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A NOTE ON COMMUTING ADDITIVE MAPS ON RANK K
SYMMETRIC MATRICES*

WAI LEONG CHOOI'" AND YEAN NEE TANT?

Abstract. Let n > 2 and 1 < k < n be integers. Let Sy, (F) be the linear space of n X n symmetric matrices over a field F
of characteristic not two. In this note, we prove that an additive map v : S, (F) — Sp (F) satisfies ¢(A)A = Ay (A) for all rank
k matrices A € Sy (F) if and only if there exists a scalar A € F and an additive map p : S, (F) — F such that

W(A) = M + (A,

for all A € Sy, (F), where I, is the identity matrix. Examples showing the indispensability of assumptions on the integer k > 1
and the underlying field F of characteristic not two are included.
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1. Introduction. Motivated by mathematical interests, elegant results and applications, linear pre-
server problems on linear spaces of matrices has been an active research area in matrix theory since the
last few decades. The formulation of linear preserver problems on matrices is natural, simple and of its
applications. The study often enhances the understanding of the matrix functions, relations or identities
under consideration, and also leads to interaction of matrix theory to other subjects. We refer the reader to
the survey papers [12, 16] and the book [15] for history of linear preserver problems and its development.

Let M be a linear space of matrices. An additive map ¢ : M — M is said to be commuting on a subset
‘H of M provided that

P(A)A = Ay(A),

for all A € H. In 2012, inspired by the theory of functional identities [2] and linear preserver problems,
Franca [8] started to classify commuting additive maps ¢ : M, (F) — M, (F) on invertible (or singular)
matrices, with M, (F) being the linear space of n x n matrices over a field F. His proof was based on the
structural result of Bresar [1, Theorem 3.2], and this work has advanced the study of functional identities
to the set that is not closed under addition and multiplication. Later, many related results on commuting
additive maps in this line of research have been published; see, for instance [4, 5, 6, 9, 10, 11, 13, 14, 18].

Let n > 2 be an integer and let F be a field of characteristic not two (charF # 2). We denote by S, (F)
the linear space of n x n symmetric matrices over . In this note, we address the question of describing
the structure of commuting additive maps on symmetric matrices which are not closed under multiplication.
More precisely, we characterize commuting additive maps ¢ : S, (F) — S, (F) on rank k symmetric matrices,
for some fixed integer 1 < k < n, and obtain the following result.
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THEOREM 1. Let n > 2 be an integer and let F be a field with charF # 2. Let 1 < k < n be a fixed
integer. Then, 1 : S, (F) — S, (F) is a commuting additive map on rank k symmetric matrices if and only
if there exists a scalar A\ € F and an additive map p : S, (F) — F such that

(A) = N+ p(A) I,
for all A € S, (F).

We will see some examples that the conditions & > 1 and charF # 2 in Theorem 1 are indispensable.
The following result follows immediate from Theorem 1 and [3, Corollary 1.4].

COROLLARY 2. Letn > 3 be an integer and let F be a field with char[F # 2. Let k be a fized integer such
that & <k <n. Then : S, (F) = S, (F) is a map satisfying »(A+B) = (A)+¥(B) and p(A)A = Ayp(A)
for all rank k symmetric matrices A, B € S,,(F) if and only if there ezists a scalar A € F and an additive
map 1 : Sy (F) = F such that

W(A) = A+ p(A) I,

for all A € S, (F).

Derived from the work of Dolinar and Semrl in [7], we deduce from Corollary 2 a characterization of
maps on symmetric matrices satisfying Identity (1).

COROLLARY 3. Let n > 3 be an integer and let F be a field with charF # 2. Then v : S, (F) — S, (F) is
a map satisfying

(1) V(A+ B)(A+ B) = (A+ B)(Y(4) +¢(B)),

for all A, B € S,,(F) if and only if there exists a scalar X € F and an additive map p : Sy (F) = F such that
P(A) = A+ p(A) ],

for all A € S, (F).

Given a pair of integers 1 < 4,5 < n, we let E;; € M,(F) be the standard matrix unit whose (i, j)th
entry is one and zero elsewhere and denote D;; = E;; + Ej; with ¢ # j. Clearly, D;; = Dj; for any i # j.
We now give examples to highlight the indispensability of £ > 1 and charF # 2 in Theorem 1.

ExaMPLE 4. Let F be the Galois field of two elements. Let ¥ : S3(F) — S3(F) be the additive map
defined by:

11

for all A = (a;;) € S2(F). Let A € S5(F) be of rank 2. Then A € {I5, D12, D12 + E11, D12 + E23}, and thus
Y(A)A = Ayp(A). Hence, 9 is a commuting additive map on rank two matrices.

EXAMPLE 5. Let F be the Galois field of two or three elements. Let v : S3(F) — S(F) be the additive

map defined by:
. 0 ai2
v = ()

for all A = (a;;) € S2(F). Let A € So(F) be of rank 1. Then

a? ab
A_/\<ab bz)7

W(A) = (a1 + arz + azs) (1 1) ,
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for some scalars A, a,b € F with A # 0 and (a, b) # 0. Notice that
b b2 ab a?
A)A = \? ¢ Ap(A) = N2 .
P(A) A-ab (a2 ab> and AvY(A) = N\ ab <b2 ab>

The result is clear when either a = 0 or b = 0. For the case a # 0 and b # 0, we see that a> = 1 = b?> when
|F| = 2,3. It follows that v is a commuting additive map on rank one matrices.

EXAMPLE 6. Let F be a field with charF # 2. Let ¢ : S3(IF) — S3(FF) be the additive map defined by:

0 —a23 22
P(A) = [ —as 2a13 —ai2 |,
azs  —ap2 0

for all A = (a;;) € S3(F). Let A € S5(F) be of rank 1. Then

a® ab ac

A=X|ab b be

ac be 2

for some scalars A, a,b,c € F with A # 0 and (a,b, ¢) # 0. Note that

0 —A\bc B2 a® ab ac
PY(A)A= [ =Xbc 2 ac  —Xdab | [ A|ab B> be =0,
A2 —)ab 0 ac be 2
a? ab ac 0 —A\bc b2

Ap(A) =X [ab B> b —Abe  2Xac  —Xab | =0.
ac bc c? b2 —)ab 0

Therefore, ¢ is a commuting additive map on rank one matrices.

2. Results. Let n > 2 be an integer and let F be a field. Let ¢ : S,,(F) — S, (F) be an additive map.
First note that for each pair of distinct integers 1 < p,q < n, there exist additive maps qbgp ). F - F,

1<z<j\n,and¢ij F— T, 1<4<j < n,such that

(2) P(aEpp) = Z¢pp) VEi; + Z ¢(pp Dij»
1<i<jsn
(3) Y(aDyq) :Z¢§fq)(a)Eii+ > el
i=1 1<i<j<n

for all @ € F. We start with a technical lemma to give a complete description of commuting additive maps
¥ : S (F) = S, (F) on the subset B, of S, (F) with charF # 2, where

{aE, +D12: o,f€Fand r=1,2} if n=2,
B {aE; + fDst, aDys+aDg: a,f€F, 1< rys,t<nmand s#t} if n>3.

LEMMA 7. Let n > 2 be an integer and let F be a field with charF # 2. Then, ¢ : Sp(F) — S, (F) is a
commuting additive map on By, if and only if there exists a scalar A € F and an additive map p: Sp(F) = F
such that

(4)

B(A) = M+ p(A)L,,
for all A € S, (F).
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Proof. The sufficiency is obvious. We consider the necessity. Let 1 < s < n be an integer and a € F.
Since ¥(aFss)(aFss) = (aFEss)(aFEss), it follows from (2) that

S @alB) ¢ Y o @alDyE) = Y al @)+ Y 0ol @)(EnDy)

i=1 1<i<jsn i=1 1<i<j<n

We thus obtain

s—1 n
Y@ @)aE, — ad (@) Bu) + D (57 (@)aBjs — agl () Esy) = 0,
i=1 j=s+1

for every a € F and integer 1 < s < n. Then for each integer 1 < p < n

(5) ¢£§p)—0 fori=1,...,p—1,
(6) rj)(pp =0 forj=p+1,...,n

Let 1 < s <t < n be integers and a € F. We infer by (3) and ¢¥(aDs;)(aDst) = (aDst)p(aDg;) that

qu‘“) WED)+ Y 6 @a(DyD) =3 as @ (DuB) + Y adt @) (DuDy).
i=1

1<i<j<n 1<i<j<n
Hence,
0= (¢ (a)a —a<z><5”< ) Eat + (64" (a)a — ag(3) (a)) By
i @aEi - a6 (0)Ew) + le“t)( 0)aBj, — adi(a)Byy)
i=1 j=t+
+ Z SN @)aBs — agl” (a)Ea) + i (655" ()aBj; — agl (a) Eyy),
i=1,i#s j=s+1, j#t

for all @ € F and integers 1 < s < t < n. Then for each pair of integers 1 < p < g < n,

(7) ¢pq) ¢g;17

(8) ¢E§q) =0 fori=1,...,p—1,

9) (;5;])—0 for j=q+1,.

(10) ¢ =0 fori=1,...,q—1, withi #p,
(11) ¢V =0 for j=p+1,...,n, withj#aq.

Let 1 < r,s,t < n be integers such that s < t and let a,b € F. We consider aF,, + bDgs € B,. By the
additivity of ¢ and (S)S = Sy (S) for S € {aFE,.,bDs,aE,.. + bDy}, we obtain

(12) w(aErr)stt + w(stt)aETr = aErT'(/)(stt) + sttw<aErr)-
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From (2), we see that
Y(aE,)bDyr = 07 ()bEs + 47" (a)bEys + Z 04" (@)bEis + Z o7 (a)bEyy

+ Z ¢\ (a)bE;q + Z o\ (a)bE;,

j=t+1 i
DDyt (aByy) = bof;" (a) By + bo (. (a) By +Zb¢(”) E31+2b¢(”) )E;
+ Z b¢(rr a)Es; + Z b, rr) a)Ey;.
j=t+l Jj=s+1
From (3), we have

D Jat, = 620+ 3O+ 3 50

Jj=r+1

TTw(stt)_aQ/) E —|—Z ¢£:t) E‘ + Z ¢(5t)

Jj=r+1

Substituting into (12), we obtain
(67 (@)b = b1, (@) Esp + (917 (@) = 0617 (@) s + S0i21, i (8177 ()bFis = by} (0) Bu)
+ i (00 (@bEiy = b6 () Br) + X, (65 ()b By — b¢<" (a) Exy)
+ Y air (08 (@B — b6 (@) Byy) + Yi2) (657 (B)aEi — agls) (0) Bri)
+ 1 (05 (D)aj, — adl (D)) =0,

for all integers 1 < 7,s,t < n with s < ¢, and scalars a,b € F. We distinguish five cases.

(13)

Case 1. 1<r=s<t<n. Since(bgzs):()fori:l, ,s — 1 by (5), gbg;s)—()forj—s—kl .,n by
(6), ¢(gt)—0forz—1 s—lby(8),and¢$t):0forj:s+l,..., —1,t+1,...,n by (11), it follows
from (13) that

(655 (a)b b¢<ss>< ) —aglV (b)) E gt+< @b+ 650 (D)a — b (a) B
+ Z ¢3°) (a)bEis — Z b (a) Eyi + Z SN abE — Y 0o (a) By, =0,

i=1,i#s i=1,i#s j=t+1 j=t+1

for all integers 1 < s < t < n and scalars a,b € F. Consequently, for each pair of integers 1 < p < ¢ < n,

(14) PP (a)b = bpTP (a) + ag®? (b) for all a,b € F,
(15) ¢ =0 fori=1,...,q— 1, withi#p,

(16) d)((;;-p):O forj=q+1,...,n
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By (14), we note that ¢pg (b9) . F is a linear map for every 1 < p < ¢ < n. It follows immediately that for
each pair of integers 1 < p < ¢ < n, there exits a scalar 7,,, € F such that

(17) ¢PV(a) = tpga foralla €T,
(18) (bé’ép) (a) = ¢§,’;,p)(a) — Tpga for alla € F.
Case 2. 1<s<t=r<n. Slnce¢ —Oforizl, t—lby()rj)(tt—()forj:t—i—l,...,nby

(6), gb(St)—Oforj:t—l—l,...,nby( 9), andqbgft):Oforz:l,...,s 1,s+1,...,t =1 by (10), it follows
from (13) and (17) that

(6 (a )b+nba—b¢<t”< ) Bt +< W (@)b — bg{) (a) — aryb) By

n Zd)(tt Zb¢(tt) VEyi + Z ) tt)( a)bEj; — zn: ¢(tt)( a)Ey; =0,

j=s+1,j#t j=s+1,j#t

for all integers 1 < s <t < n and scalars a,b € F. We conclude that for each pair of integers 1 < p < ¢ < n,

(19) ¢4 (a) = ¢l (a) — Tpqa for all a € F,

(20) ¢£Zq)=0 fori=1,...,p—1,

21 U =0 for j=p+1,...,n, withj #q.
pj

From (18) and (19), we see that for each integer 1 < p < n,

(22)
;,Z;p)(a) — e fp<i<n

(pp) . .
op (@) — Tipa if 1 < <p,
(b(PP)( ) {
for all a € F. Moreover, from (5), (6), (15), (16), (20), and (21), for each integer 1 < p < n,
(23) qﬁgp) =0 for all integers 1 < i< j < n.

Consequently, by (2), (22), and (23), for each integer 1 < p < n,

(24) V(aBy,) = ¢ (a)l, — Z TipaBi — Y Tpiak,
i=p+1
for all @ € F. When n = 2, we infer by (24) that
Y(aE) = (¢>1111 (a) — m2a)ls + 12aF11 and  (aF22) = (¢2222 (a) — 2a)Is + 120 Faa,
for all @ € F, and by (3), (7), and (17) that
¥(aDr2) = ¢\, (a) Iz + Ti2aD,
for all @ € F. Let p: S3(F) — F be the additive map defined by:
p(A) = (61 (a11) = Traan1) + (8557 (a22) — T12029) + 6477 (a12),

for all A = (a;;) € S2(F). Hence, ¥(A) = AA + p(A)I, for all A € S5(F), where A = 75 € F, as required.
We now consider n > 3.
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(rr) _ : . (st) (st)
Case 3. 1 <r < s <t<n. Notethat ¢;;"" =0forall 1 <i<j<nby(23),and ¢rs’ = ¢y by

(8) and (10). Thus, Equation (13) can be simplified as follows:

(607 ()b b¢><““< DBt + (657" (@)b = b6 (a)) Eus

n

+Z B 0)aBy, —adV OB + Y (01 (0)aB;, - ady (D)E) =0,

J=r+1, j#s,t

for all integers 1 <7 < s <t < n and scalars a,b € F. Then, for each pair of integers 1 < p < ¢ < n,

(25) ¢<Pp) = ¢§1}p) forallp<i<j<n
(26) (b(pq) =0 foralll<i<j<p,
(27) qb(pq) =0 forall1<i<p and i <j < n, with j #p,q.

Case 4. 1 < s <r <t<n. Likewise, since (;SE;T) =0 for all 1 <i < j < n by (23), and qﬁ(gt) SO
by (10) and (11), it follows from (13) that

(65 (a)b — ¢w>< ) Es + (07 ()b — o) (a) By

- n

Z SO B)aEy —ad’ 0)Eq) + Y. (@5 (0B, — ad (0)E,;) =0,

i=1,i J=r+1, £t

for all integers 1 < s < r <t < n and scalars a,b € F. Then for each pair of integers 1 < p < ¢ < n,

(28) " = ¢ forall 1 <i<pandp<j<
¢£J ) =0 forall 1 <i<jandp<j<gq, withip,
(29) ¢(pq)—0 forall p<i<gq and i < j <n, with j #q.
Case 5. 1 < s <t <r < n. Similarly, using ¢(n) =0foralll < j < nby (23), and ngit) _ git) —0

by (9) and (11), we thus obtain from (13) that

(@& (a)b — b¢><”<>>Eét+<¢”>< )b — b6\ () Eys

n

+ Z (63" 0)aBy — adl) (D) E) + 3 (68 (0)aEy, — agl) (b)E,;) =0,

i=1,i#s,t j=r+1

for all integers 1 < s <t < r < n and scalars a,b € F. Therefore, for each pair of integers 1 <p<g<n
(30) q’)(pp) ¢;§-p) forall 1 <i<j<p,
¢(M)—0 forall 1 <i< jand g <j<mn, withi#p,q,
(31) ¢V =0 forallg<i<j<n
Then, we infer by (25), (28), and (30) that for each integer 1 < p < n,
(32) gi)(pp) (;Sggp) for all 4,5 € {1,...,n}\{p}.
It follows from (22) and (32) that for each integer 1 < p < n

T2 = T13 = " = Tin,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I
Volume 37, pp. 734-746, December 2021.

741 A note on commuting additive maps on rank k symmetric matrices

when p =1,

Tip " =Tp—1p = Tpp+1 = " = Tpn,

when 1 < p < n, and

Tin = T2n = *** = Tn—1,n,
when p = n. From this, we conclude that there exists a fixed scalar A € F such that
(33) Tij = A,
for all 1 <i < j < n. From (24) and (33), for each integer 1 < p < n,
(34) P(aByp) = AaEyp, + (67 (a) — Xa)I,,

for all @ € F. On the other hand, we infer by (8), (9), (10), (11), (26), (27), (29), and (31) that for each pair
of integers 1 <p<qg<n

(35) ng(pq =0 forall 1l <i<j<n, with (¢,7) # (p,q).

From (3) and (35), we see that for each pair of integers 1 < p < ¢ < n,

(36) ¥(aDpq) = AaDpq + Z ¢(pq) Eii,
i=1

for all a € F.

We now proceed to claim that for each pair of integers 1 < p < ¢ < n,
(ra) _ -
(37) O = ¢](01;‘1) foralli=1,....n

Let 1 < r,s,t < n be distinct integers. We consider 1 < r < s <t <n and aD,s + aDg € B, for a € F.
By virtue of (S)S = S¢(S) for S € {aD,s,aDst,aD,s + aDg}, we have ¥(aDys)aDs + p(aDst)aDys =
aD,stp(aDst) + aDsip(aDyg). Tt follows from (36) that

(643 (@)a — 60 (@)a) (Ers — Bup) + (607 ()a — 647 (a)a) (Bt — Evs) = 0,
for all integers 1 <7 < s <t < n and scalars a € F. Then for each pair of integers 1 <p < g<n

(38) o = ¢r? fori=1,....p—1.

(23

We now consider 1 < s <t <r <n and aDg + aDy,. € B, for a € F. Repeating the above argument, we
obtain

(6{)(a)a — 6§ (@)a) (Bs — Eus) + (64" (a)a — 63D (a)) (Eey — Epe) = 0,

for all integers 1 < s <t < r < n and scalars a € F. Then, for each pair of integers 1 < p < ¢ < n,
(39) ¢(pq) ¢(p‘” fori=q+1,...,n,

Next, we consider 1 < s < r <t < n and aDg,. + aDg € B, for a € F. Repeating the above argument, we
obtain

(643 (@)a — a3 (@) (Brs = Bar) + (857 (@)b — by;"” (@) (B — Evs) = 0,
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for all integers 1 < s < r <t < n and scalars a € F. Therefore, for each pair of integers 1 <p<g<n
(40) qb(pq (b(”q) fori=p+1,...,q—1.

From (38), (39), and (40), together with (7) the claim is proved. Consequently, we infer by (36) and (37)
that for each pair of integers 1 < p < ¢ <

(41) ¥(aDyq) = AaDypq + ¢ (@),

for all a € F. Let p: S, (F) — F be the additive map defined by:

(42) p(ak) =

05 (a) = da if B =By, 1<
.

¢ D(a)  if E=Dy, 1

for all @ € F. By (34), (41), and (42) and the additivity of ¢ and p, we conclude that

w(A) = Z au u Z 1/} azg ’Lj
i=1 1<i<j<n
— Z()‘a%Eu + ((b(“)(aii) _ )\aii)In) + Z (/\aijDij + ¢£§j)(aij)ln)
i=1 1<i<j<n
=A ZauEu + Z azg 17 + Zﬂ(azzEn) + Z ﬂ(aijDij) In
1<i<j<n i=1 1<i<j<n
= A + p(A) I,
for all A = (a;j) € Sy (F). This completes the proof. |

As an immediate consequence of Lemma 7, we obtain the following corollary.

COROLLARY 8. Let n > 2 be an integer and let F be a field with charF # 2. Then v : S, (F) — S, (F) is
a commuting additive map on symmetric matrices if and only if there exists a scalar A € F and an additive
map p: Sp(F) = F such that
W(A) = AN+ p(A) 1,

for all A € S, (F).

Let A € S,,(F) be a nonzero rank k matrix. Then there exist nonzero scalars Ai,...,A\; € F and an
invertible matrix P € M, (F) such that

k
(43) A=P (Z AiEi,) P,

i=1
when charF # 2; see, for example, [17, Corollary 1.33].

LEMMA 9. Let F be a field with charF = 2. Then each A € So(F) can be represented as a sum of three
invertible matrices in S2(F) among which the sum of any two is invertible.

Proof. Let A € S3(F). If A =0, then weset X =Y =1y and Z = —2I. So X,Y,Z € S3(F) are
invertible such that A = X +Y 4+ X and the sum of any two is also invertible. If A is of rank one, then we
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assume without loss of generality that A = Eq;1 by (43). We set X = D12, Y = E11 + D1y and Z = —2Dqs.
Then X,Y, Z € So(F) are invertible such that A = X +Y 4 Z and the sum of any two is invertible. If A is
of rank two, then by (43) we may assume that A = E1; + AFEss for some nonzero A € F. Take

X =FEn —Eay— D12, Y =F»n—Dip and Z = Eg + 2D,
when A =1, and
X = Ell + ()\ - 1)D12, Y = )\EQQ - )\Dlg and Z = D12,
when A # 1. Then X,Y,Z € So(F) are invertible such that A = X + Y + Z and the sum of any two is
invertible. We are done. 0

LEMMA 10. Let n and k be integers such thatn > 3 and 1 < k < n. Let F be a field with charF # 2. If
A € S, (F) is of rank at most three, then A can be represented as a sum of three rank k matrices in Sy, (F)
among which the sum of any two is of rank k.

Proof. Let A € S,,(F) be of rank at most three. If A =0, then A =X +Y + Z, where

k
X:ZEii, Y =X and Z=-2X.

i=1
It is immediate that X, Y, and Z are rank k symmetric matrices such that the sum of any two is of rank k.

We consider A is of rank one. By (43), we assume without loss of generality that A = Fy;. Let

k
X:D12+ZEii7 Y=F;+X and Z=-2X,
i—3

where it is understood that 2?13 E;; =0 when &k = 2. Then A = X +Y + Z is the sum of three rank k
matrices X,Y, Z € S, (IF) among which the sum of any two is of rank k.

We next consider A is of rank two. Invoking (43), we may assume A = FE1; + AFEsy for some nonzero
A € F. Two cases are considered below:

Case A1. X =1. Set

k
X =FE11 — Eyp+Dip+ ZEm
=3
k k
Y = Dlg + ZE” and Z = E22 - 2D12 - Z 2E”
=2 =3

Then A = X +Y + Z is the sum of three rank k matrices X,Y, Z € S,,(F) among which the sum of any two
is of rank k.

Case A2. A\ # 1. Let

k
X=FEu+1—-XDi2+ Z(l — A Ej,
=3
k k
Y = )\Dlg + Z AE“' and 7 = —D12 - ZE“'.

=2 =3
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Then A = X +Y + Z is the sum of three rank k& matrices X,Y, Z € S,,(F) among which the sum of any two
is of rank k.

We now consider A is of rank three. By virtue of (43), we may assume A = F11 + AFss + E33 for some
nonzero A\, u € F. If k = 2, then we take

X = 2E11 + y,E33, Y = )\EQQ - ILLE33 and Z = —E11 + ILLE33.

Clearly, A= X +Y + Z is the sum of three rank two matrices X,Y, Z € S,,(F) among which the sum of any
two is of rank two. Suppose that & > 3. We distinguish three cases.

Case BI. A= p=1. Set
k

X =Fyy — Exp— Ess+ Dia+ Das + Y _ Ei,
i—4
k k
Y =Dip+Das+» Ey and Z=Ey+ Esy—2D1p—2Das — »_ 2E;;.
i=2 1=4

Then A = X +Y + Z is the sum of three rank & matrices X,Y, Z € S,,(F) among which the sum of any two
is of rank k.

Case B2. A=1and p # 1. Let

k

X = FE11 — D12 — Dag — uE33 + ZEM,
i=4
k k
Y = Foy +2D13 +2D23 + pEs3 + Z E; and Z=-—Dio— Do3+ uFEs3 — Z 2E;;.
i=4 i=4
We see that A = X +Y + Z is the sum of three rank k matrices X,Y, Z € S,,(F) among which the sum of
any two is of rank k.

Case B3. A\, # 1 and A # u. Taking

k
X = E1 — Dip — Dys — pBss + »_ By,
i=4

k k
Y = AEos + 2Dy + 2D23 + uFEs3 + Z E; and Z=-—Dio— Do3+ uFEs3 — Z 2E;;,
i=4 i=4
we see that A = X +Y + Z is the sum of three rank k matrices X,Y, Z € S,,(F) among which the sum of
any two is of rank k. This completes our proof. ]

We are now ready to prove the main theorem.

Proof of Theorem 1. The sufficiency is trivial. We consider the necessity. Let A € B,,. In view of (4),
we note that A is of rank at most three when n > 3. It follows from Lemmas 9 and 10 that A= X +Y + 72
for some rank k matrices X,Y,Z € S, (F) such that X +Y, Y + Z and X + Z are of rank k. Since ¢

is a commuting additive map on rank k symmetric matrices, it follows that ¥ (S)(S) = (S)¥(S) for each
S e{X,Y,X +Y}. This yields

PX)Y + (V)X = Y§(X) + X(Y).
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Likewise, we obtain ¢(Y)Z + ¢(2)Y = Z¢Y(Y) + Y(Z) and Y(X)Z + Y(Z)X = Zy(X) + X(Z). By the
additivity of ¥, we obtain

PAA=p(X +Y + 2)(X +Y + 2)
— OX +B(V)Y +0(2)Z + (B(X)Y + (V) X) + (V) Z + $(Z)Y) + (W(X)Z + 9(2)X)
— X$(X) + YY) + Z9(Z) + (YO(X) + X(Y)) + (Z0(Y) + Y§(Z)) + (Z(X) + Xe(2))
= (X +Y +2W(X +Y + 2)
= AY(A).

Hence, v is commuting on B,,. The result follows immediately from Lemma 7. ]

LEMMA 11. [3, Corollary 1.4] Let n > 3 be an integer and let F be a field with charF £ 2. If k is a fized
integer such that § < k < n, then a map ¢ : S,(F) — S, (F) satisfies (A + B) = ¢(A) +(B) for all rank
k matrices A, B € S,(F) if and only if ¢ is additive.

Proof of Corollary 2. The sufficiency is clear. For the necessity, it follows from the hypothesis and
Lemma 11 that ¥ is a commuting additive map on rank k£ symmetric matrices. The result follows immediately
from Theorem 1. 0

Proof of Corollary 3. We consider the sufficiency. Note that

(A4 B)(A+ B) = (MA+ B) + u(A+ B)L,)(A+ B)
= AA? + A\B? + AAB + ABA + u(A)A+ u(B)B + u(A)B + u(B)A
= ANA+ Ap(A) + ANB + Ap(B) + BAA + Bu(A) + BAB + Bu(B)
= (A+ B)(¥(A) +¢(B)),

for all A, B € S,,(F). For the necessity, we first show that ¢(0) = 0. Note that ¥(I,,) = (I, + 0)(I, +
0) = (I, + 0)(¥(L,) + ¥(0)) = ¥(I,) + ¥(0) yields ¥(0) = 0. Then, »(A)A = Y(A+0)(A+0) = (A+
0)(¥(A) +¢(0)) = Ayp(A) for all A € S, (F), and thus ¢ is a commuting map on S, (F). We now show that
P(2A) = 2¢(A) and Y(—A) = —p(A) for all invertible A € S, (F). Let A € S,,(F) be invertible. Note that
2AH(24) = P(24)(24) = H(A + A)(A+ A4) = (A + A)B(A) + $(A)) = 2A4(2(A)) yields $(24) = 24(A)
because 24 is invertible. Next, AY(A) = Y(A)A = P(—A+2A4)(—A+24) = (mA+24)(Y(—-A) +¢(24)) =
A((—A) + 2¢p(A)) leads to ¥(—A) = —(A). Finally, we show that (A + B) = ¢ (A) + ¢(B) for all
invertible A, B € S,,(F). Let A, B € S,,(F) be invertible. Then

Ap(A) = y(A)A
=9((A+ B)+(=B))(A+ B) + (-B))
= ((A+ B) + (=B))(¥(A+ B) +¢¥(-B))
= A(Y(A+ B) —¢(B)).

It follows that ¥(A + B) = ¢¥(A) + ¢(B) for all invertible matrices 4, B € S, (F). The result follows
immediately from Corollary 2. O
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