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A NOTE ON COMMUTING ADDITIVE MAPS ON RANK K

SYMMETRIC MATRICES∗

WAI LEONG CHOOI† AND YEAN NEE TAN†‡

Abstract. Let n > 2 and 1 < k 6 n be integers. Let Sn(F) be the linear space of n× n symmetric matrices over a field F
of characteristic not two. In this note, we prove that an additive map ψ : Sn(F)→ Sn(F) satisfies ψ(A)A = Aψ(A) for all rank

k matrices A ∈ Sn(F) if and only if there exists a scalar λ ∈ F and an additive map µ : Sn(F)→ F such that

ψ(A) = λA+ µ(A)In,

for all A ∈ Sn(F), where In is the identity matrix. Examples showing the indispensability of assumptions on the integer k > 1

and the underlying field F of characteristic not two are included.
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1. Introduction. Motivated by mathematical interests, elegant results and applications, linear pre-

server problems on linear spaces of matrices has been an active research area in matrix theory since the

last few decades. The formulation of linear preserver problems on matrices is natural, simple and of its

applications. The study often enhances the understanding of the matrix functions, relations or identities

under consideration, and also leads to interaction of matrix theory to other subjects. We refer the reader to

the survey papers [12, 16] and the book [15] for history of linear preserver problems and its development.

LetM be a linear space of matrices. An additive map ψ :M→M is said to be commuting on a subset

H of M provided that

ψ(A)A = Aψ(A),

for all A ∈ H. In 2012, inspired by the theory of functional identities [2] and linear preserver problems,

Franca [8] started to classify commuting additive maps ψ : Mn(F) → Mn(F) on invertible (or singular)

matrices, with Mn(F) being the linear space of n × n matrices over a field F. His proof was based on the

structural result of Brešar [1, Theorem 3.2], and this work has advanced the study of functional identities

to the set that is not closed under addition and multiplication. Later, many related results on commuting

additive maps in this line of research have been published; see, for instance [4, 5, 6, 9, 10, 11, 13, 14, 18].

Let n > 2 be an integer and let F be a field of characteristic not two (charF 6= 2). We denote by Sn(F)

the linear space of n × n symmetric matrices over F. In this note, we address the question of describing

the structure of commuting additive maps on symmetric matrices which are not closed under multiplication.

More precisely, we characterize commuting additive maps ψ : Sn(F)→ Sn(F) on rank k symmetric matrices,

for some fixed integer 1 < k 6 n, and obtain the following result.
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Theorem 1. Let n > 2 be an integer and let F be a field with charF 6= 2. Let 1 < k 6 n be a fixed

integer. Then, ψ : Sn(F) → Sn(F) is a commuting additive map on rank k symmetric matrices if and only

if there exists a scalar λ ∈ F and an additive map µ : Sn(F)→ F such that

ψ(A) = λA+ µ(A)In,

for all A ∈ Sn(F).

We will see some examples that the conditions k > 1 and charF 6= 2 in Theorem 1 are indispensable.

The following result follows immediate from Theorem 1 and [3, Corollary 1.4].

Corollary 2. Let n > 3 be an integer and let F be a field with charF 6= 2. Let k be a fixed integer such

that n
2 6 k 6 n. Then ψ : Sn(F)→ Sn(F) is a map satisfying ψ(A+B) = ψ(A)+ψ(B) and ψ(A)A = Aψ(A)

for all rank k symmetric matrices A,B ∈ Sn(F) if and only if there exists a scalar λ ∈ F and an additive

map µ : Sn(F)→ F such that

ψ(A) = λA+ µ(A)In,

for all A ∈ Sn(F).

Derived from the work of Dolinar and Šemrl in [7], we deduce from Corollary 2 a characterization of

maps on symmetric matrices satisfying Identity (1).

Corollary 3. Let n > 3 be an integer and let F be a field with charF 6= 2. Then ψ : Sn(F)→ Sn(F) is

a map satisfying

(1) ψ(A+B)(A+B) = (A+B)(ψ(A) + ψ(B)),

for all A,B ∈ Sn(F) if and only if there exists a scalar λ ∈ F and an additive map µ : Sn(F)→ F such that

ψ(A) = λA+ µ(A)In,

for all A ∈ Sn(F).

Given a pair of integers 1 6 i, j 6 n, we let Eij ∈ Mn(F) be the standard matrix unit whose (i, j)th

entry is one and zero elsewhere and denote Dij = Eij + Eji with i 6= j. Clearly, Dij = Dji for any i 6= j.

We now give examples to highlight the indispensability of k > 1 and charF 6= 2 in Theorem 1.

Example 4. Let F be the Galois field of two elements. Let ψ : S2(F) → S2(F) be the additive map

defined by:

ψ(A) = (a11 + a12 + a22)

(
1 1

1 1

)
,

for all A = (aij) ∈ S2(F). Let A ∈ S2(F) be of rank 2. Then A ∈ {I2, D12, D12 + E11, D12 + E22}, and thus

ψ(A)A = Aψ(A). Hence, ψ is a commuting additive map on rank two matrices.

Example 5. Let F be the Galois field of two or three elements. Let ψ : S2(F)→ S2(F) be the additive

map defined by:

ψ(A) =

(
0 a12
a12 0

)
,

for all A = (aij) ∈ S2(F). Let A ∈ S2(F) be of rank 1. Then

A = λ

(
a2 ab

ab b2

)
,
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for some scalars λ, a, b ∈ F with λ 6= 0 and (a, b) 6= 0. Notice that

ψ(A)A = λ2ab

(
ab b2

a2 ab

)
and Aψ(A) = λ2ab

(
ab a2

b2 ab

)
.

The result is clear when either a = 0 or b = 0. For the case a 6= 0 and b 6= 0, we see that a2 = 1 = b2 when

|F| = 2, 3. It follows that ψ is a commuting additive map on rank one matrices.

Example 6. Let F be a field with charF 6= 2. Let ψ : S3(F)→ S3(F) be the additive map defined by:

ψ(A) =

 0 −a23 a22
−a23 2a13 −a12
a22 −a12 0

 ,

for all A = (aij) ∈ S3(F). Let A ∈ S3(F) be of rank 1. Then

A = λ

a2 ab ac

ab b2 bc

ac bc c2

 ,

for some scalars λ, a, b, c ∈ F with λ 6= 0 and (a, b, c) 6= 0. Note that

ψ(A)A =

 0 −λbc λb2

−λbc 2λac −λab
λb2 −λab 0

λ
a2 ab ac

ab b2 bc

ac bc c2

 = 0,

Aψ(A) = λ

a2 ab ac

ab b2 bc

ac bc c2

 0 −λbc λb2

−λbc 2λac −λab
λb2 −λab 0

 = 0.

Therefore, ψ is a commuting additive map on rank one matrices.

2. Results. Let n > 2 be an integer and let F be a field. Let ψ : Sn(F) → Sn(F) be an additive map.

First note that for each pair of distinct integers 1 6 p, q 6 n, there exist additive maps φ
(pp)
ij : F → F,

1 6 i 6 j 6 n, and φ
(pq)
ij : F→ F, 1 6 i 6 j 6 n, such that

ψ(aEpp) =

n∑
i=1

φ
(pp)
ii (a)Eii +

∑
16i<j6n

φ
(pp)
ij (a)Dij ,(2)

ψ(aDpq) =

n∑
i=1

φ
(pq)
ii (a)Eii +

∑
16i<j6n

φ
(pq)
ij (a)Dij,(3)

for all a ∈ F. We start with a technical lemma to give a complete description of commuting additive maps

ψ : Sn(F)→ Sn(F) on the subset Bn of Sn(F) with charF 6= 2, where

(4) Bn =

{
{αErr + βD12 : α, β ∈ F and r = 1, 2 } if n = 2,

{αErr + βDst, αDrs + αDst : α, β ∈ F, 1 6 r, s, t 6 n and s 6= t } if n > 3.

Lemma 7. Let n > 2 be an integer and let F be a field with charF 6= 2. Then, ψ : Sn(F) → Sn(F) is a

commuting additive map on Bn if and only if there exists a scalar λ ∈ F and an additive map µ : Sn(F)→ F
such that

ψ(A) = λA+ µ(A)In,

for all A ∈ Sn(F).
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Proof. The sufficiency is obvious. We consider the necessity. Let 1 6 s 6 n be an integer and a ∈ F.

Since ψ(aEss)(aEss) = (aEss)ψ(aEss), it follows from (2) that

n∑
i=1

φ
(ss)
ii (a)a(EiiEss) +

∑
16i<j6n

φ
(ss)
ij (a)a(DijEss) =

n∑
i=1

aφ
(ss)
ii (a)(EssEii) +

∑
16i<j6n

aφ
(ss)
ij (a)(EssDij).

We thus obtain

s−1∑
i=1

(φ
(ss)
is (a)aEis − aφ(ss)is (a)Esi) +

n∑
j=s+1

(φ
(ss)
sj (a)aEjs − aφ(ss)sj (a)Esj) = 0,

for every a ∈ F and integer 1 6 s 6 n. Then for each integer 1 6 p 6 n,

φ
(pp)
ip = 0 for i = 1, . . . , p− 1,(5)

φ
(pp)
pj = 0 for j = p+ 1, . . . , n.(6)

Let 1 6 s < t 6 n be integers and a ∈ F. We infer by (3) and ψ(aDst)(aDst) = (aDst)ψ(aDst) that

n∑
i=1

φ
(st)
ii (a)a(EiiDst) +

∑
16i<j6n

φ
(st)
ij (a)a(DijDst) =

n∑
i=1

aφ
(st)
ii (a)(DstEii) +

∑
16i<j6n

aφ
(st)
ij (a)(DstDij).

Hence,

0 = (φ(st)ss (a)a− aφ(st)tt (a))Est + (φ
(st)
tt (a)a− aφ(st)ss (a))Ets

+

s−1∑
i=1

(φ
(st)
is (a)aEit − aφ(st)is (a)Eti) +

n∑
j=t+1

(φ
(st)
tj (a)aEjs − aφ(st)tj (a)Esj)

+

t−1∑
i=1, i 6=s

(φ
(st)
it (a)aEis − aφ(st)it (a)Esi) +

n∑
j=s+1, j 6=t

(φ
(st)
sj (a)aEjt − aφ(st)sj (a)Etj),

for all a ∈ F and integers 1 6 s < t 6 n. Then for each pair of integers 1 6 p < q 6 n,

φ(pq)qq = φ(pq)pp ,(7)

φ
(pq)
ip = 0 for i = 1, . . . , p− 1,(8)

φ
(pq)
qj = 0 for j = q + 1, . . . , n,(9)

φ
(pq)
iq = 0 for i = 1, . . . , q − 1, with i 6= p,(10)

φ
(pq)
pj = 0 for j = p+ 1, . . . , n, with j 6= q.(11)

Let 1 6 r, s, t 6 n be integers such that s < t and let a, b ∈ F. We consider aErr + bDst ∈ Bn. By the

additivity of ψ and ψ(S)S = Sψ(S) for S ∈ {aErr, bDst, aErr + bDst}, we obtain

(12) ψ(aErr)bDst + ψ(bDst)aErr = aErrψ(bDst) + bDstψ(aErr).
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From (2), we see that

ψ(aErr)bDst = φ(rr)ss (a)bEst + φ
(rr)
tt (a)bEts +

t−1∑
i=1

φ
(rr)
it (a)bEis +

s−1∑
i=1

φ
(rr)
is (a)bEit

+

n∑
j=t+1

φ
(rr)
tj (a)bEjs +

n∑
j=s+1

φ
(rr)
sj (a)bEjt,

bDstψ(aErr) = bφ
(rr)
tt (a)Est + bφ(rr)ss (a)Ets +

t−1∑
i=1

bφ
(rr)
it (a)Esi +

s−1∑
i=1

bφ
(rr)
is (a)Eti

+

n∑
j=t+1

bφ
(rr)
tj (a)Esj +

n∑
j=s+1

bφ
(rr)
sj (a)Etj .

From (3), we have

ψ(bDst)aErr = φ(st)rr (b)aErr +

r−1∑
i=1

φ
(st)
ir (b)aEir +

n∑
j=r+1

φ
(st)
rj (b)aEjr,

aErrψ(bDst) = aφ(st)rr (b)Err +

r−1∑
i=1

aφ
(st)
ir (b)Eri +

n∑
j=r+1

aφ
(st)
rj (b)Erj .

Substituting into (12), we obtain

(13)

(φ
(rr)
ss (a)b− bφ(rr)tt (a))Est + (φ

(rr)
tt (a)b− bφ(rr)ss (a))Ets +

∑t−1
i=1, i 6=s(φ

(rr)
it (a)bEis − bφ(rr)it (a)Esi)

+
∑s−1

i=1 (φ
(rr)
is (a)bEit − bφ(rr)is (a)Eti) +

∑n
j=t+1(φ

(rr)
tj (a)bEjs − bφ(rr)tj (a)Esj)

+
∑n

j=s+1, j 6=t(φ
(rr)
sj (a)bEjt − bφ(rr)sj (a)Etj) +

∑r−1
i=1 (φ

(st)
ir (b)aEir − aφ(st)ir (b)Eri)

+
∑n

j=r+1(φ
(st)
rj (b)aEjr − aφ(st)rj (b)Erj) = 0,

for all integers 1 6 r, s, t 6 n with s < t, and scalars a, b ∈ F. We distinguish five cases.

Case 1. 1 6 r = s < t 6 n. Since φ
(ss)
is = 0 for i = 1, . . . , s− 1 by (5), φ

(ss)
sj = 0 for j = s+ 1, . . . , n by

(6), φ
(st)
is = 0 for i = 1, . . . , s− 1 by (8), and φ

(st)
sj = 0 for j = s+ 1, . . . , t− 1, t+ 1, . . . , n by (11), it follows

from (13) that

(φ(ss)ss (a)b− bφ(ss)tt (a)− aφ(st)st (b))Est + (φ
(ss)
tt (a)b+ φ

(st)
st (b)a− bφ(ss)ss (a))Ets

+

t−1∑
i=1, i 6=s

φ
(ss)
it (a)bEis −

t−1∑
i=1, i 6=s

bφ
(ss)
it (a)Esi +

n∑
j=t+1

φ
(ss)
tj (a)bEjs −

n∑
j=t+1

bφ
(ss)
tj (a)Esj = 0,

for all integers 1 6 s < t 6 n and scalars a, b ∈ F. Consequently, for each pair of integers 1 6 p < q 6 n,

φ(pp)pp (a)b = bφ(pp)qq (a) + aφ(pq)pq (b) for all a, b ∈ F,(14)

φ
(pp)
iq = 0 for i = 1, . . . , q − 1, with i 6= p,(15)

φ
(pp)
qj = 0 for j = q + 1, . . . , n.(16)
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By (14), we note that φ
(pq)
pq : F→ F is a linear map for every 1 6 p < q 6 n. It follows immediately that for

each pair of integers 1 6 p < q 6 n, there exits a scalar τpq ∈ F such that

φ(pq)pq (a) = τpqa for all a ∈ F,(17)

φ(pp)qq (a) = φ(pp)pp (a)− τpqa for all a ∈ F.(18)

Case 2. 1 6 s < t = r 6 n. Since φ
(tt)
it = 0 for i = 1, . . . , t − 1 by (5), φ

(tt)
tj = 0 for j = t + 1, . . . , n by

(6), φ
(st)
tj = 0 for j = t+ 1, . . . , n by (9), and φ

(st)
it = 0 for i = 1, . . . , s− 1, s+ 1, . . . , t− 1 by (10), it follows

from (13) and (17) that

(φ(tt)ss (a)b+ τstba− bφ(tt)tt (a))Est + (φ
(tt)
tt (a)b− bφ(tt)ss (a)− aτstb)Ets

+

s−1∑
i=1

φ
(tt)
is (a)bEit −

s−1∑
i=1

bφ
(tt)
is (a)Eti +

n∑
j=s+1, j 6=t

φ
(tt)
sj (a)bEjt −

n∑
j=s+1, j 6=t

bφ
(tt)
sj (a)Etj = 0,

for all integers 1 6 s < t 6 n and scalars a, b ∈ F. We conclude that for each pair of integers 1 6 p < q 6 n,

φ(qq)pp (a) = φ(qq)qq (a)− τpqa for all a ∈ F,(19)

φ
(qq)
ip = 0 for i = 1, . . . , p− 1,(20)

φ
(qq)
pj = 0 for j = p+ 1, . . . , n, with j 6= q.(21)

From (18) and (19), we see that for each integer 1 6 p 6 n,

(22) φ
(pp)
ii (a) =

{
φ
(pp)
pp (a)− τipa if 1 6 i < p,

φ
(pp)
pp (a)− τpia if p < i 6 n

,

for all a ∈ F. Moreover, from (5), (6), (15), (16), (20), and (21), for each integer 1 6 p 6 n,

(23) φ
(pp)
ij = 0 for all integers 1 6 i < j 6 n.

Consequently, by (2), (22), and (23), for each integer 1 6 p 6 n,

(24) ψ(aEpp) = φ(pp)pp (a)In −
p−1∑
i=1

τipaEii −
n∑

i=p+1

τpiaEii,

for all a ∈ F. When n = 2, we infer by (24) that

ψ(aE11) = (φ
(11)
11 (a)− τ12a)I2 + τ12aE11 and ψ(aE22) = (φ

(22)
22 (a)− τ12a)I2 + τ12aE22,

for all a ∈ F, and by (3), (7), and (17) that

ψ(aD12) = φ
(12)
11 (a)I2 + τ12aD12,

for all a ∈ F. Let µ : S2(F)→ F be the additive map defined by:

µ(A) = (φ
(11)
11 (a11)− τ12a11) + (φ

(22)
22 (a22)− τ12a22) + φ

(12)
11 (a12),

for all A = (aij) ∈ S2(F). Hence, ψ(A) = λA + µ(A)I2 for all A ∈ S2(F), where λ = τ12 ∈ F, as required.

We now consider n ≥ 3.
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Case 3. 1 6 r < s < t 6 n. Note that φ
(rr)
ij = 0 for all 1 6 i < j 6 n by (23), and φ

(st)
rs = φ

(st)
rt = 0 by

(8) and (10). Thus, Equation (13) can be simplified as follows:

(φ(rr)ss (a)b− bφ(rr)tt (a))Est + (φ
(rr)
tt (a)b− bφ(rr)ss (a))Ets

+

r−1∑
i=1

(φ
(st)
ir (b)aEir − aφ(st)ir (b)Eri) +

n∑
j=r+1, j 6=s,t

(φ
(st)
rj (b)aEjr − aφ(st)rj (b)Erj) = 0,

for all integers 1 6 r < s < t 6 n and scalars a, b ∈ F. Then, for each pair of integers 1 6 p < q 6 n,

φ
(pp)
ii = φ

(pp)
jj for all p < i < j 6 n,(25)

φ
(pq)
ij = 0 for all 1 6 i < j < p,(26)

φ
(pq)
ij = 0 for all 1 6 i < p and i < j 6 n, with j 6= p, q.(27)

Case 4. 1 6 s < r < t 6 n. Likewise, since φ
(rr)
ij = 0 for all 1 6 i < j 6 n by (23), and φ

(st)
rt = φ

(st)
sr = 0

by (10) and (11), it follows from (13) that

(φ(rr)ss (a)b− bφ(rr)tt (a))Est + (φ
(rr)
tt (a)b− bφ(rr)ss (a))Ets

+

r−1∑
i=1, i 6=s

(φ
(st)
ir (b)aEir − aφ(st)ir (b)Eri) +

n∑
j=r+1, j 6=t

(φ
(st)
rj (b)aEjr − aφ(st)rj (b)Erj) = 0,

for all integers 1 6 s < r < t 6 n and scalars a, b ∈ F. Then for each pair of integers 1 6 p < q 6 n,

φ
(pp)
ii = φ

(pp)
jj for all 1 6 i < p and p < j 6 n,(28)

φ
(pq)
ij = 0 for all 1 6 i < j and p < j < q, with i 6= p,

φ
(pq)
ij = 0 for all p < i < q and i < j 6 n, with j 6= q.(29)

Case 5. 1 6 s < t < r 6 n. Similarly, using φ
(rr)
ij = 0 for all 1 6 i < j 6 n by (23), and φ

(st)
tr = φ

(st)
sr = 0

by (9) and (11), we thus obtain from (13) that

(φ(rr)ss (a)b− bφ(rr)tt (a))Est + (φ
(rr)
tt (a)b− bφ(rr)ss (a))Ets

+

r−1∑
i=1, i 6=s,t

(φ
(st)
ir (b)aEir − aφ(st)ir (b)Eri) +

n∑
j=r+1

(φ
(st)
rj (b)aEjr − aφ(st)rj (b)Erj) = 0,

for all integers 1 6 s < t < r 6 n and scalars a, b ∈ F. Therefore, for each pair of integers 1 6 p < q 6 n,

φ
(pp)
ii = φ

(pp)
jj for all 1 6 i < j < p,(30)

φ
(pq)
ij = 0 for all 1 6 i < j and q < j 6 n, with i 6= p, q,

φ
(pq)
ij = 0 for all q < i < j 6 n.(31)

Then, we infer by (25), (28), and (30) that for each integer 1 6 p 6 n,

(32) φ
(pp)
ii = φ

(pp)
jj for all i, j ∈ {1, . . . , n}\{p}.

It follows from (22) and (32) that for each integer 1 6 p 6 n,

τ12 = τ13 = · · · = τ1n,
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when p = 1,

τ1p = · · · = τp−1,p = τp,p+1 = · · · = τpn,

when 1 < p < n, and

τ1n = τ2n = · · · = τn−1,n,

when p = n. From this, we conclude that there exists a fixed scalar λ ∈ F such that

(33) τij = λ,

for all 1 6 i < j 6 n. From (24) and (33), for each integer 1 6 p 6 n,

(34) ψ(aEpp) = λaEpp + (φ(pp)pp (a)− λa)In,

for all a ∈ F. On the other hand, we infer by (8), (9), (10), (11), (26), (27), (29), and (31) that for each pair

of integers 1 6 p < q 6 n,

(35) φ
(pq)
ij = 0 for all 1 6 i < j 6 n, with (i, j) 6= (p, q).

From (3) and (35), we see that for each pair of integers 1 6 p < q 6 n,

(36) ψ(aDpq) = λaDpq +

n∑
i=1

φ
(pq)
ii (a)Eii,

for all a ∈ F.

We now proceed to claim that for each pair of integers 1 6 p < q 6 n,

(37) φ
(pq)
ii = φ(pq)pp for all i = 1, . . . , n.

Let 1 6 r, s, t 6 n be distinct integers. We consider 1 6 r < s < t 6 n and aDrs + aDst ∈ Bn for a ∈ F.

By virtue of ψ(S)S = Sψ(S) for S ∈ {aDrs, aDst, aDrs + aDst}, we have ψ(aDrs)aDst + ψ(aDst)aDrs =

aDrsψ(aDst) + aDstψ(aDrs). It follows from (36) that

(φ(st)rr (a)a− φ(st)ss (a)a)(Ers − Esr) + (φ(rs)ss (a)a− φ(rs)tt (a)a)(Est − Ets) = 0,

for all integers 1 6 r < s < t 6 n and scalars a ∈ F. Then for each pair of integers 1 < p < q 6 n,

(38) φ
(pq)
ii = φ(pq)pp for i = 1, . . . , p− 1.

We now consider 1 6 s < t < r 6 n and aDst + aDtr ∈ Bn for a ∈ F. Repeating the above argument, we

obtain

(φ(tr)ss (a)a− φ(tr)tt (a)a)(Est − Ets) + (φ
(st)
tt (a)a− aφ(st)rr (a))(Etr − Ert) = 0,

for all integers 1 6 s < t < r 6 n and scalars a ∈ F. Then, for each pair of integers 1 6 p < q < n,

(39) φ
(pq)
ii = φ(pq)qq for i = q + 1, . . . , n,

Next, we consider 1 6 s < r < t 6 n and aDsr + aDst ∈ Bn for a ∈ F. Repeating the above argument, we

obtain

(φ(st)rr (a)a− aφ(st)ss (a))(Ers − Esr) + (φ(sr)ss (a)b− bφ(sr)tt (a))(Est − Ets) = 0,
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for all integers 1 6 s < r < t 6 n and scalars a ∈ F. Therefore, for each pair of integers 1 6 p < q 6 n,

(40) φ
(pq)
ii = φ(pq)pp for i = p+ 1, . . . , q − 1.

From (38), (39), and (40), together with (7), the claim is proved. Consequently, we infer by (36) and (37)

that for each pair of integers 1 6 p < q 6 n,

(41) ψ(aDpq) = λaDpq + φ(pq)pp (a)In,

for all a ∈ F. Let µ : Sn(F)→ F be the additive map defined by:

(42) µ(aE) =

{
φ
(ii)
ii (a)− λa if E = Eii, 1 6 i 6 n,

φ
(ij)
ii (a) if E = Dij , 1 6 i < j 6 n,

for all a ∈ F. By (34), (41), and (42) and the additivity of ψ and µ, we conclude that

ψ(A) =

n∑
i=1

ψ(aiiEii) +
∑

16i<j6n

ψ(aijDij)

=

n∑
i=1

(λaiiEii + (φ
(ii)
ii (aii)− λaii)In) +

∑
16i<j6n

(λaijDij + φ
(ij)
ii (aij)In)

= λ

 n∑
i=1

aiiEii +
∑

16i<j6n

aijDij

+

 n∑
i=1

µ(aiiEii) +
∑

16i<j6n

µ(aijDij)

 In

= λA+ µ(A)In,

for all A = (aij) ∈ Sn(F). This completes the proof.

As an immediate consequence of Lemma 7, we obtain the following corollary.

Corollary 8. Let n > 2 be an integer and let F be a field with charF 6= 2. Then ψ : Sn(F)→ Sn(F) is

a commuting additive map on symmetric matrices if and only if there exists a scalar λ ∈ F and an additive

map µ : Sn(F)→ F such that

ψ(A) = λA+ µ(A)In,

for all A ∈ Sn(F).

Let A ∈ Sn(F) be a nonzero rank k matrix. Then there exist nonzero scalars λ1, . . . , λk ∈ F and an

invertible matrix P ∈Mn(F) such that

(43) A = P

(
k∑

i=1

λiEii

)
P t,

when charF 6= 2; see, for example, [17, Corollary 1.33].

Lemma 9. Let F be a field with charF 6= 2. Then each A ∈ S2(F) can be represented as a sum of three

invertible matrices in S2(F) among which the sum of any two is invertible.

Proof. Let A ∈ S2(F). If A = 0, then we set X = Y = I2 and Z = −2I2. So X,Y, Z ∈ S2(F) are

invertible such that A = X + Y +X and the sum of any two is also invertible. If A is of rank one, then we
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assume without loss of generality that A = E11 by (43). We set X = D12, Y = E11 +D12 and Z = −2D12.

Then X,Y, Z ∈ S2(F) are invertible such that A = X + Y + Z and the sum of any two is invertible. If A is

of rank two, then by (43) we may assume that A = E11 + λE22 for some nonzero λ ∈ F. Take

X = E11 − E22 −D12, Y = E22 −D12 and Z = E22 + 2D12,

when λ = 1, and

X = E11 + (λ− 1)D12, Y = λE22 − λD12 and Z = D12,

when λ 6= 1. Then X,Y, Z ∈ S2(F) are invertible such that A = X + Y + Z and the sum of any two is

invertible. We are done.

Lemma 10. Let n and k be integers such that n > 3 and 1 < k 6 n. Let F be a field with charF 6= 2. If

A ∈ Sn(F) is of rank at most three, then A can be represented as a sum of three rank k matrices in Sn(F)

among which the sum of any two is of rank k.

Proof. Let A ∈ Sn(F) be of rank at most three. If A = 0, then A = X + Y + Z, where

X =

k∑
i=1

Eii, Y = X and Z = −2X.

It is immediate that X, Y , and Z are rank k symmetric matrices such that the sum of any two is of rank k.

We consider A is of rank one. By (43), we assume without loss of generality that A = E11. Let

X = D12 +

k∑
i=3

Eii, Y = E11 +X and Z = −2X,

where it is understood that
∑k

i=3Eii = 0 when k = 2. Then A = X + Y + Z is the sum of three rank k

matrices X,Y, Z ∈ Sn(F) among which the sum of any two is of rank k.

We next consider A is of rank two. Invoking (43), we may assume A = E11 + λE22 for some nonzero

λ ∈ F. Two cases are considered below:

Case A1. λ = 1. Set

X = E11 − E22 +D12 +

k∑
i=3

Eii,

Y = D12 +

k∑
i=2

Eii and Z = E22 − 2D12 −
k∑

i=3

2Eii.

Then A = X + Y +Z is the sum of three rank k matrices X,Y, Z ∈ Sn(F) among which the sum of any two

is of rank k.

Case A2. λ 6= 1. Let

X = E11 + (1− λ)D12 +

k∑
i=3

(1− λ)Eii,

Y = λD12 +

k∑
i=2

λEii and Z = −D12 −
k∑

i=3

Eii.
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Then A = X + Y +Z is the sum of three rank k matrices X,Y, Z ∈ Sn(F) among which the sum of any two

is of rank k.

We now consider A is of rank three. By virtue of (43), we may assume A = E11 +λE22 +µE33 for some

nonzero λ, µ ∈ F. If k = 2, then we take

X = 2E11 + µE33, Y = λE22 − µE33 and Z = −E11 + µE33.

Clearly, A = X +Y +Z is the sum of three rank two matrices X,Y, Z ∈ Sn(F) among which the sum of any

two is of rank two. Suppose that k > 3. We distinguish three cases.

Case B1. λ = µ = 1. Set

X = E11 − E22 − E33 +D12 +D23 +
k∑

i=4

Eii,

Y = D12 +D23 +

k∑
i=2

Eii and Z = E22 + E33 − 2D12 − 2D23 −
k∑

i=4

2Eii.

Then A = X + Y +Z is the sum of three rank k matrices X,Y, Z ∈ Sn(F) among which the sum of any two

is of rank k.

Case B2. λ = 1 and µ 6= 1. Let

X = E11 −D12 −D23 − µE33 +

k∑
i=4

Eii,

Y = E22 + 2D12 + 2D23 + µE33 +

k∑
i=4

Eii and Z = −D12 −D23 + µE33 −
k∑

i=4

2Eii.

We see that A = X + Y + Z is the sum of three rank k matrices X,Y, Z ∈ Sn(F) among which the sum of

any two is of rank k.

Case B3. λ, µ 6= 1 and λ 6= µ. Taking

X = E11 −D12 −D23 − µE33 +

k∑
i=4

Eii,

Y = λE22 + 2D12 + 2D23 + µE33 +

k∑
i=4

Eii and Z = −D12 −D23 + µE33 −
k∑

i=4

2Eii,

we see that A = X + Y + Z is the sum of three rank k matrices X,Y, Z ∈ Sn(F) among which the sum of

any two is of rank k. This completes our proof.

We are now ready to prove the main theorem.

Proof of Theorem 1. The sufficiency is trivial. We consider the necessity. Let A ∈ Bn. In view of (4),

we note that A is of rank at most three when n > 3. It follows from Lemmas 9 and 10 that A = X + Y +Z

for some rank k matrices X,Y, Z ∈ Sn(F) such that X + Y , Y + Z and X + Z are of rank k. Since ψ

is a commuting additive map on rank k symmetric matrices, it follows that ψ(S)(S) = (S)ψ(S) for each

S ∈ {X,Y,X + Y }. This yields

ψ(X)Y + ψ(Y )X = Y ψ(X) +Xψ(Y ).
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Likewise, we obtain ψ(Y )Z + ψ(Z)Y = Zψ(Y ) + Y ψ(Z) and ψ(X)Z + ψ(Z)X = Zψ(X) +Xψ(Z). By the

additivity of ψ, we obtain

ψ(A)A = ψ(X + Y + Z)(X + Y + Z)

= ψ(X)X + ψ(Y )Y + ψ(Z)Z + (ψ(X)Y + ψ(Y )X) + (ψ(Y )Z + ψ(Z)Y ) + (ψ(X)Z + ψ(Z)X)

= Xψ(X) + Y ψ(Y ) + Zψ(Z) + (Y ψ(X) +Xψ(Y )) + (Zψ(Y ) + Y ψ(Z)) + (Zψ(X) +Xψ(Z))

= (X + Y + Z)ψ(X + Y + Z)

= Aψ(A).

Hence, ψ is commuting on Bn. The result follows immediately from Lemma 7.

Lemma 11. [3, Corollary 1.4] Let n > 3 be an integer and let F be a field with charF 6= 2. If k is a fixed

integer such that n
2 6 k 6 n, then a map ψ : Sn(F)→ Sn(F) satisfies ψ(A+B) = ψ(A) + ψ(B) for all rank

k matrices A,B ∈ Sn(F) if and only if ψ is additive.

Proof of Corollary 2. The sufficiency is clear. For the necessity, it follows from the hypothesis and

Lemma 11 that ψ is a commuting additive map on rank k symmetric matrices. The result follows immediately

from Theorem 1.

Proof of Corollary 3. We consider the sufficiency. Note that

ψ(A+B)(A+B) = (λ(A+B) + µ(A+B)In)(A+B)

= λA2 + λB2 + λAB + λBA+ µ(A)A+ µ(B)B + µ(A)B + µ(B)A

= AλA+Aµ(A) +AλB +Aµ(B) +BλA+Bµ(A) +BλB +Bµ(B)

= (A+B)(ψ(A) + ψ(B)),

for all A,B ∈ Sn(F). For the necessity, we first show that ψ(0) = 0. Note that ψ(In) = ψ(In + 0)(In +

0) = (In + 0)(ψ(In) + ψ(0)) = ψ(In) + ψ(0) yields ψ(0) = 0. Then, ψ(A)A = ψ(A + 0)(A + 0) = (A +

0)(ψ(A) + ψ(0)) = Aψ(A) for all A ∈ Sn(F), and thus ψ is a commuting map on Sn(F). We now show that

ψ(2A) = 2ψ(A) and ψ(−A) = −ψ(A) for all invertible A ∈ Sn(F). Let A ∈ Sn(F) be invertible. Note that

2Aψ(2A) = ψ(2A)(2A) = ψ(A + A)(A + A) = (A + A)(ψ(A) + ψ(A)) = 2A(2ψ(A)) yields ψ(2A) = 2ψ(A)

because 2A is invertible. Next, Aψ(A) = ψ(A)A = ψ(−A+ 2A)(−A+ 2A) = (−A+ 2A)(ψ(−A) +ψ(2A)) =

A(ψ(−A) + 2ψ(A)) leads to ψ(−A) = −ψ(A). Finally, we show that ψ(A + B) = ψ(A) + ψ(B) for all

invertible A,B ∈ Sn(F). Let A,B ∈ Sn(F) be invertible. Then

Aψ(A) = ψ(A)A

= ψ((A+B) + (−B))((A+B) + (−B))

= ((A+B) + (−B))(ψ(A+B) + ψ(−B))

= A(ψ(A+B)− ψ(B)).

It follows that ψ(A + B) = ψ(A) + ψ(B) for all invertible matrices A,B ∈ Sn(F). The result follows

immediately from Corollary 2.
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