = Sd(UJCS−1
c )(ScLJC )S

−1
d = (SdGC)(FCS−1

d ).
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If we write A = FCS−1
d ∈ R

n×r and B = SdGC ∈ R
r×n, then rank(A) = rank(B) = r

and

C = FCGC = (FCS−1
d )(SdGC) = AB, D = (SdGC)(FCS−1

d ) = BA.
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