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M∨ - MATRICES : A GENERALIZATION OF M-MATRICES BASED
ON EVENTUALLY NONNEGATIVE MATRICES∗

D. D. OLESKY† , M. J. TSATSOMEROS‡ , AND P. VAN DEN DRIESSCHE§

Abstract. An M∨ - matrix has the form A = sI − B, where s ≥ ρ(B) ≥ 0 and B is eventually

nonnegative; i.e., Bk is entrywise nonnegative for all sufficiently large integers k. A theory of

M∨ - matrices is developed here that parallels the theory of M-matrices, in particular as it regards

exponential nonnegativity, spectral properties, semipositivity, monotonicity, inverse nonnegativity

and diagonal dominance.
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1. Introduction. An M-matrix has the form A = sI − B, where B ∈ R
n×n is

(entrywise) nonnegative with s ≥ ρ(B), the spectral radius of B. M-matrices have
been studied extensively and their properties documented in several books; e.g., [2, 7].
Evidently, M-matrices and in particular their spectral properties and eigenstructure
are inextricably related to the Perron-Frobenius theory of nonnegative matrices. Ad-
ditionally, M-matrices occur in numerous applications. An extensive theory of M-
matrices has been developed relative to their role in numerical analysis (e.g., splittings
in iterative methods and discretization of differential equations), in modeling of the
economy, optimization and Markov chains; see e.g., [1, 2].

Several generalizations of the notion of an M-matrix have been given. In one
case, entrywise nonnegativity of B is replaced by cone nonnegativity. The cone can
be either finitely or infinitely generated, resulting in different approaches and results;
see e.g., [2, 13] and references therein. Another interesting generalization is in terms
of block partitions of B; see [10].

More recently, some generalizations of M-matrices have been introduced that are
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based on replacing nonnegativity of the matrix B with conditions related to eventual
nonnegativity (positivity) of B; i.e., the existence of a positive integer k0 ≥ 1 such
that Bk is entrywise nonnegative (positive) for all k ≥ k0. We briefly describe these
generalizations next.

In [8], pseudo M-matrices are introduced. These are matrices of the form A =
sI − B, where s > ρ(B) > 0, ρ(B) is a simple eigenvalue that is strictly greater
than the modulus of any other eigenvalue of B, and the left and right eigenvectors
associated with ρ(B) are strictly positive. It turns out that these assumptions on
B are equivalent to eventual positivity of B; see [8, Theorem 1]. In [8, Theorem 8]
it is shown that the inverse of a pseudo M-matrix is eventually positive; see also [5,
Theorem 3.2].

In [9], matrices of the form A = sI −B are also considered, where s > ρ(B) with
B irreducible and eventually nonnegative. In [9, Theorem 4.2] it is shown that if an
eventually nonnegative matrix B is irreducible and the index of the eigenvalue 0 of B
is at most 1, then there exists β > ρ(B) such that A = sI −B has a positive inverse
for all s ∈ (ρ(B), β).

In [5], the authors consider the above classes of matrices, as well as the class
of EM-matrices, which are of the form A = sI − B, where s ≥ ρ(B) > 0 and B
is eventually nonnegative. The classes of M-matrices and pseudo M-matrices are
both proper subsets of the class of EM-matrices; see [5, Fig. 2.1]. Properties of the
eigenvalues, inverses, and splittings of a proper superset of EM-matrices are developed
in [5].

In this paper we define and examine the following class of matrices, which is
slightly different from those considered in [5, 8, 9]. An M∨ - matrix has the form
A = sI − B, where s ≥ ρ(B) ≥ 0 with B eventually nonnegative. The class of
M∨ - matrices is a proper superset of the class of EM-matrices. In Sections 3 and
4, we show that M∨ - matrices satisfy many analogous properties of M-matrices.
This is accomplished by borrowing theory and techniques used in the cone-theoretic
generalizations of M-matrices, and by drawing on recent advancements in the study
of eventually nonnegative matrices. The latter have been the focus of study in recent
years by many researchers, partly because they generalize and shed new light on the
class of nonnegative matrices (see [3, 4, 8, 11, 18, 19]) and partly because of their
applications in systems theory (see [12, 15, 16, 17]).

2. Notation and definitions. Given X ∈ R
n×n, the spectrum of X is denoted

by σ(X) and its spectral radius by ρ(X) = max{|λ| | λ ∈ σ(X)}. The degree of 0 as
a root of the minimal polynomial of A is denoted by index0(A), and if A is invertible,
then index0(A) = 0. Recall that index0(A) coincides with the size of the largest
nilpotent Jordan block in the Jordan canonical form of A.
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Definition 2.1. A matrix X ∈ R
n×n has

• the Perron-Frobenius property if ρ(X) > 0, ρ(X) ∈ σ(X) and there exists a
nonnegative eigenvector corresponding to ρ(X);

• the strong Perron-Frobenius property if, in addition to having the Perron-
Frobenius property, ρ(X) is a simple eigenvalue such that

ρ(X) > |λ| for all λ ∈ σ(X), λ �= ρ(X)

and the corresponding eigenvector is strictly positive.

Note that this definition of the Perron-Frobenius property is taken from Noutsos [11]
and excludes ρ(X) = 0 (whereas, for example in [6, 14], ρ(X) = 0 is allowed).

The nonnegative orthant in R
n, that is, the set of all nonnegative vectors in R

n, is
denoted by R

n
+. For x ∈ R

n, we use the notation x ≥ 0 interchangeably with x ∈ R
n
+.

Definition 2.2. An n× n matrix B = [bij ] is called:

• nonnegative (positive), denoted by B ≥ 0 (B > 0), if bij ≥ 0 (bij > 0) for all
i and j;

• eventually nonnegative (positive), denoted by B
v≥ 0 (B

v
> 0) , if there exists

a nonnegative integer k0 such that Bk ≥ 0 (Bk > 0) for all k ≥ k0. In each
case, we denote the smallest such nonnegative integer by k0 = k0(B) and
refer to it as the power index of B with respect to eventual nonnegativity
(positivity);

• exponentially nonnegative (positive) if ∀t ≥ 0, etB =
∞∑

k=0

tkBk

k!
≥ 0 (etB > 0);

• eventually exponentially nonnegative (positive) if ∃t0 ∈ [0,∞) such that ∀t ≥
t0, etB ≥ 0 (etB > 0). In each case, we denote the smallest such nonnegative
number by t0 = t0(B) and refer to it as the exponential index of B with
respect to eventual exponential nonnegativity (positivity).

Note that if B
v≥ 0 with power index k0 such that Bk0 is nonnegative but not positive,

and if in additionB
v
> 0, then the power index ofB with respect to eventual positivity

is greater than k0. When the context is clear, we omit writing with respect to eventual
nonnegativity (positivity). Similar remarks apply to the exponential index.

Next is a simple but useful observation regarding the power index of an eventually
nonnegative matrix.

Lemma 2.3. Let B ∈ R
n×n and suppose that for some integer m ≥ 2,

Bm−1 �≥ 0 and Bk ≥ 0, k = m,m+ 1, . . . , 2m− 1.

Then B
v≥ 0 with power index k0(B) = m.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 339-351, July 2009



ELA

342 D.D. Olesky, M.J. Tsatsomeros, and P. van den Driessche

Proof. Let B and m be as prescribed and notice that for every k ≥ 2m, there
exist integers p ≥ 2 and r ∈ {0, 1, . . . ,m− 1} such that k = pm+ r. Thus

Bk = (Bm)p−1Bm+r ≥ 0.

It follows that B
v≥ 0 and that its power index is m.

Definition 2.4. An n× n matrix A = [aij ] is called:

• a Z-matrix if aij ≤ 0 for all i �= j. In this case, −A is called essentially
nonnegative.

• an M-matrix if A = sI −B, where B ≥ 0 and s ≥ ρ(B) ≥ 0;

• an Mv-matrix if A = sI − B, where B
v≥ 0 and s ≥ ρ(B) ≥ 0.

3. Basic properties of M∨ - matrices. By the Perron-Frobenius Theorem,
for every B ≥ 0, ρ(B) ∈ σ(B). As a consequence, the minimum of the real parts
of the eigenvalues of an M-matrix A belongs to σ(A). Analogous results hold for
eventually nonnegative and M∨ - matrices. To prove this, we first quote some results
from [8, 11]. Note that in the second theorem below from [11], the assumption that B
is not nilpotent is added; this assumption is needed as observed in [6]. Furthermore,
the converse of Theorem 3.2 is not necessarily true.

Theorem 3.1. ([8, Theorem 1] and [11, Theorem 2.2]) For a matrix B ∈ R
n×n,

the following are equivalent:

(i) Both matrices B and BT have the strong Perron-Frobenius property.

(ii) B is eventually positive.

(iii) BT is eventually positive.

Theorem 3.2. ([11, Theorem 2.3]) Let B ∈ R
n×n be an eventually nonnega-

tive matrix that is not nilpotent. Then both B and BT have the Perron-Frobenius
property.

Example 3.3. (See [12, Example 3.11].) A non-nilpotent eventually nonnegative
matrix need not have the strong Perron-Frobenius property. To see this, consider the
matrix

B =




1 1 1 1
1 1 1 1

−1 1 1 1
1 −1 1 1


 .

By Lemma 2.3, B is eventually nonnegative with k0(B) = 2 and spectral radius
ρ(B) = 2 of algebraic multiplicity two. Note also that B is not eventually positive
since Bk is reducible for all k ≥ 2.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 339-351, July 2009



ELA

M∨ - matrices 343

The following basic properties of an M∨ - matrix are immediate consequences of
its definition, as well as Theorems 3.1 and 3.2.

Theorem 3.4. Let A ∈ R
n×n be an M∨ - matrix, i.e., A = sI − B with B

v≥ 0
and s ≥ ρ(B) ≥ 0. Then

(i) s− ρ(B) ∈ σ(A);

(ii) Reλ ≥ 0 for all λ ∈ σ(A);

(iii) detA ≥ 0 and detA = 0 if and only if s = ρ(B);

(iv) if, in particular, ρ(B) > 0, then there exists an eigenvector x ≥ 0 of A
and an eigenvector y ≥ 0 of AT corresponding to λ(A) = s− ρ(B);

(v) if, in particular, B
v
> 0 and s > ρ(B), then in (iv) x > 0, y > 0 and in (ii)

Reλ > 0 for all λ ∈ σ(A).

In the following result, different representations of an M∨ - matrix are considered
(analogous to different representations of an M-matrix).

Theorem 3.5. Let A ∈ R
n×n be an M∨ - matrix. Then in any representation

A = tI − B̂ with B̂
v≥ 0, it follows that t ≥ ρ(B̂). If, in addition, A is nonsingular,

then t > ρ(B̂).

Proof. Since A is an M∨ - matrix, A = sI −B ∈ R
n×n for some B

v≥ 0 and some

s ≥ ρ(B) ≥ 0. Let A = tI−B̂, where B̂
v≥ 0. If B is nilpotent, then 0 = ρ(B) ∈ σ(B),

and by Theorem 3.2, this containment also holds if B is not nilpotent. A similar
containment holds for B̂. If t ≥ s, then ρ(B̂) = ρ((t− s)I+B) = ρ(B) + t− s. Hence,
t = s − ρ(B) + ρ(B̂) ≥ ρ(B̂). Similarly, if t ≤ s, then ρ(B) = ρ(B̂) + s − t. Hence,
t = s− ρ(B) + ρ(B̂) ≥ ρ(B̂). If A is nonsingular, then by Theorem 3.4 (iii) it follows
that s > ρ(B) and so t > ρ(B̂).

As with M-matrices (see [2, Chapter 6, Lemma (4.1)]), we can now show that the
class of M∨ - matrices is the closure of the class of nonsingular M∨ - matrices.

Proposition 3.6. Let A = sI − B ∈ R
n×n, where B

v≥ 0. Then A is an M∨ -
matrix if and only if A+ εI is a nonsingular M∨ - matrix for each ε > 0.

Proof. If A+ εI = (s+ ε)I −B is a nonsingular M∨ - matrix for each ε > 0, then
by Theorem 3.5, s + ε > ρ(B) for each ε > 0. Letting ε → 0+ gives s ≥ ρ(B), i.e.,

A is an M∨ - matrix. Conversely, let A = sI − B be an M∨ - matrix, where B
v≥ 0

and s ≥ ρ(B) ≥ 0. Thus, for every ε > 0, A + εI = (s + ε)I − B with B
v≥ 0 and

s+ ε > s ≥ ρ(B). That is, A+ εI is a nonsingular M∨ - matrix.
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Given an M-matrix A, clearly −A is essentially nonnegative and so −A+αI ≥ 0
for sufficiently large α ≥ 0. Thus e−tA = e−tα e−t(A−αI) ≥ 0 for all t ≥ 0; that is −A
is exponentially nonnegative. In the following theorem, this property is extended to
a special class of M∨ - matrices with exponential nonnegativity replaced by eventual
exponential positivity.

Theorem 3.7. Let A = sI−B ∈ R
n×n be an M∨ - matrix with B

v
> 0 (and thus

s ≥ ρ(B) > 0). Then −A is eventually exponentially positive. That is, there exists
t0 ≥ 0 such that e−tA > 0 for all t ≥ t0.

Proof. Let A = sI −B, where B = sI −A v
> 0 with power index k0. As Bm > 0

for all m ≥ k0, there exists sufficiently large t0 > 0 so that for all t ≥ t0, the sum of

the first k0−1 terms of the series etB =
∞∑

m=0

tmBm

m!
is dominated by the term

tk0Bk0

k0!
,

rendering etB positive for all t ≥ t0. It follows that e−tA = e−tsetB is positive for all
t ≥ t0. That is, −A is eventually exponentially positive as claimed.

If B is only eventually nonnegative, then a further condition is imposed to yield
a result similar to the above theorem. To prove this, we first need the following
theorem.

Theorem 3.8. ([12, Theorem 3.7]) Let B ∈ R
n×n such that B

v≥ 0 and
index0(B) ≤ 1. Then B is eventually exponentially nonnegative.

Theorem 3.9. Let A = sI −B ∈ R
n×n be an M∨ - matrix with B

v≥ 0 (and thus
s ≥ ρ(B) ≥ 0). Suppose that index0(B) ≤ 1. Then −A is an eventually exponentially
nonnegative matrix.

Proof. The result follows readily from Theorem 3.8 and the fact that e−tA =
e−tsetB.

Corollary 3.10. Let A = sI − B ∈ R
n×n be an M∨ - matrix such that B +

αI
v≥ 0 for some α ∈ R with −α �∈ σ(B). Then −A is an eventually exponentially

nonnegative matrix.

Proof. Since A = (s+α)I− (B+αI) is an M∨ - matrix and B+αI
v≥ 0, it follows

from Theorem 3.5 that s+α ≥ ρ(B +αI). As index0(B +αI) = 0 ≤ 1, the corollary
follows by applying Theorem 3.9 to A = (s+ α)I − (B + αI).

Example 3.11. (see [12, Example 3.9]) Consider A = 3I −B, where

B =




0 1 1 −1
1 0 1 1
0 0 1 1
0 0 1 1


 .
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It can be easily verified that Bk ≥ 0 for k = 2, 3 and thus, by Lemma 2.3, for all k ≥ 2.

Hence B
v≥ 0. Since ρ(B) = 2, A is an M∨ - matrix. As index0(B) = 1, by Theorem

3.9 it follows that −A is eventually exponentially nonnegative. For illustration, we
compute e−tA for t = 1, 2 to respectively be

e−3

2
6664

1.5431 1.1752 2.3404 −0.0100

1.1752 1.5431 4.0487 2.9625

0 0 4.1945 3.1945

0 0 3.1945 4.1945

3
7775 , e−6

2
6664

3.7622 3.6269 18.1543 10.9006

3.6269 3.7622 35.4439 29.9195

0 0 27.7991 26.7991

0 0 26.7991 27.7991

3
7775 .

Hence −A is an eventually exponentially nonnegative matrix with exponential index
t0 such that t0 > 1.

Example 3.12. (See [12, Example 3.11].) When index0(B) > 1, the conclusion
of Theorem 3.9 is not in general true. To see this, consider the matrix B in Example
3.3, which is eventually nonnegative with k0(B) = 2 and index0(B) = 2, and let
A = sI −B with s ≥ ρ(B). As

Bk =




2k−1 2k−1 k2k−1 k2k−1

2k−1 2k−1 k2k−1 k2k−1

0 0 2k−1 2k−1

0 0 2k−1 2k−1


 (k = 2, 3, . . .),

it follows that the (3, 1) and (4, 2) entries of etB (and thus e−tA) are negative for all
t > 0. That is, −A is not eventually exponentially nonnegative.

4. Monotonicity, semipositivity and inverse nonnegativity. There are
several properties of a Z-matrix A that are equivalent to A being an M-matrix. These
properties are documented in the often cited Theorems 2.3 and 4.6 in [2]: positive
stability, semipositivity, inverse nonnegativity and monotonicity among others. In the
cone-theoretic generalizations of M-matrices (see [13]), these properties are general-
ized and shown to play an analogous characterizing role. In the following theorems
we examine the form and role these properties take in the context of M∨ - matrices.

Theorem 4.1. Let A = sI − B ∈ R
n×n, where B

v≥ 0 has power index k0 ≥ 0.
Let K be the cone defined as K = Bk0R

n
+. Consider the following conditions:

(i) A is an invertible M∨ - matrix.

(ii) s > ρ(B) (positive stability of A).

(iii) A−1 exists and A−1K ⊆ R
n
+ (inverse nonnegativity).

(iv) Ax ∈ K =⇒ x ≥ 0 (monotonicity).
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Then (i)⇐⇒(ii)=⇒(iii)⇐⇒(iv). If, in addition, B is not nilpotent, then all con-
ditions (i)-(iv) are equivalent.

Proof.

(i)=⇒(ii). This implication follows by Theorem 3.5 and invertibility of A.

(ii)=⇒(i). It follows from the definition of an M∨ - matrix and Theorem 3.4 (i).

(iii)=⇒(iv). Assume (iii) holds and consider y = Ax ∈ K. As A−1 exists,
x = A−1y ≥ 0.

(iv)=⇒(iii). Assume (iv) holds. First notice that A must be invertible because if
Au = 0 ∈ K then u ≥ 0. Also A(−u) = 0 ∈ K and so u ≤ 0; that is, u = 0. Consider
now y = A−1Bk0x, where x ≥ 0. Then Ay = Bk0x ∈ K and so y ≥ 0.

(ii)=⇒(iii). If (ii) holds, then ρ(B/s) < 1 and so

A−1 =
1
s

(I −B/s)−1 =
1
s

∞∑
q=0

Bq

sq
.

Consequently, for all x ≥ 0,

A−1Bk0 x =
1
s

∞∑
q=0

Bq+k0

sq
x ≥ 0.

Now suppose that B is not nilpotent, that is, ρ(B) > 0. To prove that (i)-(iv)
are equivalent it is sufficient to show that (iii)=⇒(ii).

(iii)=⇒(ii). By Theorem 3.2, B has the Perron-Frobenius property, i.e., there
exists nonzero x ≥ 0 so that Bx = ρ(B)x. Assume (iii) holds and consider µ =
s− ρ(B) ∈ σ(A) ∩ R. As Bk0x = ρ(B)k0x and since ρ(B) > 0, it follows that x ∈ K
and thus A−1x ≥ 0. But Ax = µx and so x = µA−1x. It follows that µ > 0.

Remark 4.2.

(a) The implication (iii)=⇒(ii) or (i) in Theorem 4.1 is not in general true if

B is nilpotent. For example, consider B =
[

1 −1
1 −1

]
v≥ 0, which has power index

k0 = 2. Thus K = B2
R

2
+ = {0}. For any s < 0, A = sI − B is invertible and

A−1K = {0} ⊂ R
2
+; however, A is not an M∨ - matrix because its eigenvalues are

negative.

(b) It is well known that when an M-matrix is invertible, its inverse is nonnega-
tive. As mentioned earlier, in [8, Theorem 8] it is shown that the inverse of a pseudo
M-matrix is eventually positive. In [9, Theorem 4.2] it is shown that if B is an irre-
ducible eventually nonnegative matrix with index0(B) ≤ 1, then there exists t > ρ(B)
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such that for all s ∈ (ρ(B), t), (sI −B)−1 > 0. The situation with the inverse of an
M∨ - matrix A is different. Notice that condition (iii) of Theorem 4.1 is equivalent to
A−1Bk0 ≥ 0. In general, if A is an invertible M∨ - matrix, A−1 is neither nonnegative
nor eventually nonnegative; for example, if A = I − B with B as in Remark 4.2 (a),
then the (1, 2) entry of (A−1)k is negative for all k ≥ 1.

More equivalent conditions for a matrix to be an M∨ - matrix can be added if
some a priori assumptions are made. A result about pseudo M-matrices similar to
the equivalence of (i) and (iii) below can be found in [5, Theorem 3.11].

Theorem 4.3. Let A = sI −B ∈ R
n×n, where B

v≥ 0 has a positive eigenvector
(corresponding to ρ(B)). Consider the following conditions:

(i) A is an M∨ - matrix.

(ii) There exists an invertible diagonal matrix D ≥ 0 such that the row sums
of AD are nonnegative.

(iii) There exists x > 0 such that Ax ≥ 0 (semipositivity).

Then (i)=⇒(ii)⇐⇒(iii). If, in addition, B is not nilpotent, then all conditions
(i)-(iii) are equivalent.

Proof. Let A be as prescribed and let w > 0 so that Bw = ρ(B)w.

(i)=⇒(ii). Consider the diagonal matrix D = diag(w) whose diagonal entries
are the entries of w and let e denote the vector of all ones. Then s ≥ ρ(B) and so
ADe = Aw = sw −Bw = (s− ρ(B))w ≥ 0.

(ii)⇐⇒(iii). This equivalence follows by setting x = De > 0.

Now suppose that B is not nilpotent and assume (ii) holds, i.e., Ay ≥ 0, where
y = De > 0. Then

sy −By ≥ 0.(4.1)

Since B is not nilpotent, by Theorem 3.2, BT has the Perron-Frobenius property. Let
z ≥ 0 be an eigenvector of BT corresponding to ρ(BT ), i.e., zTB = ρ(B)zT . Then,
by (4.1),

0 ≤ s zTy − zTBy = s zTy − ρ(B) zT y = (s− ρ(B)) zT y.

Since zTy ≥ 0 and zT y �= 0, it follows that s ≥ ρ(B) and thus A is an M∨ - matrix,
so (ii) implies (i).
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Remark 4.4.

(a) Let A = − 1
4 I +B, with B as in Remark 4.2 (a), and x = [2, 1]T . Then Theorem

4.3 (iii) holds, but A is not an M∨ - matrix. Thus the implication (iii)=⇒(i) is not in
general true if B is nilpotent.

(b) The existence of a positive eigenvector in Theorem 4.3 is necessary. To see this,

consider B =
[

1 1
−1 −1

]
v≥ 0, which is nilpotent and has no positive eigenvector.

Let

A =
1
4
I −B =

[ − 3
4 −1
1 5

4

]
.

Notice that there is no x > 0 such that Ax ≥ 0, but A is an M∨ - matrix. That is,
condition (i) of Theorem 4.3 holds but not (iii).

(c) Let A = sI − B ∈ R
n×n be invertible, where B

v≥ 0 is not nilpotent and has a
positive eigenvector (corresponding to ρ(B)). Then condition (ii) with row sums of
AD positive and condition (iii) with Ax > 0 of Theorem 4.3 are equivalent to A being
an (invertible) M∨ - matrix.

In the context of invertible M-matrices (i.e., when B ≥ 0), condition (ii) of
Theorem 4.3 is associated with diagonal dominance ofAD because the diagonal entries
are positive and the off-diagonal entries are nonpositive. As a consequence, when A is
an invertible M-matrix, the inequality ADe > 0 can be interpreted as saying that the
columns of A can be scaled by positive numbers so that the diagonal entries dominate
(in modulus) the row sums of the (moduli of the) off-diagonal entries. This is not

the case with M∨ - matrices because off-diagonal entries of B
v≥ 0 can very well be

negative. For example, the matrix A below is an invertible M∨ - matrix for which (ii)
of Theorem 4.3 holds for D = diag(w) as in the proof; however, AD is not diagonally
dominant. Let

A = sI −B = 9.5 I −

 −0.1 20 47

−0.2 1 1
0.3 5 8


 =


 9.6 −20 −47

0.2 8.5 −1
−0.3 −5 1.5


 .

The matrix A is an invertible M∨ - matrix because B
v
> 0 with ρ(B) = 9.4834 (to

4 decimal places). Letting D = diag(w), where w = [0.9799, 0.0004, 0.1996]T is an
eigenvector of B corresponding to ρ(B), gives

AD =


 9.4068 −0.0086 −9.3819

0.1960 0.0036 −0.1996
−0.2940 −0.0021 0.2994


 .
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Note that ADe ≥ 0, however, AD is not diagonally dominant.

In the next theorem we present some properties of singular M∨ - matrices anal-
ogous to the properties of singular, irreducible M-matrices found in [2, Chapter 6,
Theorem (4.16)].

Theorem 4.5. Let A = sI−B ∈ R
n×n be a singular M∨ - matrix, where B

v
> 0.

Then the following hold.

(i) A has rank n− 1.

(ii) There exists a vector x > 0 such that Ax = 0.

(iii) If for some vector u, Au ≥ 0, then u = 0 (almost monotonicity).

Proof. As A is singular, by Theorem 3.4 (iii) it follows that s = ρ(B).

(i) By Theorem 3.1, B has the strong Perron-Frobenius property and so ρ(B) is a
simple eigenvalue of B. Thus, 0 = s− ρ(B) is a simple eigenvalue of A.

(ii) As B has the strong Perron-Frobenius property, there exists x > 0 such that
Bx = ρ(B)x, i.e., Ax = ρ(B)x −Bx = 0.

(iii) By Theorem 3.1, BT also has the strong Perron-Frobenius property and so there
exists z > 0 such that zTB = ρ(B)zT . Let u be such that Au ≥ 0. If Au �= 0, then
zTAu > 0. However,

zTAu = ρ(B)zTu− zTBu = ρ(B)zTu− ρ(B)zTu = 0,

a contradiction, showing that Au = 0.

The following is a comparison condition for M∨ - matrices analogous to a known
result for M-matrices (see e.g., [7, Theorem 2.5.4]).

Theorem 4.6. Let A = sI − B ∈ R
n×n and E = sI − F ∈ R

n×n, where

B,F
v≥ 0 are not nilpotent. Suppose that at least one of B, BT , F or FT has a

positive eigenvector (corresponding to the spectral radius). If A is an M∨ - matrix
and A ≤ E, then E is an M∨ - matrix.

Proof. Suppose that there is a vector x > 0 such that Bx = ρ(B)x. Since F
v≥ 0,

by Theorem 3.2, there exists nonzero vector y ≥ 0 such that yTF = ρ(F )yT . Also
A ≤ E implies that B ≥ F and so

ρ(B) yTx = yTBx ≥ yTFx = ρ(F ) yTx.

As yTx > 0, it follows that ρ(B) ≥ ρ(F ). If A is an M∨ - matrix, then by Theorem
3.5,

s ≥ ρ(B) ≥ ρ(F )
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and thus E is an M∨ - matrix. The proof is similar if one of BT , F or FT has a
positive eigenvector corresponding to its spectral radius.

Note that a weakening of the assumptions regarding B and F in Theorem 4.6 is
possible. Its proof remains valid if it is assumed that either (i) B or BT has a positive
eigenvector and F is not nilpotent, or (ii) F or FT has a positive eigenvector and B
is not nilpotent.

An important aspect of M-matrix theory is principal submatrix inheritance: every
principal submatrix of an M-matrix is also an M-matrix. This fact can be viewed as
a consequence of the monotonicity of the spectral radius of a nonnegative matrix
as a function of its entries. Another consequence is that all principal minors of an
M-matrix are nonnegative (i.e., every M-matrix is a P0-matrix). These facts do not
carry over to M∨ - matrices as seen in the next example.

Example 4.7. Not all principal submatrices of an M∨ - matrix are M∨ - matrices.
Also not all M∨ - matrices are P0-matrices. To see this, consider

B =


 9.5 1 1.5

−14.5 16 10.5
10.5 −3 4.5




for which ρ(B) = 12 is a simple dominant eigenvalue having positive left and right
eigenvectors. That is, B and BT satisfy the strong Perron-Frobenius property and so
by Theorem 3.1, B

v
> 0. As a consequence,

A = 12.5 I −B =


 3 −1 −1.5

14.5 −3.5 −10.5
−10.5 3 8




is an invertible M∨ - matrix. Clearly, A is not a P0-matrix since the (2, 2) entry is
negative. Also the (2, 2) entry is a principal submatrix of A that is not an M∨ -
matrix. The principal submatrix of A lying in rows and columns 1 and 2 is also not
an M∨ - matrix because it does not have a real eigenvalue, violating Theorem 3.4
(i). Furthermore, using Lemma 2.3, it can be verified that the power index of B is
k0 = 19. Note that A−1 is not positive, but A−1B19 > 0, illustrating Theorem 4.1
(iii). Referring to Remark 4.2 (b), note that A−1

v
> 0 with k0 = 3. Also, by [9,

Theorem 4.2], since B is irreducible and invertible, there exists β > ρ(B) so that
sI −B has a positive inverse for all s ∈ (ρ(B), β).
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