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EXPLICIT SOLUTIONS OF REGULAR LINEAR DISCRETE-TIME
DESCRIPTOR SYSTEMS WITH CONSTANT COEFFICIENTS∗

TOBIAS BRÜLL†

Abstract. Explicit solution formulas are presented for systems of the form Exk+1 = Axk + fk

with k ∈ K, where K ⊂ Z is a discrete interval and the pencil λE − A is regular. Different results
are obtained when one starts with an initial condition at the point k = 0 and calculates into the
future (i.e., Exk+1 = Axk + fk with k ∈ N) and when one wants to get a complete solution (i.e.,
Exk+1 = Axk + fk with k ∈ Z).
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1. Introduction. We denote sequences of vectors by {xk}k∈D for arbitrary dis-
crete intervals D ⊂ Z. The k-th vector of such a sequence xk is also called the k-th
element of {xk}k∈D and further xk

i denotes the i-th (block-)row of the vector xk. To
introduce the notion of a discrete-time descriptor system let us first define two discrete
intervals in the following way.

K := {k ∈ Z : kb ≤ k ≤ kf}, kb ∈ Z ∪ {−∞}, kf ∈ Z ∪ {∞},

K
+ :=

{
K if kf =∞,
K ∪ {kf + 1} if kf <∞.

With this definition we call

Exk+1 = Axk + fk, xk0 = x0, k ∈ K (1.1)

a linear discrete-time descriptor system with constant coefficients, where E, A ∈ Cn,n,
xk ∈ Cn for k ∈ K+ are the state vectors, fk ∈ Cn,n for k ∈ K are the inhomogeneities
and x0 ∈ Cn is an initial condition given at the point k0 ∈ K+. Other names for
systems of the form (1.1) include linear time-invariant discrete-time descriptor system,
linear singular system (e.g., [12]), linear semi-state system, and linear generalized
state-space system. The sequence {xk}k∈K+ is called a solution of (1.1) if its elements
fulfill all the equations. The continuous-time counterpart to (1.1) is called linear
continuous-time descriptor system with constant coefficients and given by

Eẋ(t) = Ax(t) + f(t), x(t0) = x0, t ∈ R, (1.2)

where E, A ∈ Cn,n, x(t) ∈ Cn is the state vector, f(t) ∈ Cn is the inhomogeneity, ẋ(t)
is the derivative of x(t) with respect to t, and x0 ∈ Rn is an initial condition given at
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the point t0 ∈ R. Assuming that the pencil λE − A is regular, i.e., detλE −A 	= 0
for some λ ∈ C, one can explicitly write down the unique solution of (1.2) with the
help of the Drazin inverse, as shown in [8]. The purpose of this paper is to obtain
corresponding results for the discrete-time case (1.1).
Equations of the form (1.1) arise naturally by approximating ẋ(t) in (1.2) via an
explicit finite difference method. Equation (1.1) is also a special form of a singular
Leontief model in economics, see [5, 9]. Another application of (1.1) is the backward
Leslie model [3]. The Leslie model is used to describe the evolution of the age distri-
bution of a population at discrete time points. Therefore the population is divided
into n distinct equidistant age classes, e.g., 0-1 years, 1-2 years, ... Then the vector
xk ∈ Rn in the Leslie model describes the number of individuals in each of the age
classes at the discrete time point k. It is further assumed that all successive discrete
time points k and k + 1 correspond to two time points in real time that are as far
apart as the extent of one age classes is. With these assumptions, the Leslie model is
given by

xk+1 =




b1 b2 · · · bn−1 bn

s1 0 · · · · · · 0

0 s2
. . .

...
...

. . . . . . . . .
...

0 · · · 0 sn−1 0




︸ ︷︷ ︸
=:L

xk,

with L ∈ R
n,n where bi ≥ 0 for i = 1, . . . , n are the birth rates of the i-th age class

in one period of time and si ∈ [0, 1] for i = 1, . . . , n− 1 are the survival rates of the
i-th age class in one period of time. Since in most cases elderly individuals are not
likely to produce offsprings we can assume that bn = 0 and thus L is singular. Given
an age distribution we can use the Leslie model to estimate the age distribution in
the future. If, however, we want to determine an age distribution in the past, given a
present age distribution x̂, we have to solve the Leslie Model backwards, i.e., we have
to solve a system of the form

Lxl+1 = xl, with x0 = x̂, (1.3)

with L singular. System (1.3) is a special case of system (1.1).
Throughout the paper we will assume that λE − A is a regular pencil. As shown in
[6], any regular pencil can be reduced to the Kronecker/Weierstraß canonical form

P (λE −A)Q = λ

[
Inf

0
0 N

]
−
[
J 0
0 In∞

]
, (1.4)

where P, Q ∈ Cn,n are invertible, Ik ∈ Ck,k is the identity matrix of dimension k,
J ∈ Cnf ,nf is in Jordan canonical form, N ∈ Cn∞,n∞ is a nilpotent matrix in Jordan
canonical form and nf , n∞ ∈ N with nf + n∞ = n. We see that nf is the number of
finite eigenvalues and n∞ is the number of infinite eigenvalues. The form (1.4) allows
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to determine the solution of (1.1) in changed coordinates, i.e., by transforming system
(1.1) through

P−1EQ−1Qxk+1 = P−1AQ−1Qxk + P−1fk, (1.5)

we do not change the set of solutions. Adapting the state and the inhomogeneity to
the new coordinates we define[

xk
1

xk
2

]
:= Qxk and

[
fk
1

fk
2

]
:= P−1fk,

with partitioning analog to (1.5), i.e., xk
1 , fk

1 ∈ Cnf and xk
2 , fk

2 ∈ Cn∞ . Then from
(1.5) we see that in the new coordinates (1.1) can be decomposed into the two sub-
problems

xk+1
1 = Jxk

1 + fk
1 , (1.6a)

Nxk+1
2 = xk

2 + fk
2 , (1.6b)

of which we can compute the solutions separately, see [2]. In this paper, however, we
will determine representations of the solution in the original coordinates.

2. The Drazin inverse. The Drazin inverse is a generalization of the inverse of
a matrix to potentially singular square matrices. The properties of the Drazin inverse
make it very useful for finding solutions of systems of the form (1.1).

Definition 2.1. [8] Let E, A ∈ Cn,n, let the matrix pencil λE − A be regular
and let the Kronecker canonical form of λE−A be given by (1.4). Then the quantity
ν defined by Nν = 0, Nν−1 	= 0, i.e., by the index of nilpotency of N in (1.4), if the
nilpotent block in (1.4) is present and by ν = 0 if it is absent, is called the index of
the matrix pencil λE −A, and denoted by ind(λE −A) = ν.

Definition 2.2. Let E ∈ Cn,n. Further, let ν be the index of the matrix pencil
λE − In. Then ν is also called the index of E and denoted by ind(E) = ν.

Definition 2.3. Let E ∈ Cn,n have the index ν. A matrix X ∈ Cn,n satisfying

EX = XE,

XEX = X, (2.1)
XEν+1 = Eν ,

is called a Drazin inverse of E and denoted by ED.
As shown in [8] the Drazin inverse of a matrix is uniquely determined. Several

properties of the Drazin inverse will be used frequently in section 3, which is why we
review them here.

Lemma 2.4. Consider matrices E, A ∈ Cn,n with EA = AE. Then

EAD = ADE,

EDA = AED, (2.2)
EDAD = ADED.
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Proof. See [8, Lemma 2.21].
Also, the following Theorem will be necessary in the next section. It represents

a decomposition of a general square matrix into a part belonging to the non-zero
eigenvalues and a part belonging to the zero eigenvalues.

Theorem 2.5. Let E ∈ C
n,n with ν = ind(E). Then there is one and only one

decomposition

E = C̃ + Ñ (2.3)

with the properties

C̃Ñ = ÑC̃ = 0, Ñν = 0, Ñν−1 	= 0, ind(C̃) ≤ 1. (2.4)

For this decomposition the following statements hold:

C̃DÑ = ÑC̃D = 0,
ED = C̃D,

C̃C̃DC̃ = C̃, (2.5)
C̃DC̃ = EDE,

C̃ = EEDE, Ñ = E
(
I − EDE

)
.

Proof. See [8, Theorem 2.22].
Note, that the Drazin inverse and the decomposition (2.3) can easily be computed

via the Jordan canonical form of E. To see this, assume that E ∈ Cn,n has the Jordan
canonical form

E = S

[
J 0
0 N

]
S−1, (2.6)

where S ∈ Cn,n is invertible, J is invertible, and N only has zero as an eigenvalue.
Then, the Drazin inverse of E is given by

ED = S

[
J−1 0
0 0

]
S−1,

which can be shown by proving the properties (2.1) through basic computations. The
matrices of decomposition (2.3) in this case can be written as

C̃ = S

[
J 0
0 0

]
S−1 and Ñ = S

[
0 0
0 N

]
S−1, (2.7)

which shows that Ñ only has zero as an eigenvalue and C̃ has all the non-zero eigen-
values of E. However, C̃ may also have the eigenvalue zero although in this case the
eigenvalue zero is non-defective. We also remark that

PE := EDE (2.8)
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is a projector which follows from the properties of the Drazin inverse (2.1). Again,
using the Jordan canonical form (2.6) we can write this projector as

PE = EDE = S

[
I 0
0 0

]
S−1,

which shows that PE is, in functional analytic terms, the Riesz projection correspond-
ing to the non-zero eigenvalues of E. Analogously, (I−PE) = (I−EDE) is the Riesz
projection corresponding to the zero eigenvalues of E.

3. Basic theorems. Assume that λE − A is a regular pencil and that E and
A do not commute. Using a nice trick, which is due to Campbell (see [4]), we can in
this case rewrite system (1.1) as a system with commuting coefficient matrices.

Lemma 3.1. [4] Let E, A ∈ Cn,n with λE −A regular. Let λ̃ ∈ C be chosen such
that the matrix λ̃E −A is nonsingular. Then the matrices

Ẽ :=
(
λ̃E −A

)−1

E, Ã :=
(
λ̃E −A

)−1

A

commute.
Thus, by multiplying (1.1) from the left with the invertible matrix

(
λ̃E −A

)−1

and using the notation of Lemma 3.1 as well as f̃k := (λ̃E − A)−1fk we see that we
obtain the equivalent system

Ẽxk+1 = Ãxk + f̃k, (3.1)

with commuting coefficient matrices Ẽ and Ã. Note, that this transformation does not
change the state space/the coordinates of the system (1.1), since the multiplication
is only executed from the left. Thus, the set of solutions is not changed. Because of
Lemma 3.1 we will assume in the following that E and A already commute. Using
(2.2) together with the definition (2.8) we see that in the case that E and A commute
we also have

PEPA = PAPE ,

which means that PAPE is again a projector. Also PA(I − PE), (I − PA)PE , and
(I − PA)(I − PE) are projectors.

Remark 3.2. In the following we are going to decompose the complete problem
(1.1) into four subproblems by projecting (1.1) through the following projectors:

PAPE corresponds to the non-zero, finite eigenvalues of λE −A,

PA(I − PE) corresponds to the infinite eigenvalues of λE −A,

(I − PA)PE corresponds to the zero eigenvalues of λE −A,

(I − PA)(I − PE) corresponds to the remaining (singular) part of λE −A.

Assuming that λE−A is regular we are going to see that the singular part belonging
to the projector (I − PA)(I − PE) vanishes.
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Like [8, Lemma 2.24] we start by splitting system (1.1) into the two subsystems
which occur by projecting (1.1) through PE and (I − PE). The subsystem projected
through PE corresponds to (1.6a) and thus to the matrix C̃ as in 2.3 whereas the
subsystem projected through (I − PE) corresponds to (1.6b) and thus the matrix Ñ
as in 2.3.

Lemma 3.3. Let E, A ∈ C
n,n with EA = AE and E = C̃ + Ñ be the decompo-

sition (2.3). Then system (1.1) is equivalent (in the sense that there is a one-to-one
correspondence of solutions) to the system

C̃xk+1
1 = Axk

1 + fk
1 , (3.2a)

Ñxk+1
2 = Axk

2 + fk
2 , (3.2b)

for k ∈ K, where

xk
1 := EDExk, xk

2 :=
(
I − EDE

)
xk,

fk
1 := EDEfk, fk

2 :=
(
I − EDE

)
fk,

(3.3)

for all k ∈ K
+. With (3.3) subsystem (3.2a) is equivalent to the standard difference

equation

xk+1
1 = EDAxk

1 + EDfk
1 , for k ∈ K, (3.4)

Proof. Since xk = EDExk+(I−EDE)xk = xk
1+xk

2 we find that (1.1) is equivalent
to (

C̃ + Ñ
) (

xk+1
1 + xk+1

2

)
= A

(
xk

1 + xk
2

)
+ fk. (3.5)

Using (2.5), (2.2) we see that Ñxk+1
1 = 0, C̃xk+1

2 = 0, Ñfk+1
1 = 0, and C̃fk+1

2 = 0.
Projecting (3.5) with PE = EDE = C̃DC̃, i.e., multiplying (3.5) with C̃DC̃ from the
left first leads to (3.2a) and then to (3.2b). Multiplying (3.2a) by C̃D = ED and
adding (I − C̃DC̃)xk+1

1 = 0 finally gives the equivalence of (3.2a) and (3.4). A more
detailed proof of Lemma 3.3 can be found in [1, Lemma 6].

System (3.2a) corresponds to the system projected by PE and thus to the finite
eigenvalues of λE −A whereas system (3.2b) corresponds to the system projected by
(I − PE) and thus to the infinite eigenvalues of λE − A. Because of the linearity of
(1.1) we first consider the homogeneous case.
Analogous to [8, Lemma 2.25] we obtain the following Lemma.

Lemma 3.4. Let E, A ∈ C
n,n with EA = AE, k0 ∈ Z and v ∈ C

n. Then the
following statements hold.

1. Let v̂ = EDEv. Then

xk := (EDA)k−k0 v̂, k = k0, k0 + 1, . . . (3.6)

solves the homogeneous linear discrete-time descriptor system

Exk+1 = Axk, k = k0, k0 + 1, . . . (3.7)
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2. Let v̂ = ADAv. Then

xk := (ADE)k0−kv̂, k = k0, k0 − 1, . . . (3.8)

solves the homogeneous linear discrete-time descriptor system

Exk+1 = Axk, k = k0 − 1, k0 − 2, . . . (3.9)

3. Let v̂ ∈ range (ADA
) ∩ range (EDE

)
. Then

xk :=
{
(EDA)k−k0 v̂, k = k0, k0 − 1, . . .
(ADE)k0−kv̂, k = k0 − 1, k0 − 2, . . . (3.10)

solves the homogeneous linear discrete-time descriptor system

Exk+1 = Axk, k ∈ Z. (3.11)

Proof.
1. With (2.1) and (2.2) we get

Exk+1 = E(EDA)(EDA)k−k0EDEv

= A(EDA)k−k0EDEEDEv

= A(EDA)k−k0EDEv

= Axk,

for all k = k0, k0 + 1, . . .
2. In this case we obtain

Axk = A(ADE)k0−kADAv

= A(ADE)(ADE)k0−k−1ADAv

= E(ADE)k0−k−1ADAADAv

= E(ADE)k0−k−1ADAv

= Exk+1,

for all k = k0 − 1, k0 − 2, . . .
3. This follows from 1. and 2., since the definitions of xk0 from 1. and 2.
coincide.

Since by (2.2)

(EDA)k−k0EDEv = EDE(EDA)k−k0v,

it is clear, that the solution xk stays in the subspace range
(
EDE

)
for all k ≥ k0. An

analogous conclusion is possible for the case 2. in Lemma 3.4. In case 3. of Lemma
3.4 the solution even stays in range

(
ADA

) ∩ range (EDE
)
all the time. To verify

that all solutions of the homogeneous discrete-time descriptor system are in the form
given by Lemma 3.4 we make the following observation.
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Theorem 3.5. Let E, A ∈ Cn,n with EA = AE and suppose that the pencil
λE −A is regular. Then,

(I − EDE)ADA = (I − EDE). (3.12)

Proof. See [8, Lemma 2.26] as well as [1, Lemma 20].
Remark 3.6. Using (3.12) and (2.8) we see that under the assumption that E

and A commute we have

(I − PA)(I − PE) = (I − EDE)− (I − EDE)ADA = 0,
PA(I − PE) = (I − PE)PA = (I − PE), and
(I − PA)PE = (I − PA).

Looking back at Remark 3.2 this proves that under the assumptions of Theorem 3.5
the part belonging to the projector (I − PA)(I − PE) indeed vanishes and thus the
complete problem (1.1) really splits up into only three subproblems: one on PAPE ,
one on (I − PE), and one on (I − PA).
According to [8, Theorem 2.27] we obtain the following Theorem.

Theorem 3.7. Let E, A ∈ C
n,n with EA = AE be such that λE − A is regular.

Also, let k0 ∈ Z. Then the following statements hold.
1. Let {xk}k≥k0 be any solution of (3.7). Then {xk}k≥k0 has the form (3.6) for

some v̂ ∈ range (EDE
)
.

2. Let {xk}k≤k0 be any solution of (3.9). Then {xk}k≤k0 has the form (3.8) for
some v̂ ∈ range (ADA

)
.

3. Let {xk}k∈Z be any solution of (3.11). Then {xk}k∈Z has the form (3.10) for
some v̂ ∈ range (ADA

) ∩ range (EDE
)
.

Proof. Using the decomposition (2.3), (2.5), and (2.2) we have

AÑ = AE(I − EDE) = E(I − EDE)A = ÑA. (3.13)

Furthermore, we see that for any x ∈ Cn with AÑx = 0 we also have

(I − EDE)ADAÑx = 0.

Using (3.12) this implies

(I − EDE)Ñx = 0.

Thus, using (2.5) we have shown that for any x ∈ Cn with AÑx = 0 we have

Ñx = 0. (3.14)

Let {xk}k∈Z be any solution of (3.7). From Lemma 3.3 we get {xk
1}k≥k0 , {xk

2}k≥k0

with xk = xk
1+xk

2 which solve (3.2), respectively. With ν = ind(E), using (2.4), (3.2),
and (3.13) one then obtains

0 = Ñνxk+1
2 = Ñν−1Axk

2 = AÑν−1xk
2 ,
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for all k ≥ k0. From this and from (3.14) we see that we also have Ñν−1xk
2 = 0 for

all k ≥ k0. Discarding the identity for k = k0 then yields

Ñν−1xk
2 = 0, k ≥ k0 + 1.

Shifting the index k, i.e., replacing k by k + 1 shows that

Ñν−1xk+1
2 = 0, k + 1 ≥ k0 + 1,

which is the same as

Ñν−1xk+1
2 = 0, k ≥ k0.

By repeating this procedure ν − 2 times we finally get
Ñxk

2 = 0, k ≥ k0.

Using (3.2) once again, this implies

Axk
2 = 0,

and thus with (3.3) and (3.12) we have

xk
2 = (I − EDE)xk

2 = (I − EDE)ADAxk
2 = 0,

which means that xk = xk
1 for all k ≥ k0. Therefore, from Lemma 3.3 we know that

{xk
1} solves

xk+1
1 = (EDA)xk

1 ,

for all k ≥ k0. Applying this formula recursively shows that

xk
1 = (E

DA)k−k0xk0
1 ,

for every k ≥ k0. Summing up those implications we have that for all k ≥ k0

xk = xk
1 = (E

DA)k−k0xk0
1 = (EDA)k−k0EDExk0 , (3.15)

which shows part 1. To prove part 2., let {xk}k≤k0 be any solution of (3.9). Set
l0 := −k0 and yl := x−l for l ≥ l0. By replacing k = −l in (3.9) one obtains

Ex−l+1 = Ax−l, −l = −l0 − 1,−l0 − 2, . . . ,
which is equivalent to

Ex−(l−1) = Ax−l, l = l0 + 1, l0 + 2, . . .

By definition we can see that {yl}l≥l0 is a solution of

Eyl−1 = Ayl, l ≥ l0 + 1,
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and also a solution of

Ayl+1 = Eyl, l ≥ l0.

Using identity (3.15) for this reversed system means that

yl = (ADE)l−l0ADAyl0 ,

for all l ≥ l0. Undoing the replacements then yields

x−l = (ADE)l−l0ADAx−l0 ,

for all l ≥ l0 and thus

xk = (ADE)−k+k0ADAxk0 ,

for all −k ≥ −k0. Again, summing up these results shows that

xk = (ADE)k0−kADAxk0 , (3.16)

for all k ≤ k0. Finally, to prove part 3., let {xk}k∈Z be any solution of (3.11). Then
from (3.15) we have

xk = (EDA)k−k0EDExk0 ,

for all k ≥ k0 and especially for k = k0 we see that

xk0 = EDExk0 ∈ range (EDE
)
.

Also we know from (3.16) that

xk = (ADE)k0−kADAxk0 ,

for all k ≤ k0 and especially for k = k0 we see that

xk0 = ADAxk0 ∈ range (ADA
)
.

Thus, the claim of the Theorem follows with v̂ = xk0 .
One may think that it is not meaningful to look at case 3. of Theorem 3.7,

since in most cases one starts at some time point and then calculates into the future.
But as shown by the following Lemma 3.8, also those solutions (where one starts at
k0 ∈ Z and calculates a solution for k ≥ k0) are almost completely in the subspace
range

(
ADA

) ∩ range (EDE
)
.

Lemma 3.8. Let E, A ∈ C
n,n with EA = AE be such that λE − A is regular.

Also, let k0 ∈ Z and let νE = ind(E), νA = ind(A). Then the following statements
hold.

1. Let {xk}k≥k0 be any solution of (3.7). Then for all k ≥ k0 + νA it holds that
xk ∈ range (ADA

) ∩ range (EDE
)
.
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2. Let {xk}k≤k0 be any solution of (3.9). Then for all k ≤ k0 − νE it holds that
xk ∈ range (EDE

) ∩ range (ADA
)
.

Proof. Since k ≥ k0+νA it follows that there exists k̂ ≥ 0 such that k = k̂+k0+νA.
From Theorem 3.7 using (3.6) and (2.1) we then know that for some v ∈ Cn we have

ADAxk = ADA(EDA)k−k0EDEv

= ADA(ED)k−k0Ak−k0EDEv

= ADA(ED)k−k0AνAAk̂EDEv

= ADA(ED)k−k0ADAνA+1Ak̂EDEv

= (ED)k−k0ADAADAνA+1Ak̂EDEv

= (ED)k−k0ADAνA+1Ak̂EDEv

= (EDA)k−k0EDEv

= xk.

Also, we naturally get

EDExk = EDE(EDA)k−k0EDEv

= (EDA)k−k0EDEv = xk,
(3.17)

and thus the assertion of part 1. follows. As in (3.17) one gets that ADAxk = xk.
Let k = −k̂ + k0 − νE with k̂ ≥ 0. Then again for some v ∈ C

n it follows that

EDExk = EDE(ADE)k0−kADAv

= EDE(AD)k0−kEk0−kADAv

= EDE(AD)k0−kEνEEk̂ADAv

= EDE(AD)k0−kEDEνE+1Ek̂ADAv

= (AD)k0−kEDEEDEνE+1Ek̂ADAv

= (AD)k0−kEDEνE+1Ek̂ADAv

= (ADE)k0−kADAv

= xk,

which proves part 2.
To understand the relevance of Lemma 3.8, consider a homogeneous forward

system, i.e., a system of the type (3.7), and assume that a consistent initial condition
xk0 ∈ range (EDE

)
is given. Assuming that EA = AE we can apply the projector

ADA to xk0 obtaining a new consistent initial condition

x̃k0 = ADAxk0 ∈ range (EDE
) ∩ range (ADA

)
.

Lemma 3.8 and the proof of Lemma 3.8 then show that for all k ≥ k0 + ind(A) we
have

x̃k = xk.
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Thus, it seems reasonable to demand

xk0 ∈ range (ADA
) ∩ range (EDE

)
(3.18)

in the first place.
Also, only in case that (3.18) holds, we get something like an invertibility of the
operator that calculates xk+1 from xk. To understand this, imagine that a fixed xk0

is given. From this we calculate a finite number of steps κ into the future. Thus, we
have xk0+κ. From this state we then calculate κ steps back into the past to obtain
x̃k0 . We then have xk0 = x̃k0 if condition (3.18) holds. Otherwise we cannot be sure
that xk0 = x̃k0 holds, as shown in the following example.

Example 3.9. Consider the homogeneous linear discrete-time descriptor system
defined by 

 1 0 0
0 1 0
0 0 0




︸ ︷︷ ︸
:=E

xk+1 =


 0 0 0
0 1 0
0 0 1




︸ ︷︷ ︸
:=A

xk, k ≥ 0, x0 =


 11
0


 . (3.19)

Clearly, we have EA = AE, ED = E, AD = A and λE − A is regular. Thus, the
pencil (E, A), corresponding to system (3.19), satisfies all assumptions of Lemma 3.8.
Since the index of the matrix A is ind(A) = 1 this means that the iterate x1 has to
be in range

(
ADA

)
. Indeed,

Ax0 =


 01
0


 , x1 =


 01
0


 ∈ range (ADA

)
. (3.20)

Now let us calculate back one step from (3.20), i.e., let us consider the reversed system

Ax̃l+1 = Ex̃l, l ≤ 0, x̃−1 =


 01
0


 .

We see that

Ex̃−1 =


 01
0


 , x̃0 =


 01
0


 ,

and thus

x̃0 =


 01
0


 	= x0.

So far, we have characterized all the solutions of the homogeneous descriptor
system. Thus, what we still need to characterize all solutions of (1.1) is one particular

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 317-338, July 2009



ELA

Explicit Solutions of Linear Discrete-time Descriptor Systems 329

solution of the inhomogeneous system. Using [8, Theorem 2.28] we can prove the
following.

Theorem 3.10. Let E, A ∈ Cn,n with EA = AE be such that λE −A is regular.
Also, let νE = ind(E), νA = ind(A), {fk}k∈Z with fk ∈ Cn and k0 ∈ Z. Then the
following statements hold.

1. The linear discrete-time descriptor system

Exk+1 = Axk + fk, k ≥ k0,

has the particular solution {xk
1 + xk

2}k≥k0 , where

xk
1 :=

k−1∑
j=k0

(EDA)k−j−1EDf j ,

xk
2 := −(I − EDE)

νE−1∑
i=0

(ADE)iADfk+i,

for k ≥ k0. For the construction of the iterate xk only the fk with k ≥ k0

have to be employed.
2. The linear discrete-time descriptor system

Exk+1 = Axk + fk, k ≤ k0 − 1, (3.21)

has the particular solution {xk
1 + xk

2}k≤k0 , where

xk
1 := (I −ADA)

νA−1∑
i=0

(EDA)iEDfk−i−1,

xk
2 := −

k0∑
j=k+1

(ADE)j−k−1ADf j−1,

for k ≤ k0. For the construction of the iterate xk only the fk with k ≤ k0− 1
have to be employed.

Proof. Let E = C̃ + Ñ be the decomposition (2.3). Then, using (2.2) we have
the identities

EDExk
1 =

k−1∑
j=k0

(EDA)k−j−1EDEEDf j = xk
1 ,

(I − EDE)xk
2 = −(I − EDE)(I − EDE)

νE−1∑
i=0

(ADE)iADfk+i = xk
2 .

Using (2.5) and (2.1) one can also conclude, that for all k ≥ k0 it follows that

C̃xk+1
1 = C̃

k∑
j=k0

(EDA)k+1−j−1EDf j
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= C̃


 k−1∑

j=k0

(EDA)k−jEDf j + EDfk




= C̃


(EDA)

k−1∑
j=k0

(EDA)k−j−1EDf j + EDfk




= AEDExk
1 + EDEfk

= Axk
1 + EDEfk,

and with

(I − EDE)EνE =
{
(I − EDE)EDEνE−1 = 0, if νE ≥ 1,
(I − EDE) = (I − I) = 0, if νE = 0,

(3.22)

we obtain

Ñxk+1
2 = E(I − EDE)xk+1

2

= −(I − EDE)
νE−1∑
i=0

(ADE)i+1fk+i+1

= −(I − EDE)
νE−2∑
i=0

(ADE)i+1fk+i+1

= −(I − EDE)ADA

νE−1∑
i=1

(ADE)ifk+i

= −A(I − EDE)
νE−1∑
i=0

(ADE)iADfk+i + (I − EDE)fk

= Axk
2 + (I − EDE)fk,

by using (3.12). With these results and Lemma 3.3 one immediately gets that
{xk}k≥k0 with

xk = EDExk
1 + (I − EDE)xk

2 = xk
1 + xk

2

is a solution and thus part 1. of the assertion follows. To prove part 2. we perform
a variable substitution. By replacing l := −k and l0 := −k0 in (3.21) one gets the
system

Ex−l+1 = Ax−l + f−l, −l ≤ −l0 − 1,
which is equivalent to the system

Ex−(l−1) = Ax−l + f−l, l ≥ l0 + 1.

By further replacing yl := x−l for l ≥ l0 one gets

Eyl−1 = Ayl + f−l, l ≥ l0 + 1.
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Shifting the index l, i.e., replacing l by l + 1 shows that

Eyl = Ayl+1 + f−l−1, l + 1 ≥ l0 + 1,

which in turn is equivalent to

Ayl+1 = Eyl − f−l−1, l ≥ l0.

Setting gl := −f−l−1 we can finally write this equation as

Ayl+1 = Eyl + gl, l ≥ l0.

From the results of the first part we then get a solution of this last system as

yl =
l−1∑
j=l0

(ADE)l−j−1ADgj − (I −ADA)
νA−1∑
i=0

(EDA)iEDgl+i.

Undoing the replacement yl = x−l in this equations then leads to

x−l = −
l−1∑
j=l0

(ADE)l−j−1ADf−j−1 + (I −ADA)
νA−1∑
i=0

(EDA)iEDf−(l+i)−1,

and undoing the replacement k = −l finally gives us

xk = (I −ADA)
νA−1∑
i=0

(EDA)iEDfk−i−1 −
−k−1∑
j=−k0

(ADE)−k−j−1ADf−j−1

= (I −ADA)
νA−1∑
i=0

(EDA)iEDfk−i−1 −
k0∑

j=k+1

(ADE)j−k−1ADf j−1.

The parts xk
1 and xk

2 of the solution in Theorem 3.10 part 1. and Lemma 3.3
correspond to each other. With (2.8) we see that xk

1 = PExk
1 corresponds to the finite

eigenvalues of λE − A and xk
2 = (I − PE)xk

2 corresponds to the infinite eigenvalues
of λE − A. Theorem 3.10 shows that the problem (1.1) only decomposes into two
subproblems if we only want to compute the solution into one direction, i.e., k ≥ 0.
With the notation of Remark 3.2 we can say that in case 1. of Theorem 3.10 the
projectors PEPA and PE(I − PA) can be treated as one. If, however, we move to the
case where we want to get a solution for all k ∈ Z, then we need all three projectors
introduced in Remark 3.6. Similar to Lemma 3.3 we obtain the following result.

Lemma 3.11. Let E, A ∈ Cn,n with EA = AE be such that λE − A is regular.
Further, let E = C̃ + Ñ and analogously A = D̃ + M̃ be decompositions as in (2.3).
Let {xk

1}k∈Z, {xk
2}k∈Z, {xk

3}k∈Z be solutions of

C̃xk+1
1 = M̃xk

1 + (I −ADA)fk,

C̃xk+1
2 = D̃xk

2 +ADAEDEfk,

Ñxk+1
3 = D̃xk

3 + (I − EDE)fk,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 317-338, July 2009



ELA

332 T. Brüll

respectively. Then {xk}k∈Z with

xk := (I −ADA)xk
1 +ADAEDExk

2 + (I − EDE)xk
3 ,

is a solution of

Exk+1 = Ak + fk.

Proof. First of all, by (3.12) we see that

(I −ADA) + (I − EDE) +ADAEDE

= I −ADA+ I − (I −ADA)EDE

= I −ADA+ I − (I −ADA) = I.

Furthermore, we have that

D̃(I −ADA) = AADA(I −ADA) = 0,

M̃(ADAEDE) = A(I −ADA)(ADAEDE) = 0,

M̃(I − EDE) = A(I −ADA)(I − EDE)

= A
(
(I − EDE)− (I − EDE)ADA

)
= 0.

Using all those identities together we finally obtain the following equation:

Exk+1 = E(I −ADA)xk+1
1 + EADAEDExk+1

2 + E(I − EDE)xk+1
3

= (I −ADA)C̃xk+1
1 +ADAEDEC̃xk+1

2 + (I − EDE)Ñxk+1
3

= (I −ADA)M̃xk
1 + (I −ADA)fk +

ADAEDED̃xk
2 +ADAEDEfk +

(I − EDE)D̃xk
3 + (I − EDE)fk

= (I −ADA)M̃xk
1 +ADAEDED̃xk

2 + (I − EDE)D̃xk
3 + fk

= M̃(I −ADA)xk
1 + D̃(I −ADA)xk

1 +

M̃ADAEDExk
2 + D̃ADAEDExk

2 +

M̃(I − EDE)xk
3 + D̃(I − EDE)xk

3 + fk

= Axk + fk.

Here we have used that D̃ = AADA, and thus D̃ commutes with the matrices E and
A.

Using Lemma 3.11 we can construct a particular solution for the case K = Z, as
we did in Theorem 3.10 for the case that K = {k ∈ Z : kb ≤ k}.

Theorem 3.12. Let E, A ∈ Cn,n with EA = AE be such that λE −A is regular.
Also, let νE = ind(E), νA = ind(A), {fk}k∈Z ⊂ Cn and k0 ∈ Z. Then a solution
{xk}k∈Z of the system

Exk+1 = Axk + fk, k ∈ Z,
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is given by xk := xk
1 + xk

2 + xk
3 , where

xk
1 := (I −ADA)

νA−1∑
i=0

(EDA)iEDfk−i−1,

xk
2 :=




ADA

k−1∑
j=k0

(EDA)k−j−1EDf j, k ≥ k0,

−EDE

k0∑
j=k+1

(ADE)j−k−1ADf j−1, k ≤ k0,

xk
3 := −(I − EDE)

νE−1∑
i=0

(ADE)iADfk+i,

for k ∈ Z.
Proof. Considering the decompositions E = C̃ + Ñ and A = D̃ + M̃ as in (2.3),

using (2.2), (3.12), and (3.22) we have

M̃xk
1 = A(I −ADA)

νA−1∑
i=0

(EDA)iEDfk−i−1

= (I −ADA)
νA−1∑
i=0

(EDA)i+1fk−i−1

= (I −ADA)
νA−2∑
i=0

(EDA)i+1fk−i−1

= (I −ADA)
νA−1∑
i=1

(EDA)ifk−i

= (I −ADA)

(
νA−1∑
i=0

(EDA)ifk−i − fk

)

= −(I −ADA)fk + (I −ADA)EDE

νA−1∑
i=0

(EDA)ifk−i

= −(I −ADA)fk + E(I −ADA)
νA−1∑
i=0

(EDA)iEDfk−i

= −(I −ADA)fk + Exk+1
1

= −(I −ADA)fk + (C̃ + Ñ)xk+1
1

= −(I −ADA)fk + C̃xk+1
1 ,

where the last identity holds, since xk
1 has the form xk

1 = (I − ADA)yk
1 for some yk

1

and

Ñxk
1 = E(I − EDE)(I −ADA)yk

1

= E
(
I −ADA− EDE(I −ADA)

)
yk
1 = 0,

(3.23)
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because of (3.12). As in Theorem 3.10, part 1. one obtains

Ñxk+1
3 = Axk

3 + (I − EDE)fk = (D̃ + M̃)xk
3 + (I − EDE)fk.

Again as in (3.23) it follows that

M̃xk
3 = 0,

and thus

Ñxk+1
3 = D̃xk

3 + (I − EDE)fk.

Finally, for k ≥ k0 one has

C̃xk+1
2 = C̃ADA

k∑
j=k0

(EDA)k−jEDf j

= C̃EDADA


 k−1∑

j=k0

(EDA)k−jf j + fk




= EEDEEDADA


 k−1∑

j=k0

(EDA)k−jf j + fk




= EDEADA


 k−1∑

j=k0

(EDA)k−jf j + fk




= EDEADA


EDA

k−1∑
j=k0

(EDA)k−j−1f j + fk




= AADA

k−1∑
j=k0

(EDA)k−j−1EDf j +ADAEDEfk

= AADAADA

k−1∑
j=k0

(EDA)k−j−1EDf j +ADAEDEfk

= D̃ADA

k−1∑
j=k0

(EDA)k−j−1EDf j +ADAEDEfk

= D̃xk
2 +ADAEDEfk,

and for k < k0 analogously,

D̃xk
2 = −D̃EDE

k0∑
j=k+1

(ADE)j−k−1ADf j−1
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= −AADAEDEAD
k0∑

j=k+1

(ADE)j−k−1f j−1

= −AADEDE

k0∑
j=k+1

(ADE)j−k−1f j−1

= −AADEDE


 k0∑

j=k+2

(ADE)j−k−1f j−1 + fk




= −AADEDEfk −ADAADEEDE

k0∑
j=k+2

(ADE)j−k−2f j−1

= −AADEDEfk −ADEEDEEDE

k0∑
j=k+2

(ADE)j−k−2f j−1

= −AADEDEfk + EEDE


−EDE

k0∑
j=k+2

(ADE)j−k−2ADf j−1




= −AADEDEfk + C̃xk+1
2 .

Lemma 3.11 then implies the assertion.
xk

1 , xk
2 , and xk

3 from Lemma 3.11 and Theorem 3.12 again correspond to each
other. As stated in Remark 3.6 the problem (1.1) is decomposed into three projected
subsystems by Theorem 3.12 with xk

1 corresponding to the projector (I − PA), xk
2

corresponding to the projector PAPE , and xk
3 corresponding to the projector (I−PE).

4. Main results. In the previous section we have constructed a particular solu-
tion of the inhomogeneous problem and we have explicitly characterized all solutions
of the homogeneous problem. This enables us to specify all solutions of the inhomo-
geneous problem.

Theorem 4.1. Let E, A ∈ Cn,n with EA = AE be such that λE − A is regular.
Also, let νE = ind(E), νA = ind(A), {fk}k∈Z with fk ∈ Cn and k0 ∈ Z. Then the
following statements hold.

1. Every solution {xk}k≥k0 of

Exk+1 = Axk + fk, k ≥ k0 (4.1)

satisfies

xk =
(
EDA

)k−k0
EDEv +

k−1∑
j=k0

(
EDA

)k−j−1
EDf j

− (I − EDE
) νE−1∑

i=0

(
ADE

)i
ADfk+i,

for k ≥ k0 and for some v ∈ Cn.
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2. Every solution {xk}k≤k0 of

Exk+1 = Axk + fk, k ≤ k0 − 1 (4.2)

satisfies

xk =
(
ADE

)k0−k
ADAv + (I −ADA)

νA−1∑
i=0

(EDA)iEDfk−i−1

−
k0∑

j=k+1

(ADE)j−k−1ADf j−1,

for k ≤ k0 and for some v ∈ Cn.
3. Every solution {xk}k∈Z of

Exk+1 = Axk + fk, k ∈ Z (4.3)

satisfies

xk = (I −ADA)
νA−1∑
i=0

(EDA)iEDfk−i−1

+



(EDA)k−k0 v̂ +ADA

k−1∑
j=k0

(EDA)k−j−1EDf j , k ≥ k0

(ADE)k0−kv̂ − EDE

k0∑
j=k+1

(ADE)j−k−1ADf j−1, k ≤ k0

− (I − EDE)
νE−1∑
i=0

(ADE)iADfk+i,

(4.4)
for k ∈ Z and for some v̂ which has the form v̂ = ADAEDEv, where v ∈ Cn

is arbitrary.
Proof. Since the problem is linear any solution may be written as a particular

solution of the inhomogeneous problem plus a solution of the homogeneous problem.
Thus, we can derive the result from Theorems 3.7, 3.10, and 3.12 as well as Lemma
3.4.

Since Theorem 4.1 explicitly gives all solutions of (1.1) we can also easily specify
all consistent initial conditions. We only have to look at the values of all possible
solutions at k0.

Corollary 4.2. Let the assumptions of Theorem 4.1 hold. Consider the initial
condition

xk0 = x0. (4.5)

Then the following statements hold.
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1. The initial value problem consisting of (4.1) and (4.5) possesses a solution if
and only if there exists a v ∈ Cn with

x0 = EDEv − (I − EDE
) νE−1∑

i=0

(
ADE

)i
ADfk0+i.

If this is the case, then the solution is unique.
2. The initial value problem consisting of (4.2) and (4.5) possesses a solution if

and only if there exists a v ∈ C
n with

x0 = ADAv + (I −ADA)
νA−1∑
i=0

(EDA)iEDfk0−i−1.

If this is the case, then the solution is unique.
3. The problem consisting of (4.3) and (4.5) possesses a solution if and only if

there exists a v ∈ Cn with

x0 = (I −ADA)
νA−1∑
i=0

(EDA)iEDfk0−i−1

+ADAEDEv

−(I − EDE)
νE−1∑
i=0

(ADE)iADfk0+i.

If this is the case, then the solution is unique.
Finally, recall that the assumption EA = AE in Theorem 4.1 and Corollary

4.2 is not a restriction, since due to Lemma 3.1 we can transform any system of
the form (1.1) to a system of the form (3.1) with ẼÃ = ÃẼ by premultiplying the
original equations (1.1) by a matrix of the form (λ̃E − A)−1, which exists since the
pencil λE −A is assumed to be regular. Thus, the assumptions of Theorem 4.1 and
Corollary 4.2 can essentially be reduced to the regularity of the matrix pencil λE−A
by performing the following replacements in Theorem 4.1 and Corollary 4.2:

E ←
(
λ̃E −A

)−1

E, A←
(
λ̃E −A

)−1

A, f ←
(
λ̃E −A

)−1

f.

5. Conclusion. In this text we concentrated on regular systems, i.e., on systems
of the form (1.1) where the matrix pencil λE − A is regular. For such systems we
have presented the explicit solution with the help of the Drazin inverse. In contrast to
the continuous-time case, one has to distinguish between four different cases for such
systems. The first case is where one has an initial condition given at point k0 ∈ Z

and only wants to get a solution for indices k ≥ k0. The second case is where one
has an initial condition given at point k0 ∈ Z and only wants to get a solution for
indices k ≤ k0. These first two cases are closely related, since the first case can be
transformed into the second one by a variable substitution, as shown in the proof of
Theorem 3.10.
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The third case is really different from the first two cases. Here, also an initial condition
is given at some point k0 ∈ Z but one is looking for a solution for indices k ≥ k0, as
well as for indices k ≤ k0. This puts stronger restrictions on the initial condition, i.e.,
the set of consistent initial conditions in the third case is smaller than in the first or
second case, as we saw in Corollary 4.2.
The fourth case has not been examined in this paper. It is the case where one
only wants to get a solution on a finite interval, i.e., a solution for all k ∈ Z with
kb ≤ k ≤ kf where kb ∈ Z and kf ∈ Z. This case is more complicated, as boundary
value conditions have to be introduced on both ends of the interval to fix a unique
solution. By first introducing only an initial condition for xkb , we can see from the
solution formulas in Theorem 4.1 that all but the last ind(E)+1 elements are already
uniquely determined. The additional boundary condition for xkf then only fixes these
last ind(E) + 1 elements

xkf−ind(E), xkf−ind(E)+1, . . . , xkf

of the solution and thus can be considered irrelevant. This fourth case has been
studied in [10, 11].
The results in this paper could in principle be used to actually compute solutions of
systems of the form (1.1) on a computer but another method employing the singular
value decomposition is better suited for this purpose; see [2, Chapter 5].
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