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ON M-TH ROOTS OF NILPOTENT MATRICES*
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Abstract. A new necessary and sufficient condition for the existence of an m-th root of a nilpotent matrix in terms of
the multiplicities of Jordan blocks is obtained and expressed as a system of linear equations with nonnegative integer entries
which is suitable for computer programming. Thus, computation of the Jordan form of the m-th power of a nilpotent matrix
is reduced to a single matrix multiplication; conversely, the existence of an m-th root of a nilpotent matrix is reduced to the
existence of a nonnegative integer solution to the corresponding system of linear equations. Further, an erroneous result in
the literature on the total number of Jordan blocks of a nilpotent matrix having an m-th root is corrected and generalized.
Moreover, for a singular matrix having an m-th root with a pair of nilpotent Jordan blocks of sizes s and [, a new m-th root is
constructed by replacing that pair by another one of sizes s + ¢ and [ — 4, for special s,1,7. This method applies to solutions of
a system of linear equations having a special matrix of coefficients. In addition, for a matrix A over an arbitrary field that is a
sum of two commuting matrices, several results for the existence of m-th roots of A¥ are obtained.

Key words. Jordan canonical form, Roots of nilpotent matrices, Rootless matrices, System of linear Diophantine equations,
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1. Introduction. All matrices are assumed to be over a field k and of size d X d unless stated otherwise.
We investigate m-th roots of matrices for an integer m > 1. Since all nonsingular complex matrices have
m-th roots, the problem of existence of an m-th root for a singular complex matrix is reduced to considering
a nilpotent one. Section 3 is devoted to our results on nilpotent matrices that have m-th roots or are rootless
which constitutes the bulk of this article.

There has been continued interest on m-th roots of matrices even though sixth and seventh sections in
Chapter VIII are devoted to the extraction of m-th roots in nonsingular and singular cases, respectively, in
Gantmacher’s book [2] dated 1959. Among the articles studying the roots of matrices or rootless matrices, we
want to mention [5, 10, 11, 7, 8, 3, 9] in chronological order. More references can be found in [4], especially
for square roots. For the use of matrix roots in medical imaging or more information on m-th roots, or
Jordan forms, see [1]. Various characterizations of nilpotent matrices having an m-th root are found, one
uses the sequence of the sizes of Jordan blocks of the matrix [5], another one uses the ascent sequence of the
matrix [7], and another uses a;’s, where a; is the multiplicity of the Jordan blocks of size i in the Jordan
canonical form of the matrix [8]. Our initial inspiration for this article comes from Psarrakos’s article on
m-th roots of complex matrices [7] followed by Schwaiger’s work on rootless nilpotent matrices [8]. Noticing
that there is a mistake in Schwaiger’s Theorem 1 (2) [8] that we could correct gave the final motivation to
write this article. The erroneous statement and a counterexample is given in Remark 3.4. Our Corollary
3.3 (4) of Theorem 1.1 gives a more general result correcting the erroneous statement, and the other parts
provide similar statements. Theorem 1.1 is obtained by a slight modification of Proposition 3.1 in [6]. For a
nilpotent matrix A, we define the Jordan type of A as the vector a = (ai,...,aq), or a = (a1,...,a;) if the
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719 On m-th roots of nilpotent matrices

nilpotency ¢ of A is explicit, where a; is the multiplicity of the nilpotent Jordan block [j;] of size 4 in the
Jordan canonical form of A, that is, A ~ diag([j;]*), ..., [j1](**)) where ~ denotes the similarity relation
between matrices and diag(X7, ..., X)) denotes a block diagonal matrix with the matrices X;’s as diagonal
blocks.

THEOREM 1.1. Suppose that A is a nonzero d x d nilpotent matriz over a field, with Jordan type a =
(a1y...,aq), and m is an integer with 1 < m < d, then A has an m-th root if and only if there exist
nonnegative integers by, ..., by satisfying

m—1
(1.1) a; = Mmbim + F[b—1ym+j + bsrym—j]  for 1 <i <d,
i=1

<

where b; is defined as 0 for j>d. In particular, if b= (b1,...,bq) is the Jordan type for an m-th root B of
A, and t, s are the nilpotencies of A, B, respectively, then

(1.2) ay = Z Jb(t—1ym+j, where bj =0 for j > d if tm > d,
j=1

(t—1m+1<s<tm, andt < q+1ifd=gm+r, where 0 <r <m.

Theorem 1.1 is proved in Section 3 and has many implications, namely Corollaries 3.3, 3.5, 3.6, 3.11,
3.12, 3.13, and 3.14. The equations (1.1) and (1.2) become very easy to use when expressed as a matrix
equation. In Corollary 3.6, we write these equations in two equivalent matrix equations with nonnegative
integer entries. One of the equations is of the form Mb” = a”, where M is a special matrix with entries
0,1,2,...,m and T in the exponent denotes the transpose. We can regard M as an additive function from
the additive semigroup of d-tuples N¢ to itself, where N is the set of all nonnegative integers. If a d-tuple
a in N? is fixed and A is any nilpotent matrix of Jordan type a, then A has an m-th root if and only if a is
in the image of this function and the set of all preimages of a is the set of all possible Jordan types of m-th
roots of A. The equation Mb? = aT provides a new insight and a new easy algorithm to use in computer
calculations of the Jordan form of the m-th power of a nilpotent matrix from that of the matrix by a single
matrix multiplication. The matrix M carries the information on the splittings of the Jordan block sizes after
taking the m-th power and avoids eigenvector computations. Conversely, when a nilpotent matrix A with
the Jordan type a is given, if a solution b with all nonnegative integer entries exists, then b is the Jordan
type of an m-th root of A. That is, the existence of an m-th root of A is reduced to finding a nonnegative
integer solution b to the equation Mb”? = a’. The crucial point here is that the system Mb’ = a” is always
consistent as a system of linear equations and has free variables; however, there is no guarantee that there
will be a nonnegative integer solution; for matrices having no third roots, see Examples 3.2 (3) and 3.10.
Thus, whenever a method is developed to find all nonnegative integer solutions b of the system of linear
Diophantine equations Mb” = aT
A with the Jordan type a. Due to the lack of a general method for determining the existence of nonnegative

, we will have all possible Jordan types of m-th roots of a nilpotent matrix

integer solutions, and a lack of a method for finding all nonnegative integer solutions to a system of linear
Diophantine equations when there is one, we give many examples in Corollary 3.11 and Corollary 3.14 of
Jordan types of a nilpotent matrix and an m-th root of it. We give many examples of rootless matrices in
Corollary 3.13.

We point out the relevance of several of the corollaries of Theorem 1.1 with the results in the arti-
cles mentioned above. For a prime number p, Corollary 3.5 (5) implies that the set of all p-th roots of



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 37, pp. 718-733, November 2021.

S. Oztiirk 720

diag([j¢], [je—1]®P~Y) is a singleton set; hence, it is contractible. This provides an example of an extreme case
of Theorem 1.2 in [9] stating that the set of all m-th roots of a nilpotent complex matrix is path-connected.
Corollary 3.5 (1) provides a stronger result than the second statement in Psarrakos’s Theorem 3.2 [7] which is
stated in Section 2 below. The parts (3) and (4) of Corollary 3.5 give many conditions implying rootlessness.
In fact, there are rootless and not rootless matrices of any nilpotency ¢ for 2 < ¢ < d and there is no rootless
nilpotent matrix of nilpotency 2 when d > 2 by Corollary 3.12 which is analogous to Theorem 2 in [8].

Section 4 contains proofs of the results for not necessarily nilpotent matrices stated below. In the first
part, we use Proposition 3.1 to obtain Theorem 1.2. For a singular matrix A over a field containing all
eigenvalues of A, the Jordan canonical form of A is J4 = diag(R, N) when A is not nilpotent, and J4 = N
when A is nilpotent, where R is a nonsingular matrix and N is a nilpotent matrix. We refer to N as the
nilpotent part of A.

THEOREM 1.2. Let m > 1, k>0, u,s,l,i > 1 be integers satisfying
0<mk<s<s+i<m(k+1) and 0<mk<Il—i<l<m(k+1),

E be any square matriz. Let b and c be the Jordan types of the nilpotent parts of B and C, respectively,
where
B = diag(E, [:]", [1]")) and C = diag(E, [jsi]", [j—i]™).

Then B™ ~ C™ and b and ¢ have the same entries except for cs = bs — u, ¢ = by — u, cs1; = bsy; + u, and
ci—i = b—; + u.

Theorem 1.2 gives a method of obtaining new m-th roots from a given m-th root B of a singular matrix A,
provided that there is a pair of special size nilpotent Jordan blocks, say s and [, in the Jordan canonical
form of B. Namely, a new m-th root is produced by replacing each such pair with the ones of sizes s + 1,
and [ — i, for special s, [, and i, see Example 4.2. In a similar manner, new solutions for the matrix equation
MxT = aT of Corollary 3.6 can be obtained from a solution x having x4 > 0, ; > 0 for s and [ satisfying
the hypothesis of that theorem, see Example 4.3.

In the second part of Section 4, we prove Theorem 1.3 which is about the existence of m-th roots of
Ak for A = E + F where E and F are commuting matrices over various k, see Corollary 4.4 where k is the
complex numbers.

THEOREM 1.3. Suppose that A= E + F is a d X d matriz over a field k and m > 1 is a fixed integer.

1. If KL = LK where K and L are n-th roots of E and F, respectively, then A has an n-th root
provided that char(k) =p > 0 and n = p™ for some m, or char(k) =0 and LK = 0.

2. If EF = FE =0, F is nilpotent of nilpotency t and E* has an m-th root for k > t, then A* has an
m-th root for any k > t. In particular, if the field k is the complex numbers, the hypothesis that E*
has an m-th root for k >t can be replaced by E is diagonalizable or nonsingular.

2. Preliminaries. This section contains an introduction to the existence problem of m-th roots of
matrices for a positive integer m, and the preliminary lemmas about nilpotent matrices. The property of
having m-th roots is invariant under the similarity relation of matrices. Hence, we can assume that A is
in the Jordan canonical form, Ju, whenever it exists. For nilpotent matrices over any field, the Jordan
canonical form exists as the only eigenvalue is 0. All nonsingular complex matrices have m-th roots for any
m, and the sizes of the Jordan blocks are the same for the matrix and its m-th roots, see pages 231-232 in [2].
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However, a singular matrix has an m-th root if the elementary divisors of the matrix form an “admissible
system,” roughly speaking, the splittings are compatible, see page 238 in [2]. The problem of existence of
an m-th root of a nonzero singular complex matrix A is reduced to considering a nilpotent matrix, because
Ja = diag(R, N), where R is nonsingular and N is nilpotent. Recall that for a nilpotent matrix X with
entries in a field, the nilpotency is n provided that X™ = 0 and X"~ ! # 0; equivalently, n is the size of the
largest Jordan block in its Jordan canonical form Jy. That is, if we denote the multiplicity of the upper
triangular k x k nilpotent Jordan block [ji] by xg, for k =1,...,n, we write

Ix = diag([n] ), [na] @0, 2] [1]EY) or Ix = ma[i] @ @ wnlial,
when taking k-th power of the matrix, to avoid notation like ([js]**))* we use the latter one.

A matrix is called rootless if it has no m-th root for any m > 1. An example of a rootless matrix is
[jx] for any k& > 1, see Corollary 3.5 (3); however, the diagonal block matrix diag([jz]?) is not rootless
as it is similar to [jax]?, see Proposition 2.3. The fact that diag([jx]®)) has a square root similar to [jox]
demonstrates that there is a splitting of the Jordan block sizes after taking powers of nilpotent matrices
which is the source of the problem for the existence of m-th roots of nilpotent matrices.

In Theorem 3.2 in [7], Psarrakos proves the following. “A complex matrix A has an m-th root if and
only if the ascent sequence di; > ds > --- of A has no more than one element between mk and m(k + 1)
for every integer k > 0, where d; is the number of Jordan blocks of size at least i. Moreover, if A is
singular and ds > 0, then for every integer m > di, A has no m-th roots.” He also gives a construction
for an m-th root of a nilpotent matrix when it exists. Higham and Lin refine the first part of Psarrakos’s
Theorem for real matrices in Theorem 2.3 in [3]. The sixth section of Otero’s article [5] and [8] are devoted
to nilpotent matrices. Otero’s Theorem 13 in [5] and Schwaiger’s Theorem 1 (1) in [8] give a necessary and
sufficient condition for a nilpotent matrix to have an m-th root. Otero uses the sequence e; > eg > -+ of
the exponents of the elementary divisors of the matrix (i.e., the sizes of the Jordan blocks occurring in the
Jordan canonical form of the matrix), Schwaiger uses the a;’s where a;(= d; — d;_1) is the number of Jordan
blocks of size i in the Jordan canonical form of the matrix. We also use a;’s in our Theorems 1.1 and 1.2.
Theorem 1.1 can be viewed as a refinement of Schwaiger’s Theorem 1 (1) in [§].

We start by a lemma relating m and d, and the nilpotency ¢ of a nilpotent matrix A having an m-th
root.

LEMMA 2.1. If A is a nonzero d x d nilpotent matriz having an m-th root for some m > 1, then m < d.
Moreover, m < d —t+ 1, where t is the nilpotency of A.

Proof. Let B be an m-th root for A. Since B is nilpotent of size d x d, the characteristic polynomial of
B is of degree d and B? = 0. Since B™ = A # 0, we have m < d. The second statement is proved in [11] in
Theorem 3.2. O

The following lemmas are essentially from [6]; we state them here with the necessary modifications.
Their proofs are obtained from the indicated ones in [6], mainly by replacing p*, p", and p' with the m, t,
and s of this article, respectively.

LEMMA 2.2. Suppose that X is a d X d nilpotent matrix with nilpotency t and of Jordan type z =
(z1,...,2¢). If the nilpotency of X is not known, replace t with d in this lemma. Then

t—i
1. rank(X?) = kai+k for0<i<t.
k=1
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2. z; = rank(X""1) — 2rank(X?) + rank(X ) for 1 <i < t.
1

3. Z x; = rank(X*1) —rank(X*) —rank(X") +rank(X') for1 <k, and k+2 < | < t; in particular,

i=k
¢
Z x; = d —rank(X).
i=1
Proof. (1), (2), and (3) follow from Main Lemma (1), (2), and (4) in [6], respectively. d

The following classical result is used in the proof of Proposition 3.1. It is the main ingredient for
determining the Jordan type of the m-th power of a nilpotent matrix in [5], [8], and [9].

PROPOSITION 2.3. For positive integers m < s, with s = km+1 for some k > 1 and 0 < r < m, it holds
that
[s]™ = [kmar]™ ~ (m = )] © rljks1];
in particular,

m

[jkm] ~ m[]k]

In other words, for positive integers s, m, and k with km < s < (k+ 1)m, it holds that
[s]™ ~ ((k + 1)m — s)[ji] @ (s — km)[jrs]-

Proof. For positive integers m < s, with s = km + r for some k£ > 1 and 0 < r < m, we compute the
Jordan type x = (x1,...,75) of X = [js|™ using Lemma 2.2 (2). Since [j,]' is the zero matrix for [ > n and
rank([j,]!) = n — I for 1 <1 < n, we have X*+1 = [j3, 1, ]F™+™ = 0, and rank(X*) = rank([jrms.]*™) = 1,
rank(X* 1) = rank([jrm+r]¥™ ™) = m + 7. Therefore, by Lemma 2.2 (2) we obtain

Tpyr =rank(X®) =7 and 25 = rank(X*1) — 2rank(X*) =m —r.

Since X is s x s and (k + 1)r + k(m — r) = km + r = s, there is no room for any other Jordan blocks, that

is, x1 = x9 = ... = xx—1 = 0. Hence, [jrm4r]™ is similar to (m — r)[jg] ® r[jr+1] as claimed. The second
statement is an alternative form of writing the same result avoiding the computation of the remainder r in
the division of s by m. ]

LEMMA 2.4. Suppose that A is a nonzero d x d nilpotent matriz and B is an m-th root of A with
l<m<d, a=(a,...,aq), b= (b1,...,bq) are the Jordan types, and t and s are the nilpotencies of A and
B, respectively. If d = gqm + r for some ¢ > 1 and 0 < r < m, then we have the following:

m—1
1. a; = mby, + 3 10i—1ym+j + biit1ym—j] for 1 <i<q—1 and
j=1

aqg = b(q—l)m+1 + 2b(q—l)m-‘,—2 + 1+ (m - 1)b(q—1)m+m—1 + mqu
+ (m = Dbgmt1 + (m — 2)bgmy2 + -+ (m — 1)bgmtr,
g1 = bgm+1 + 20gmr2 + -+ + Tbgmr.
2. a; = by—1ym+1 + 2bg—1ym42 + -+ (M = D)b—1)mim—1 + Mbim, where by = 0 for s < i < tm,
implying (t — 1)m+1 < s < tm.

3. In general, t < q+ 1. If s = mk for some k, thent =k, if s =mk +1 for some k>1,0 <1 < m,
then t = k + 1.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I
Volume 37, pp. 718-733, November 2021.

723 On m-th roots of nilpotent matrices

Proof.
(1) By Lemma 2.2 (2) and (1), we have

a; = rank((B™)""1) — 2rank((B™)") 4 rank((B™)"*1)
= bmi—m+1 + 2bmi—myz + -+ (M — D)bpmi—1 + Mbp;
+ (m - 1)bmi+1 +---+ 2bmi+m72 + bmi+m71~

When d = gm + r for some ¢ > 1, and for some 0 < r < m, we have

aq = b(q—l)m+1 + 2b(q—1)m+2 +oeeet (m - 1)b(q—1)7n+7n—1 + mqu
+ (m = Dbgmi1 + (M = 2)bgmr2 + -+ + (M = 1)bgm4r,

ag+1 =bgm+1 + 2bgmi2 + -+ + TOgmpr-

(2) Since at11 =0, by (1) a; takes the given form. Since a; # 0 and b;’s are nonnegative, there is j in the
set {(t—1)m+1,(t—1)m+2,...,(t—1)m+m—1,tm} such that b; # 0. Hence, (t—1)m < s < tm.
(3) By part (1), we have t < g+ 1. Since 0 # A = B™, we have 1 < ¢t and m < s. Since B = At =0
and BU—Dm = A*=1 £, we have (t —1)m+1 < s < tm. By part (1), if s = km, then 0 # by = by
appears as the last term in ay, and a; = 0, for i > k+1, that is, t = k, if s = km+1, with 0 <[ < m,
then t =k + 1. ]

See Example 3.2 (1) and (2) for the examples of the cases tm < d and d < tm, respectively.

LEMMA 2.5. Suppose that A is a nonzero d X d nilpotent matriz, B is an m-th root of A with 1 < m < d,
and a = (ay,...,aq), b= (b1,...,bq) are the Jordan types of A and B, respectively. Then

m—1 d
1. of m divides Z Jb(i—1ym4j, o ai—1 =0, then m divides Z aj.
j=1 j=i
l lm
2. if ai—1 = aj41 = 0, then Z a; = mz bim+; for 1 < i <1 < d; in particular, if i = [, then
j=i §=0

a; = mbzm

Proof. Note that (2) follows from (1). For (1), without loss of generality, assume that the nilpotency of
A is t and write the a;’s using Lemma 2.4 as follows:

ai—1 = bim—2m+1 + 2bim—2m+2 + ... + Mb(i_1)m
+ (m = Dbim-m+1 + -+ 2bim—mtm—2 + bim—1,
@; = bim—m+1 + 2bim—ma2 + ... + (m — Dbyn_1 + mbi,
+ (m — Dbims1 + - - - + 2bimtm—2 + Dimtm—1,
@it1 = bimy1 + 20imim—2 4 ...+ (M = Dbirm—1 + mbit1ym

+ (m = Dbimgm+1 + - - - + 2bims2m—2 + bimt2m—1,

ag—1 = btm72m+1 + 2btm72m+2 +...+ (m - 1)b(tfl)n’bfl + mb(tfl)m
+ (m - ]-)btmfm+1 + (m - 2)btm7m+2 +...+ btmfla
ar = bem—ms1 + 2bi 2+ ..o+ (M= 1D)bpy—1 + mbiy,.



Electronic Journal of Linear Algebra, ISSN 1081-3810

A publication of the International Linear Algebra Society I L
Volume 37, pp. 718-733, November 2021.

S. Oztiirk 724
The pattern for the coefficients of b;’s in a;’s is very useful. Observe that in aq,...,a;, the numbers
b1,...,by—1 appear only in a1 with respective coefficients 1,...,m — 1, and b;,, appears only in a; with
coefficient m, for 7 =1,...,¢. However, the remaining b;’s appear twice, one in a; and the other in a;4, for

some 7 with coefficients adding up to m. The sum Z;n:_ll Jb(i—1)ym+; in the hypothesis of (1) is the sum of the
first m — 1 terms of the equation for a; above and it is is 0 if a;_; = 0. Thus, if m divides Z;’;l JbG—1ym+j

or a;_1 = 0, then m divides Z?:i a;. ad

The equations listed in the proof of Lemma 2.5 are essentially from the proof of Main Lemma in [6]; we
include them here with the necessary modifications, by replacing p*, p”, and p’ in [6] with the m, ¢, and s
of this article, respectively.

3. Jordan type of m-th root/power, rootless nilpotent matrices. This section is devoted to
our results on nilpotent matrices that have m-th roots or are rootless. Before proving our main theorem,
Theorem 1.1, we give a result on nilpotent Jordan blocks which is used in Thereom 1.2. It is a generalization
of Lemma 1.3 in [9] (the case ¢ = 1 is Lemma 1.3 [9]) and it is of general interest.

PROPOSITION 3.1. For nonnegative integers k > 0,m > 1, and s,1,i > 1 satisfying
0<mk<s<s+i<m(k+1) and 0<mk<Il—i<l<m(k+1),

it holds that — ([Js] @ [i])™ ~ ([Jsi) ® [J1—i])™-

Proof. Suppose the nonnegative integers £ > 0,m > 1, and s,[,7 > 1 satisfy 0 < mk < s < s+
t<m(k+1) and 0 < mk <1l—4i <1< m(k+1). Note that, for square matrices X and Y we
have (X @ Y)™ = X™ @ Y™. Hence, calculating [js]™, [i]™, [Js+i]™, and [ji—;]™ by Proposition 2.3 and
adding the multiplicities of [j] and [jg41] for each side of the similarity symbol in the statement gives the
result. O

3.1. Theorem 1.1 and several corollaries.

Proof of Theorem 1.1. Let A be a nilpotent matrix of nilpotency ¢t and a = (ay,...,aq) be its Jordan
type. Suppose A has an m-th root B with nilpotency s and Jordan type b = (by,...,bq). The desired
equalities and inequalities follow from Lemma 2.4. Conversely, suppose that there exist nonnegative integers
bi,...,bg satisfying the equations given in (1.1), set B = diag([ja]®®), [ja_1]®+1), ..., [j2]®2), [j1]®")). Then
B has Jordan type (b1,...,b4), and by Lemma 2.4 B™ have the Jordan type (a1,...,aq). Hence,

A ~ diag([ja] "), [ja-1]@=1), ... [j2] @), [j1]) ) ~ B™.

Since having an m-th root is a similarity-invariant property, A has an m-th root. 0

EXAMPLE 3.2 (Immediate applications of Theorem 1.1). Suppose that A is a d x d nonzero nilpotent
matrix of nilpotency ¢ with Jordan type a = (a1,...,as), and B is a third root of A, of nilpotency s and
Jordan type b = (by,...,bs). Assume that ¢ < 4. By Theorem 1.1 we have 4 < s < 12, and

4y = by + 2by + 3bs + 2by + bs,
az = by + 2bs + 3bg + 2b7 + bg,
a3 = by + 2bg + 3by + 2010 + b1,
as = bio + 2b11 + 3b12,

(3.3)
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where b; = 0 for all ¢ with s < i < 12. The system of linear equations in (3.3) can be written as MbT =aTl,

where
1 2 3 2 1 0 0 0 0 0 0 07

000123210000

0 000O0OO0OT123 210

L0 0O 00 0 O0O0O0O0T1 2 3

Clearly, d = a1 + 2as + 3a3 + 4ay4. It is possible that d > tm = 3t or d < tm = 3t as shown in (1) and (2)
below, respectively.

(1) Letb = (b1,...,b12) = (0,0,0,0,0,0,0,0,0,2,0,0). Then the product MbT gives that a = (0,0,4,2),
hence, t =4, and d = 20 > tm = 12.

(2) Letb = (by,...,b12) = (0,0,0,0,0,0,0,0,0,1,0,0). Then the product Mb” gives that a = (0,0,2,1),
hence, t =4, and d = 10 < tm = 12.

(3) Let a = (a1, as2,as,a4) = (0,0,1,1). Substituting ay = 1 in the last equation in (3.3) gives bjp = 1,
and by; = byia = 0 as by, by > 0. This forces 1 = ag > 2b1g = 2 which is a contradiction. Hence, A
cannot have any third root.

(4) Let b = (1,1,1,1). Hence, s = 4. In this case, due to the fact that b; = 0 for i = 5,6,...,12,
the 4 x 12 matrix M can be reduced to a 4 x 4 matrix by deleting the columns 5,6,...,12. Then
a = (8,1,0,0), hence, t =2 and tm = 6 < 10 = d. Thus, the equations in (3.3) can be be used as
long as t <4 and s < 12.

We collect many implications of Theorem 1.1 in the following two corollaries.

COROLLARY 3.3. Letm be an integer with 1 < m < d. Suppose that A is a nonzero dx d nilpotent matriz
over a field having an m-th root B, with Jordan types a = (a1,...,aq) and b = (by,...,bq), respectively.
Then the following hold.

d d d
1. Z a; > m; more generally, if the sum Z a; > 0, then the sum Z aj >m fori=1,...,d.
j=1 j=i j=i
2. If aj—1 - a;-a;41 #0 for somei=2,...,d—1, then at least one of a;—1 + a; or a; + a;y+1 is greater
than m.
k
3. Ifa;—1 =0 = agy1 for some i, k with 2 <i <k <d—1, then m divides the sum Z aj;
j=i
in particular, if i = k, then m divides a;.
m—1
4. If a; =0 for some i with 1 <i <d — 1, or, alternatively, if m divides the sum Z Jbim—m+j, then
j=1
d
m divides the sum Z a;.
j=i

Proof. Consider the equations for a;’s written in the proof of Lemma 2.5 keeping in mind the non-
negativity of all b;’s. Since A is nonzero, its nilpotency ¢ > 2. Hence, a;, > 0 for some ¢ > 2 implying
a1 +ax+---+ag=a1+---+a >0.
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(1) Ifonly a; # 0 in ag+- - -+ ay, then a;_; = 0; hence, a; = mby,, > 0. Thus, a; +as+az+---+a; > m.
If a1 + - - - + a; has more than one nonzero term, then there are two cases, a;_1 is zero or nonzero.
If a1 # 0, then a;—1 + a; > m. Hence, ay +as +as3+---+a¢s > ar—1 +a; > m. If a;_1 =0, then
a; = mby, > 0 which implies ay + as + az + - -+ + ay > ag = mbyy, > m. A similar argument works
for the second half of the statement.

(2) If aj_1, a;,a;4+1 are nonzero, then either a;,_1 + a; > m, or a; + a;4+1 > m.

The parts (3) and (4) are obtained by Lemma 2.5 (2) and (1), respectively. 0

REMARK 3.4 (Counterexample to an erroneous statement). Theorem 1 (2) in [8] states that “If a nilpo-
tent matrix A has an m-th root, then m divides the total number of Jordan blocks in the Jordan form of
A.” This is not true in general. As a counterexample, let A = diag([ja], [j1](®)), that is, a = (6,1). Consider
B = diag([j4], [j3], [71]). Then B3 ~ A by Proposition 2.3, that is, A has a third root. However, m = 3
does not divide the number of Jordan blocks of A which is 7. Corollary 3.3 (4) provides a more general
statement and an alternative one to the erroneous statement. The other parts of Corollary 3.3 provide
similar statements.

The third inequality in Corollary 3.5 (1) provides a stronger statement than the second statement of
Psarrakos’s Theorem 3.2 in [7] stated in the Preliminaries by removing the hypothesis dy > 0.

COROLLARY 3.5. Suppose that A is a nonzero d x d nilpotent matriz over a field, with Jordan type a,
rank v and nilpotency t.

1. A cannot have an m-th root whenever m >d, orm >d—t+1, orm >d —r.

2. If A has an m-th root and a contains the sequence e, 1, f, thene>m —1 or f > m — 1.

3. If a contains the sequence 0,1,0, or a;_1 =0 and a; = 1, then A is rootless.

In particular, A = [jq] is rootless.

4. If A has no square root and a contains the sequence 1,1,1, then A is rootless.

5. If a = (a1,...,a¢) = (*,...,%,0,p — 1,1), where p is a prime number, then A may have only p-
th roots. In particular, diag([j,], [j—1]®~")) has only p-th roots, and every p-th root is similar to
—1yps1l-

Proof.

(1) The first and second inequalities follow from Lemma 2.1. By Lemma 2.2 (3), we have d — r =
ay + -+ + aq. Therefore, if A has an m-th root, then Corollary 3.3 (1) implies d — r > m proving
the third inequality.

For (2)—(5), consider the equations for a;’s written in the proof of Lemma 2.5 keeping in mind the
nonnegativity of all b;’s.

(2) Set the equations for a;_1, a;, and a;41 equal to e, 1 ,and f, respectively. Since b;’s are nonnegative,
the only way to get a; = 1 is either the first term b;;;,—y,41 = 1 and the remaining b;’s are zero, that
iS, bim,—m+2 = bim—m+3 = bim—m+4 == bim+nl—1 = 07 or, the last term bim+m—1 =1 and the
remaining b;’s are zero, that is, bim—m+1 = bim—m+2 = bim—m+3 = bim—m+4 = -+ bim4m—2 = 0. If
bim—m+1 =1, then a;_1 >m — 1. If byym—1 =1, then a; 11 > m — 1.

(3) By part (1), we know (0,1,0) = (a;—1,0a;,a;41) is not a possibility. Similarly, one can see that
(at—1,a¢) # (0,1).

(4) The consecutive multiplicities a;_1, a;, a;+1 are all 1 only when m = 2.
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(5) Consider the equations a;_2 =0, a;—1 = p — 1, and a; = 1. The equality a; = 1 is true only when
bip—p+1 =1 and byp_pi2 = byp_py3 = -+ = by, = 0. Since the coefficient of by,—py1 inap—q is p—1,
we must have bip—_2p11, bip—2p+2, bip—2pt3,...,bp—1 are all zero except for by,—pr1 = 1. Hence,
whether A has a p-th root or not depends on the remaining ai,asg, ...,a;_3. The matrix A has a
p-th root if and only if aq,as, ..., a;_3 satisfy the equations in Theorem 1.1. Assume that A has a
p-th root B. On the other hand, we know that if B is an m-th root of A with m = nk, then B™ is a
k-th root of A. Since p is prime, there is no chance for any root other than the p-th root B. In the
particular case that the Jordan type of A is a = (ay,...,a:) = (0,...,0,p — 1,1), the only possible
solution b for the Jordan type of a p-th root of Ais b= (b1,...,bp—p+1) = (0,...,0,1). d

3.2. Characterization of existence of an m-th root for a nilpotent matrix by two equivalent
matrix equations. The necessary and sufficient conditions of Theorem 1.1 for the existence of an m-th

T

root for a nilpotent matrix can be written as a system of linear equations Mb? = al as in Example 3.2

which can equivalently be written as the matrix equation:
[ 01 b2 b3 by b5 ]
b4 b5 b6 b? b8

b7 bg b9 blO bll

L bio bin bz O O

Note that bs; appears in a; for ¢ = 1,2,3,4. The 4 x 12 matrix M with entries 0, 1, 2,3 in Example 3.2 can
be reduced to a 4 x s matrix by deleting the last 12 — s columns if the nilpotency s of B is known because
of the equalities bs11 = -+ - = by = 0. Namely, when s = 10 as in the parts (1) and (2), the equations for ag
and a4 becomes shorter; ag = by + 2bg + 3bg + 2b19, and ag = byg, see the equations in (3.3). Deleting the
rows after the ¢-th one reduces M to a t X s matrix.

In general, if d = mq + r, for some r with 0 < r < m, then ¢ < g+ 1 by the equations (1.1) and (1.2).
The numbers a1, ..., aq, and aq4+1 can be zero depending on the nilpotencies ¢ and s. It may be of interest
to find an m-th root B of specific nilpotency s provided that (t —1)m+1 < s < ¢tm holds; see Example 3.10.

Corollary 3.6 giving the general forms of the matrices of the equations (3.4) and (3.5) is as follows.

COROLLARY 3.6. Suppose that B is a d x d matriz with the Jordan type b = (b1,...,bq). For1l <m < d,
where d = gm 41 for some ¢ > 1,0 <r <m, and A = B™ with the Jordan type a = (a1,...,aq), there is a
(q+1) x d matriz M with nonnegative entries 0,1,2,...,m satisfying Mb* = a”, where M = (Ry, ..., Rq)7,
fori=1,2,...,q—1,

R,=(0,...,0 ,1,2,....m—2m—1,mm—1,m—2,...,2,1,0,0,...),
——

(i—1)m times

R,=(0,...,0 ,1,2,....m—2m—-1mm-1m—-2,....m—(r—1),m—r),
——
(g—1)m times
Ry+1=1(0,...,0,1,2,...,7 —1,7).

qm times
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That is, M is an echelon matriz as shown, where the entries not written are all zeroes:
1st block of m columns 2nd block of m columns 3rd block of m columns
1 2 - m m-1 .- 1 0
1 -~ m—-—1 m m-1 --- 1 0
1 - m—1 m
M =
(g—1)-th block of m columns q-th block of m columns r columns
m—1 1 0
1 ceeom—1 m m-1 --- 1 0
1 o-m—=1 m m-1 -+ m-=(r—-1) m-r
1 e r—1 ro

The matriz M can be reduced to a (¢ + 1) X s matriz by deleting the last d — s columns, where s the
nilpotency of B. The matriz M can be reduced to a t x d matrixz by deleting the last g +1 —t rows, where t
is the nilpotency of A and satisfies (t — 1)m + 1 < d.

The matriz M can be reduced to a t X s matriz with (t — 1)m + 1 < s < tm, where t and s are the

nilpotencies of A and B, respectively. In this case, the matriz equation M b = a7 s equivalent to the matrix
equation:
B'(1,2,....m—1,mm-—1,...2, 1) =a",
where B’ is t x (2m — 1) matriz with nonnegative entries in the set {0,b1,ba, ..., bq} as follows:
bm—i—l bm—&-2 bm+3 e b2m—1
bama1 bam42 bam+3 s b3m—1
, B=
b(t—2)m+1 b(t—2)m+2 b(t—2)m+3 T b(t—l)m—l
bit—1ym+1 bit—1yms2 be—1)yma3z - bim—1

where B is a (t — 1) x (m — 1) matriz, with bgi1,bdt2, ..., bim defined as 0 if tm > d.

Proof. If A = B™ and t is the nilpotency of A, then by Theorem 1.1, the equation a; = by—_1ym+1 +
20(t—1ym+2 + -+ (M — D)bg—1)ymtm—1 + Mbsy # 0 implies that at least one of its terms is nonzero. The
greatest index s for which by # 0 is the nilpotency of B, hence, (t — 1)m + 1 < s < ¢m. In addition,
Ak = (Bm)]c = (Bk)m = 0 implies that ¢t < s < tm. Since s < tm, b; = 0 for s < i < d, there is no need to
include them in the matrices. 0

REMARK 3.7. Note that when a is given and we look for a solution b with nonnegative entries to

Mb" = a7, there is no guarantee that there will be such a solution, regardless of the fact that the system
is consistent and has many free variables. See Example 3.2 (3) and Example 3.10 where no third root exists
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for a nilpotent A. See Corollary 3.11 where an m-th root of smallest nilpotency which is an m-th root of A
is obtained provided that a satisfies some conditions.

3.3. Computing Jordan type of m-th power/root of a nilpotent matrix by Mb”=a”. Con-
sider the matrix equation Mb’ = a’ given in Corollary 3.6, where b and a are the Jordan types of B and
B™ = A, respectively. The size of M reduces naturally to ¢t x d, d X s, and ¢ X s, where ¢t and s are the nilpo-
tencies of A and B, respectively. Computing the Jordan form of the m-th power is reduced to multiplying
M by b without any reference to eigenvectors. Thus, M bT = a” provides an alternative easy algorithm for
computer computations of the Jordan canonical forms of the m-th power of a nilpotent matrix when the
eigenvectors are not needed. Conversely, the existence of an m-th root for a matrix with Jordan type a is
reduced to the existence of a nonnegative integer solution b to the equation, and this can be implemented
by computers as well. We should note here that when there is a solution with a pair of Jordan blocks of
special sizes, Theorem 1.2 gives a method of producing other solutions with a different Jordan type which
can also be implemented by computers.

ExAMPLE 3.8 (Computing the Jordan type of the third power of a matrix). If B is a 16 x 16 nilpotent
matrix with Jordan type b = (1,1,1,0,2), then B is of nilpotency 5 and d = 16. The Jordan type of B? is
obtained by the matrix multiplication suggested by Corollary 3.6. Namely, consider the 4 x 5 submatrix of
M in the equation (3.4) by taking the first five columns and multiplying it with b = (1,1,1,0,2) gives the
Jordan type of B3 as (8,4,0,0).

EXAMPLE 3.9 (Matrices with no third roots). In Example 3.2 (3), there is a Jordan type a for which no
nonnegative solution b exists to M b? = aT. For another example, let A be of Jordan type a = (1,1,2,1).
There is no b satisfying the equation (3.3). Hence, A cannot have a third root.

It may be desirable to specify the nilpotency s of an m-th root of a nilpotent matrix of nilpotency ¢
provided that (t — 1)m 4+ 1 < s < tm, see Theorem 1.1.

ExXAMPLE 3.10 (Matrix having a third root of nilpotency 11 but not 10). Suppose that A is a nilpotent
matrix with nilpotency ¢ = 4 and has a third root B of nilpotency s. Then, 10 < s < 12. Assume that s = 10.
We can write the Jordan type of A as a = (aq,...,as) and the Jordan type of B as b = (by,...,b1p). Note
that d > 10 and a4 > 1. By Theorem 1.1, az = b7 + 2bg + 3bg + 2b19 and a4 = b1g. Hence, a3 > 2a4 implying
a contradiction for a = (0,0, 1, 2) because a3 = 1 # 2a4 = 4. Therefore, A has no third root of nilpotency 10.
However, A has a third root B of nilpotency 11 which has the Jordan type b = (b1,...,b11) = (0,...,0,1)
as it satisfies the equations in (3.3).

COROLLARY 3.11. Suppose that A is a nilpotent matrixz of nilpotency t and of Jordan type a. For
j=0,1,...;t—1, define b; =0 fori # jm+1 and

t—j

(3.6) bimir = > _ (=1 (m — 1) agy.

k=1
If bjms1 >0 for j=0,1,...,t — 1, then A has an m-th root B of smallest possible nilpotency (t — 1)m + 1
whose Jordan type is b= (b1,...,b¢—1)ym+1)-

Proof. If B is an m-th root of nilpotency s of A, then the smallest s is (¢t —1)m + 1 by Theorem 1.1 and
there is a t x s matrix M of rank t satisfying Mb? = a’ by Corollary 3.6. The leading entry of M in the
j + 1-th row is at the column jm +1 for j = 0,1,...,¢t— 1. Reducing the augmented matrix [M | a’] so that
the only nonzero term in the columns of leading entries is 1 and letting the free variables b; = 0 for i # jm+1,
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Jj=0,1,...,t =1 gives the equations in (3.6), in particular b;_1),4+1 = a; > 1. Whenever a = (ay,...,as)
makes bj, 1 > 0 for j =0,1,...,¢t — 1, any matrix B with Jordan type b = (b1,...,b—1)m+1) is an m-th
root of A. 0

3.4. There are rootless and not rootless nilpotent matrices of nilpotency t for 2 <t < d.
By Lemma 2.2 (3), the rank r of a d X d nilpotent matrix of nilpotency ¢ with Jordan type a = (a1,...,a;) is
r=d— (a1 +az+---+a;). Corollary 3.12 is an analog of Theorem 2 in [§| replacing rank with nilpotency.

COROLLARY 3.12. Let 0 # A be a d x d nilpotent matriz of nilpotency t.

1. For 2 <t <d, there is A which is rootless.
2. For2 <t <d, there is A which is not rootless; in particular, for t = 2 < d, there is no rootless d x d
nilpotent matriz of nilpotency t.

Proof. Since t is the degree of the minimal polynomial of A, ¢ < d. Since A is nonzero ¢t > 2, hence,
2 <t<d.

(1) Consider the matrix A = [jq]. When ¢t = d, A is rootless by Proposition 2.3. Assume that 2 < ¢ < d.
Consider the matrix A = diag([j], [j1]*?) (of nilpotency ¢ and rank r = ¢ — 1). The result follows
by Corollary 3.5 (3) because a; =1 and a;—1 =0 and ¢ > 3.

(2) Assume that 2 < t < d. Consider the matrix A = diag([4;]®, [j1]2") (which is of rank r = 2t —2).
By Proposition 2.3, A is similar to the square of the matrix diag([jas], [j1]*~2"). Hence, A is not
rootless of nilpotency ¢. In particular, for ¢t = 2, the Jordan type of A is a = (a1, asz), the rank r of
Aisr=ag >1, and d = a1 + 2a2. By Proposition 2.3,

A~ diag(([j2] ™, [j2] 77) ~ (diag([jar], [2]47>))"
Therefore, there is no rootless matrix of nilpotency t = 2 < d. ]

The rootless matrices in the proof of Corollary 3.12 (1) have rank less than nilpotency. This need not
be the case as the following corollary shows. To produce rootless matrices, we can use Corollary 3.6. We
arrange a nonnegative a such that Mb’ = a” has no nonnegative integer solution b.

COROLLARY 3.13. Let A be a nonzero d x d nilpotent matrix over a field, of nilpotency t, of rank r.

1. For 2 < k < d < 2k, the matric A = diag([ja—«], [jr]) is rootless of nilpotency t = d — k with
r=d-—2.

2. For3 < k < d-—2, the matriz diag([ja—x], [Jx—1], [j1]) is rootless of nilpotency t = d—k with r = d—3.

3. For0 <k < d—2, the matriz diag([ja_x], [1]¥)) is rootless of nilpotency t = d—k withr = d—k—1.

4. For3 < k < d—2, the matriz diag([j4_r], [j2], [11]#~2)) is rootless of nilpotency t = d—k with t = r.

Proof. Write a = (a1, ...,a;) of A and argue as in the proof of Corollary 3.5. |

In Corollary 3.14, in addition to the ones in the proof of Corollary 3.12 (2), we give more examples of
Jordan types of A and B, where B is an m-th root of A.

COROLLARY 3.14. Let 1 < m < d be integers and A be a d X d nilpotent matriz of nilpotency t having
an m-th root B with respective Jordan types a and b.

1. Fort=2, if a= (aj,a2) = (¢+r(m—1),r) (A is of rank r), where r is a nonnegative integer, then
b=(b1,...,bmy1) =(q,0,...,0,7) (B is of rank mr).
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2. Fort =2, if A has a = (a1,a2) = (g,mk) (A is of rank mk), then b = (b1,...,bam—1,bam) =
(¢,0,...,0,k) (B is of rank (2m — 1)k ).

3. Fort =3, if a = (a1,a2,a3) = (2¢,p(m — 1),p) (A is of rank k(m + 1)), where k is a nonnega-
tive integer, then b = (b1,...,bam+1) = (2¢,0,...,0,k) (of rank 2km), or b = (b1,...,bams1) =
(0,4,0,...,0,k) (B is of rank 2km + q).

4. For4 <t <d, ift =2n for somen > 1, and a= (a1,...,a¢) = (m—1D)ky, k1,...,(m—1)k,, k) (A
is of rank Y (2(i — 1)m+1)k;), where ky, ...k, are nonnegative, then b= (b1,...,bu_1ymt1) =

. n .
(0,..,0,k1,0,..,0,ko, 0,..,0,k3,...,0,..,0,k,-1,0,..,0,k,) (B is of rank ) ,_,(2i — 1)mk; ).
—— —— —— —— ——
m times 2m—1 times 2m—1 times 2m—1 times 2m—1 times

5. Ford <t <d,ift =2n+1 for somen > 1, anda = (a1,...,a;) = (0,(m—1)ky, k1,...,(m—1D)ky,, k)
(A is of rank Z?:l(2i—l)m+1)k,;), where ky, ..., k, are nonnegative, then b= (b1, ...,bu— 1)’m+1) =

(0,--+,0,k1,0,..,0, k2, 0,..,0,ks,...,0,..,0,kp_1,0,..,0, k) (B is of rank > ., 2zmk i)
N—— S~ S~—~— e ad S~
2m times 2m—1 times 2m—1 times 2m—1 times 2m—1 times

O

Proof. In (1)—(5), a and b satisfy the equations given in Theorem 1.1.
4. Results for not necessarily nilpotent matrices.

4.1. New m-th roots with different Jordan type from a special m-th root of a singular
matrix. The key observation used in the proof of Theorem 1.2 is Proposition 3.1. Since it is on nilpotent
matrices, it is given in Section 3.

Proof of Theorem 1.2. Let m > 1, k > 0, u,s,l,i > 1 be integers satisfying
0<mk<s<s+i<m(k+1) and 0<mk<Il—i<lI<m(k+1),
FE be any square matrix. Let b and ¢ be the Jordan types of the nilpotent parts of B, C, respectively, where
B = diag(E, [j.)®, [j]™) and C = diag(E, [js+:] ™, [ji—]™).

Permuting the blocks of a block diagonal matrix produces a similar matrix, that is, X @Y ® ~ (X @Y)®),
Hence,
B~ diag(E, ([j,] @ [1])") and  C ~ diag(E, ([jsr:] @ [ii))™),

implying that
B™ ~ diag(E™, (([js] @ [il)™)™)  and  C™ ~ diag(E™, (([js+i] ® [ir—i))™)™)-
By Proposition 3.1, we obtain
Us]™ @ ™ = (sl @ D)™ ~ (Us+a] ® [i=i])™ = [sal™ ® [1—]™
Hence, for any positive integer u, we have
(Gl @ L™ ™ ~ ((Uori] @ [r—a)™) ™).
By the transitivity of the similarity relation we obtain B ~ C™.

Under the given hypotheses, the Jordan type b of the nilpotent part of B is (by,...,b,) for some n with
bs > u and b; > u, and the Jordan type ¢ of the nilpotent part of C' is (c1,...,cx) for some k with cs4; > u
and ¢;_; > u. The Jordan type ¢ has the same entries as b except for the following:
cs=bs—u, c=b—u, cs4;="bsy;+u, andc_;=>b_;+u. 0
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REMARK 4.1. Theorem 1.2 gives a method to produce other m-th roots of a singular matrix from a
given m-th root having a pair special size Jordan blocks. Let s,l, k, i satisfying the hypothesis of Theorem
1.2 and B = diag(E, [1s]™, [1]®) be an m-th root of A. Let b = (by,...,b,) be the Jordan type of
the nilpotent part of B and w := min{bs,d;}. Then u > 1, and A = B™ ~ C™ by Theorem 1.2 where
C = diag(E, [js+i)™, [j1—:]™). Hence, A has an m-th root similar to C' as well. Another interpretation of
Theorem 1.2 is for solutions of Mx” = a”, where M is the matrix given in Corollary 3.6.

EXAMPLE 4.2 (New m-th root from a special one). Let B be a third root of some nilpotent matrix
A. Assume that the Jordan type of B is b = (0,0,0,1,3,0,0,0,0,1), that is, B ~ diag([ja], [j5], E), where
E = [j10] @ 2[j5]. By multiplying b with the submatrix obtained by deleting the last two columns of the
matrix M given in the equation (3.4), we obtain the Jordan type of A as a = (5,7,2,1). By Theorem 1.2,
(diag([4a], [j5], E))? ~ (diag([je], [j3], E))3, whereu =1,s=4,1=5,i =2, k = 1. Hence, s+i =6, [—i = 3,
and C is another third root with ¢ = (0,0,1,0,2,1,0,0,0,1), that is, c3 = bs+1 =1, ¢4 = by — 1 = 0,
and c5 = by — 1 = 2. The Jordan type of C? is (5,7,2,1) which can be obtained by multiplying ¢ with the
submatrix obtained by deleting the last two columns of the matrix M given in the equation (3.4) as well.

EXAMPLE 4.3 (New solution for Mx? = al from a special one). Let M be the matrix given in the
equation (3.4), and a = (5,7,2,1). Thenx = (0,0,0,1,3,0,0,0,0,1,0,0), and x = (0,0,1,0,2,1,0,0,0,1,0,0)
are solutions to Mx” = a” by Example 4.2, where the second one is obtained from the first one using Theorem
1.2.

4.2. Sum of commuting matrices over various fields. Our Theorem 1.3 below is independent
from the rest and does not require much preliminary work. It is based on some observations on the sum
of two commuting matrices using the binomial theorem. Namely, if £ and F are commuting matrices over
a field k. If char(k) = p > 0, then (E + )2 LSS o AR A [ char(k) = 0, and EF = FE = 0, then
(E+ F)" = E™ + F" for any integer n > 1. Several nice consequences of these facts in relation to m-th
roots are given in Theorem 1.3.

Proof of Theorem 1.3. Suppose that A = FE + F is a d X d matrix over a field k and m > 1 is a fixed
integer. (1) Assume that K and L are commuting m-th roots of F and F, respectively. If char(k) = p > 0,
the hypothesis KL = LK implies that A = K?" + LP" = (K + L)?" by the modulo p binomial theorem.
If char(k) = 0, the hypothesis KL = LK = 0 implies that (K + L)™ = K™ 4+ L™ = E+ F = A by the

binomial theorem. Hence, K + L is an n-th root for A where n = p™ if char(k) =p > 0.

m

(2) Assume that EF = FE = 0, I is nilpotent of nilpotency ¢ and E* has an m-th root for k > t.
Since EF = FE = 0, and F* = 0 for k > t, by the binomial theorem we obtain A* = (E + F)* = E*.
Hence, the result follows. If F is diagonalizable (or nonsingular), then all powers of E are diagonalizable (or
nonsingular). Thus, A¥ = E¥ is diagonalizable (or nonsingular) for any k > t. Clearly, every diagonalizable
complex matrix has an m-th root. When k = C is the complex numbers the nonsingularity of E implies
that of E*; hence, E* has an m-th root for any k > ¢ by the equation (89) in Chapter VIII of [2]. ]

Recall that the Jordan canonical form J, of a matrix A having its eigenvalues in the field is unique
up to the order of diagonal blocks. Let D be the diagonal matrix with same diagonal elements as J4, and
N =J4—-D. Then A~ D+ N = Ju, where DN = ND. Hence, A = PJ4,P~' = PDP~! 4+ PNP~!
can be written uniquely up to the order of diagonal blocks as a sum of two commuting matrices, one of
which is diagonalizable matrix and the other is nilpotent. If A is nonsingular, then D is nonsingular; hence,
D+ N=D(I+D7'N)and A= PDP~'P(I + D~'N)P~'. We obtain the following corollary of Thorem
1.3.
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COROLLARY 4.4. Suppose that A= D + N is a d X d complex matriz, where D is diagonalizable and N
is nilpotent of nilpotency t.

1. If ND = DN =0, then A* has an m-th root for any k >t and any m > 1.
2. If A is nonsingular, B and C are commuting m-th roots of D and (I + D™1N), respectively, then
BC' is an m-th root of A.

Proof.

(1) Since ND = DN =0, and N* =0 for k > t, A¥ = (D + N)* = D*. Diagonalizable matrices over
complex numbers have m-roots for any m > 1. Hence, for any k > t, A¥ = D* have an m-th root

for any m > 1.
(2) Since BC = CB, we have (BC)™ = B"C™ = D(I + D™!N) = A. O

EXAMPLE 4.5. Let A= D+ N where D = diag(0, e, f,0) and N = [j4]3. Since N? = 0, A2 = D?. Then
diag(0,¢’, f/,0) is an m-th root of A2 = D? where ¢’ and f’ are some m-th roots of e and f, respectively, for
any m > 1.

Acknowledgment. We would like to thank the anonymous referee for a very careful reading and very
helpful comments which improved the readability of the article. We also thank Giilin Ercan, Turgut Onder,
and Ergiin Yalcin for reading earlier versions of the manuscript and their suggestions.

REFERENCES

[1] J. Gallier. Logarithms and square roots of real matrices: Existence, uniqueness, and applications in medical imaging.
“technical report.” www.cis.upenn.edu/$\sim$cis610/matlog.pdf.
[2] F.R. Gantmacher. The Theory of Matrices. Vol. 1. Translated from the Russian by K. A. Hirsch. Reprint of the 1959
translation. AMS Chelsea Publishing, Providence, RI, 1998. x+374, pp. ISBN: 0-8218-1376-5.
[3] N.J. Higham and L. Lin. On p-th roots of stochastic matrices. Linear Algebra Appl., 435:448-463, 2011.
[4] D.B. Janse van Rensburg, M. van Straaten, F. Theron, and C. Trunk. Square roots of H-nonnegative matrices. Linear
Algebra Appl., 621:29-49, 2021.
[5] D.E. Otero. Extraction of the m-th roots in matrix rings over fields. Linear Algebra Appl., 128:1-26, 1990.
[6] S.0. Kaptanoglu. Restricted modules and conjectures for modules of constant Jordan type. Algebr. Represent. Theory,
17:1437-1455, 2014.
[7] P.J. Psarrakos. On the mth roots of a complex matrix. Electron. J. Linear Algebra, 9:32-41, 2002.
[8] J. Schwaiger. More on rootless matrices. Anz. Osterreich. Akad. Wiss. Math.-Natur. Kl., 141:3-8, 2005.
[9] C. de Seguins Pazzis. The space of all p-th roots of a nilpotent complex matrix is path-connected. Linear Algebra Appl.,
596:106-116, 2020.
[10] B. Yood. Rootless matrices. Math. Mag., 75:219-223, 2002.
[11] B. Yuttanan and C. Nilrat. Roots of matrices. Songklanakarin J. Sci. Technol., 27(3):659-665, 2005.


www.cis.upenn.edu/$\sim $cis610/matlog.pdf

	Introduction
	Preliminaries
	Jordan type of m-th root/power, rootless nilpotent matrices
	Theorem 1.1 and several corollaries
	Characterization of existence of an m-th root for a nilpotent matrix by two equivalent matrix equations
	Computing Jordan type of m-th power/root of a nilpotent matrix by M push0 g 0 GpopbT= push0 g 0 GpopaT
	There are rootless and not rootless nilpotent matrices of nilpotency t for 2<t<d

	Results for not necessarily nilpotent matrices
	New m-th roots with different Jordan type from a special m-th root of a singular matrix
	Sum of commuting matrices over various fields

	References

