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Abstract. In this article, several theorems on perturbations of a complex matrix by a matrix

of a given rank are presented. These theorems may be divided into two groups. The first group

is about spectral properties of a matrix under such perturbations; the second is about almost-near

relations with respect to the rank distance.
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1. Introduction. In this article, we present several theorems on perturbations
of a complex matrix by a matrix of a given rank. These theorems may be divided
into two groups. The first group is about spectral properties of a matrix under such
perturbations; the second is about almost-near relations with respect to the rank
distance.

1.1. The first group. Theorem 2.1 gives necessary and sufficient conditions
on the Weyr characteristics, [20], of matrices A and B if rank(A − B) ≤ k. In
one direction the theorem is known; see [12, 13, 14]. For k = 1 the theorem is a
reformulation of a theorem of Thompson [16] (see Theorem 2.3 of the present article).
We prove Theorem 2.1 by induction with respect to k. To this end, we introduce a
discrete metric space (the space of Weyr characteristics) and prove that this metric
space is geodesic. In fact, the induction (with respect to k) is hidden in this proof (see
Proposition 3.6 and Proposition 3.1). Theorem 2.6 with Theorem 2.4 give necessary
and sufficient conditions on the spectra of self-adjoint (unitary) matrices A and B if
rank(A − B) ≤ k. The proof of Theorem 2.6 (Theorem 2.7) is similar to the proof
of Theorem 2.1: for k = 1 it is well known; to proceed further we introduce another
discrete metric space and prove that it is geodesic. Theorem 2.6 is proved in [17]
for self-adjoint A,B and positive A− B; the positivity assumption looks essential in
the proof of [17]. It is interesting to compare Theorem 2.6 with results of [17] about
singular values under bounded rank perturbations.
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Theorem 2.4 is an analogue of the Cauchy interlacing theorem [2] about spectra
of principal submatrices of a self-adjoint matrix. For normal matrices, it seems to be
new and related with Theorem 5.2 of [9]. Both results have very similar proofs.

1.2. The second group. A matrix A is almost unitary (self-adjoint, normal) if
rank(A∗A−E) (rank(A−A∗), rank(A∗A−AA∗)) is small with respect to the size of
the matrices. Matrix A is near unitary (self-adjoint, normal) if there exists a unitary
(self-adjoint, normal) matrix B with small rank(A − B). Theorem 2.9 says that an
almost self-adjoint matrix is a near self-adjoint (this result is trivial). Theorem 2.10
says the same for almost unitary matrices. We don’t know if every almost normal
matrix is near normal. For a matrix A with a simple spectrum, Theorem 2.11 gives
an example of a matrix that almost commutes with A and is far from any matrix that
commutes with A.

Some of our motivation is the following. The equation d(A,B) = rank(A − B)
defines a metric on the set of n × n-matrices (the arithmetic distance, according to
L.K. Hua, [19], Definition 3.1). Almost-near questions have been considered for the
norm distance dn(A,B) = ‖A − B‖ with ‖ · ‖ being a supremum operator norm. In
[11] the following assertion is proved: For any δ > 0 there exists εδ > 0 such that
if ‖AA∗ − A∗A‖ ≤ εδ then there exists a normal B with ‖A − B‖ ≤ δ. The εδ is
independent of the size of the matrices. It is equivalent to the following: close to
any pair of almost commuting self-adjoint matrices there exists a pair of commuting
self-adjoint matrices (with respect to the norm distance dn(·, ·)). On the other hand,
there are almost commuting (with respect to dn(·, ·)) unitary matrices, close to which
there are no commuting matrices, [3, 5, 18]. Similar questions have been studied
for operators in Hilbert spaces (Calkin algebras, [7]). In Hilbert spaces, an operator
a is called essentially normal if aa∗ − a∗a is a compact operator. In contrast with
Theorem 2.10, there exists an essentially unitary operator that is not a compact
perturbation of a unitary operator (just infinite 0-Jordan cell; see the example below
Theorem 2.10). There is a complete characterization of compact perturbations of
normal operators; see [7] and the bibliography therein. So, our Theorems 2.4, 2.10,
2.11 may be considered as the start of an investigation in the direction described with
the arithmetic distance instead of the norm distance.

In Section 2, we formulate the main theorems of the article; in Section 3, we define
discrete distances needed in the proofs and investigate their properties; in Section 4,
we prove the main theorems.

We use the notations N = {0, 1, 2, ...} and Z+ = {1, 2, ...}.
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2. Formulation of main results and discussion.

2.1. Spectral properties of general matrices. Let ηm(A, λ) denote the num-
ber of λ-Jordan blocks in A of size greater or equal than m (m ∈ Z+):

ηm(A, λ) = dim Ker(λE −A)m − dim Ker(λE −A)m−1.

The function η(·)(A, ·) : Z+ × C → N is called the Weyr characteristic of the matrix
A, [15, 20]. It is clear that ηm(A, λ) is nonzero for finitely many pairs (m,λ) only and
ηm+1(A, λ) ≤ ηm(A, λ).

Theorem 2.1. Let A ∈ Cn×n with Weyr characteristic ηm(A, λ). Then νm(λ)
is the Weyr characteristic of some B ∈ Cn×n with rank(A − B) ≤ k if and only if
the following conditions are satisfied:

• | ηm(A, λ) − νm(λ) |≤ k for any λ ∈ C and any m ∈ Z+.
• νm+1(λ) ≤ νm(λ).
• ∑
λ∈C

∑
m∈Z+

νm(λ) = n.

The pole assignment theorem (see, for example, Theorem 6.5.1 of [8]) is an easy
corollary of Theorem 2.1.

Corollary 2.2 (Pole assignment theorem). Suppose that A ∈ Cn×n has a geo-
metrically simple spectrum (for each eigenvalue there is a unique corresponding Jordan
cell in the Jordan normal form of A). Suppose that B runs over all n × n-matrices
such that rank(A−B) = 1. Then the spectrum of B runs over all multisubsets of C

of size n.

In one direction, Theorem 2.1 easily follows from the Thompson’s theorem for-
mulated below. In [14] a direct proof of Theorem 2.1 (in one direction) is given. For
rank(A−B) = 1, the above theorem is just a reformulation of Thompson’s theorem.
We proceed by a ”hidden” induction on rank(A − B), using the fact that the space
Cn×n with arithmetic distance and the space of the Weyr characteristics are geodesic
metric spaces.

Theorem 2.3 (Thompson,[16]). Let F be a field and let A ∈ Fn×n have similarity
invariants hn(A) | hn−1(A) | · · · | h1(A). Then, as column n-tuple x and row n-tuple
y range over all vectors with entries in F, the similarity invariants assumed by the
matrix:

B = A+ xy

are precisely the monic polynomials hn(B) | · · · | h1(B) over F for which
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degree(h1(B) · · ·hn(B)) = n and

hn(B) | hn−1(A) | hn−2(B) | hn−3(A) | · · · ,
hn(A) | hn−1(B) | hn−2(A) | hn−3(B) | · · · .

2.2. Spectra of normal matrices. We say that the vector x is an α-eigenvector
of A if Ax = αx. We denote by R(A, λ, ε) the span of all α-eigenvectors of A with
|λ− α| ≤ ε.

Theorem 2.4. If A and B are normal matrices, then for any λ, and for any
ε ≥ 0,

| dim(R(A, λ, ε)) − dim(R(B, λ, ε)) |≤ rank(A−B)

Let Oε(λ) = {x ∈ C | |x − λ| ≤ ε}. For finite complex multisets A,B (unordered
tuples of complex numbers, notation: A,B ⊂M C) let

dc(A,B) = max
O∈S

{|(|A ∩O| − |B ∩O|)|}, 1

where S = {Oε(λ) | λ ∈ C, ε > 0}. Theorem 2.4 implies that any ball on the complex
plain, containing m spectral points of A must contain at least m− k spectral points
of B and vice versa. So, we have:

Corollary 2.5. If A and B are normal matrices then dc(sp(A), sp(B)) ≤
rank(A−B).

Does Corollary 2.5 describe all spectra accessible by a rank k perturbation? We
show that the answer is ”yes” for self-adjoint and unitary matrices.

Theorem 2.6. Let A be a self-adjoint (unitary) n × n-matrix. Let B ⊂M R

(B ⊂M S1), |B| = n. Then there exists a self-adjoint (unitary) matrix B such that
sp(B) = B and rank(A−B) = dc(sp(A),B).

By Proposition 3.4 of Section 3, the theorem is equivalent to:

Theorem 2.7. Let l ⊂ C be a circumference or a straight line. Let A be a normal
n× n-matrix, sp(A) ⊂M l. Let B ⊂M l, |B| = n. Then there exists a normal matrix
B such that sp(B) = B and rank(A−B) = dc(sp(A),B).

For self-adjoint matrices, Theorem 2.6 is related to the inverse Cauchy interlacing
theorem, see [6]. In the work of Thompson [17], Theorem 2.6 is proved for self-adjoint

1If X is a set or multiset then |X| denotes the cardinality of X. If x is a number then |x| denotes

the absolute value of x.
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A,B and positive A − B. In this case we may order the spectrum of A and B, say
α1 ≤ α2 ≤ · · · ≤ αn and β1 ≤ β2 ≤ · · · ≤ βb, respectively. Due to positivity of A−B,
one has αi ≥ βi and dc(α, β) ≤ k is equivalent to:

βi ≤ αi ≤ βi+k.(2.1)

If A − B is not positive (negative), then the condition αi ≥ βi (αi ≤ βi) is not
valid any more. Now, the condition dc(α, β) ≤ k is not equivalent to inequalities of
type (2.1). It is interesting to compare it with results of [17] about singular values
under bounded rank perturbations. Small rank perturbations of positive operators
are considered in [4].

It is also worth noting the work [10], where the author studies the relationships
of the spectra of self-adjoint matrices H1, H2, and H1 +H2.

2.3. Almost-near relations.

Definition 2.8. A matrix A ∈ Cn×n is said to be

• k-self-adjoint if rank(A−A∗) ≤ k.
• k-unitary if rank(AA∗ − E) ≤ k, where E is the unit matrix.
• k-normal if rank(AA∗ −A∗A) ≤ k.

Theorem 2.10 (Theorem 2.9) formulated below says that in a k-neighborhood of
a k-unitary (k-self-adjoint) matrix there exists a unitary (self-adjoint) matrix. We
don’t know if a similar result is valid for k-normal matrices. Precisely, we are trying
to prove (or disprove) the following:

Conjecture. For any δ > 0, there exists ε > 0 such that in a (δ ·n)-neighborhood
of an (ε · n)-normal matrix there exists a normal matrix (δ, ε are independent of the
size n of the matrices).

Theorem 2.9. For any A ∈ Cn×n, there exists a self-adjoint matrix S such that
rank(A− S) = rank(A−A∗).

Proof. Take S = 1
2 (A+A∗).

Theorem 2.10. For any A ∈ Cn×n, there exists a unitary matrix U such that
rank(A− U) = rank(A∗A− E).
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A good illustration for this theorem is a 0-Jordan cell:


0 0 · · · 0 0 · · · 0
1 0 · · · 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 0 · · · 0
0 0 · · · 1 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 0 · · · 0







0 1 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 1 · · · 0
0 0 · · · 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 0 · · · 0




=




0 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 1 0 · · · 0
0 0 · · · 0 1 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 0 · · · 1



,

but the matrix 


0 0 · · · 0 0 · · · 1
1 0 · · · 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 0 · · · 0
0 0 · · · 1 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 0 · · · 0




is unitary.

Let us return to the almost-commuting matrices. As we mentioned above, there
are several results on almost-commuting matrices with respect to norm distance,
[3, 5, 11, 18]. For the arithmetic distance, we manage to prove only the following.

Theorem 2.11. For every n ∈ N such that n ≥ 4 and every A ∈ Cn×n with an
algebraically simple spectrum, there exists an X ∈ Cn×n such that rank(AX−XA) =
2 and rank(B −X) ≥ n

2 for any matrix B that commutes with A.

In the above theorem the matrix A is fixed. What happens if one is allowed to
change A as well as X?

3. Some discrete geodesic spaces. A metric space is called geodesic if the dis-
tance between two points equals the length of a geodesic from one of the points to the
other. In the present article, we are interested in integer valued metrics. In this case,
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if for any x and y, d(x, y) = k, there exists a sequence x = x0, x1, x2, ..., xk−1, xk = y,
such that d(xi, xi+1) = 1, then a metric d(·, ·) is geodesic. We will use metric spaces
in the proofs of Theorem 2.1 and Theorem 2.7. All these theorems are known to be
valid for rank(A−B) = 1. Then we proceed by induction on rank(A−B) using the
fact that rank(A−B) is a geodesic metric.

Proposition 3.1. Let X and Y be geodesic metric spaces. Let OXn (x) denote
the closed ball of radius n around x in X. Let φ : X → Y be such that φ(OX1 (x)) =
OY1 (φ(x)) for all x ∈ X. Then φ(OXn (x)) = OYn (φ(x)) for any n ∈ N and x ∈ X.

Proof. The proof is by induction. For n = 1 there is nothing to prove. Step
n → n+ 1: It follows that OXn+1(x) =

⋃
z∈OX

n (x)

OX1 (z) (X is geodesic). Now

φ(OXn+1(x)) =
⋃

z∈OX
n (x)

φ(OX1 (z)) =
⋃

z∈φ(OX
n (x))

OY1 (z) =

⋃
z∈OY

n (φ(x))

OY1 (z) = OYn+1(φ(x)).

3.1. Arithmetic distance on Cn×n.

Lemma 3.2. The arithmetic distance, d(A,B) = rank(A−B), is geodesic on the

• set of all n× n matrices;
• set of all self-adjoint n× n matrices;
• set of all unitary n× n matrices.

Proof. It is clear that a rank k matrix (self-adjoint matrix) may be represented as a
sum of k matrices (self-adjoint matrices) of rank 1. The first two items follow from the
fact that set of matrices (self-adjoint matrices) is closed with respect to summation.
Now consider unitary matrices. Let rank(U1−U2) = k, that is, rank(E−U−1

1 U2) = k.
This means that, in a proper basis, U−1

1 U2 = diag(λ1, λ2, ..., λk, 1, 1, ..., 1). Now the
sequence U1, U1 · diag(λ1, 1, 1, ..., 1), U1 · diag(λ1, λ2, 1, 1, ..., 1), ...,
U1 · diag(λ1, λ2, ..., λk, 1, 1, ..., 1) = U2 gives us the geodesic needed.

Remark 3.3. The methods used in the above proof are not applicable to normal
matrices – the set of normal matrices is not closed under either summation or mul-
tiplication. In fact, an example from [6] hints that arithmetic distance might be non
geodesic on the set of normal matrices.

Proposition 3.4. Let φ(x) = (ax + b)(cx + d)−1 be a Möbius transformation
of Cn×n (a, b, c, d ∈ C, ad − bc �= 0). Suppose that φ is defined on A, B. Then
rank(A−B) = rank(φ(A) − φ(B)).
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Proof. A Möbius transformation is a composition of linear transformations A →
aA + b (a, b ∈ C) and taking inverse A → A−1. Those transformations (if defined)
clearly conserve arithmetic distance, for example, rank(A−1−B−1) = rank(A−1(B−
A)B−1) = rank(A−B). (A−1 and B−1 are of full rank.)

3.2. Distance on the spaces of the Weyr characteristics. Having in mind
the Weyr characteristics of complex matrices, we introduce the spaces �n of the Weyr
characteristics: �n is the space of functions Z+ × C → N, (i, λ) → ηi(λ) such that

• ηi(λ) �= 0 for finitely many (i, λ) only, and
∑
λ∈C

∑
i∈Z+

ηi(λ) = n.

• ηi(λ) ≥ ηi+1(λ).

On �n we define a metric d(η, µ) = max
(i,λ)

{|ηi(λ)−µi(λ)|}. First of all let us note that

d(·, ·) is indeed a metric. Trivially, d(η, µ) = 0 implies η = µ and d(·, ·) satisfies the
triangle inequality since it is supremum (maximum) of semimetrics. It is clear that
d(µ, ν) is also well defined for µ and ν in different spaces of Weyr characteristics (for
different n). We will need the following

Proposition 3.5. Let ν ∈ �m and n > m. Then there exists µ ∈ �n such that
d(ν, η) ≥ d(µ, η) for any η ∈ �n.

Proof. Let νi(λ0) �= 0 and νi+1(λ0) = 0. We can take µi+1(λ0) = µi+2(λ0) =
· · · = µi+n−m(λ0) = 1 and µj(λ) = νj(λ) for all other pairs (j, λ).

Proposition 3.6. �n are geodesic metric spaces.

Proof. Let η, µ ∈ �n and d(η, µ) = k > 1. It suffices to find ν ∈ �n such
that either d(η, ν) = 1 and d(ν, µ) = k − 1, or d(η, ν) = k − 1 and d(ν, µ) = 1.
Moreover, by Proposition 3.5 it suffices to find ν ∈ �m for m ≤ n. Let S+ = {(j, λ) ∈
Z+ × C | ηj(λ) − µj(λ) = k} and S− = {(j, λ) ∈ Z+ × C | ηj(λ) − µj(λ) = −k}.
Suppose that |S+| ≥ |S−| (if not, we can interchange η ↔ µ). Now let:

νi(λ) =




ηi(λ)− 1 if (i, λ) ∈ S+

ηi(λ) + 1 if (i, λ) ∈ S−
ηi(λ) if (i, λ) �∈ S+ ∪ S−

.

We have to show that ν ∈ �m for m = n − |S+| + |S−|. It remains to show that
νj+1(λ) ≤ νj(λ). Suppose that νj+1(λ) > νj(λ). There are three possibilities:

a) ηj+1(λ) = ηj(λ), (j, λ) ∈ S+ and (j+1, λ) �∈ S+, but then k > ηj+1(λ)−µj+1(λ) ≥
ηj+1(λ) − µj(λ) = ηj(λ)− µj(λ) = k, a contradiction.

b) ηj+1(λ) = ηj(λ), (j + 1, λ) ∈ S− and (j, λ) �∈ S−, but then −k < ηj(λ) − µj(λ) ≤
ηj(λ) − µj+1(λ) = ηj+1(λ)− µj+1(λ) = −k, a contradiction.
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c) ηj+1(λ) = ηj(λ) − 1, (j, λ) ∈ S+ and (j + 1, λ) ∈ S−, but then −k = ηj+1(λ) −
µj+1(λ) ≥ ηj+1(λ) − µj(λ) = ηj(λ) − µj(λ) − 1 = k − 1, so −k ≥ k − 1 and
1/2 ≥ k, a contradiction with k > 1.

Now, by construction, d(ν, η) = 1 and d(ν, µ) = k − 1.

3.3. Distances dc and d̃c on finite multisets of complex numbers. The
language of multisets is very convenient to deal with spectra. We need only finite
multisets. For a multiset A let set(A) denote the set of elements of A (forgetting
multiplicity). It is clear that a multiset can also be considered as the multiplicity
function χA : set(A) → N, for any x �∈ A we will suppose χA(x) = 0. (For all cases,
considered here, set(A) ⊂ C, so we can consider χA : C → N = {0, 1, 2, ...}.) We need
the following generalizations of set-theoretical operations to multisets:

• Difference of two multisets A \ B, χA\B(x) = max{0, χA(x)− χB(x)}.
• Intersection A∩X of a set X and a multiset A,

χA∩X(x) =
{

χA(x), if x ∈ X

0, if x �∈ X
.

• Union A� B, χA�B(x) = χA(x) + χB(x).

Let Or(a) = {x ∈ C : |x− a| ≤ r} and let S = {Or(a) | a ∈ C, r ∈ R+} be the set of
all balls. For A,B ⊂M C, let dc(A,B) = max

O∈S
{|(|A ∩O| − |B ∩O|)|}. Let us extend S

to S̃, which includes the complements of open balls and semiplanes: S̃ = S ∪ {{x ∈
C : |x− a| ≥ r} | a ∈ C, r ∈ R

+} ∪ {{x ∈ C : Im(x−ba ) ≥ 0} | a, b ∈ C}. Introduce
the new metric d̃c(A,B) = max

O∈S̃
{|(|A ∩O| − |B ∩O|)|}.

Proposition 3.7.

• dc and d̃c are metrics on the set of finite multisubsets of C.
• dc(A,B) = dc(A \ B,B \ A), d̃c(A,B) = d̃c(A \ B,B \ A).
• If |A| = |B|, then d̃c(A,B) = dc(A,B).

Proof

• The same as for spaces of Weyr characteristics.
• Let

∑
O(A,B) = |A∩O|−|B∩O| = ∑

x∈O
(χA(x)−χB(x)). Then

∑
O(A\B,B\

A) =
∑
x∈O

(max{0, χA(x)−χB(x)}−max{0, χB(x)−χA(x)}) =
∑
x∈O

(χA(x)−
χB(x)). Now the item follows by definition of dc (d̃c).

• Since A and B are finite multisets, for any semiplane p we can find a ball
c such that

∑
p(A,B) =

∑
c(A,B). Also for any closed ball cc, there exists

an open ball co such that
∑
cc
(A,B) =

∑
co
(A,B). Now, under the stated

assumption,
∑
O(A,B) = −∑

C\O(A,B) and the result follows.
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Proposition 3.8. Let φ(x) = ax+b
cx+d be a Möbius transformation of C (a, b, c, d ∈

C, ad− bc �= 0). Suppose, that φ is defined on set(A) ∪ set(B). Then:

d̃c(A,B) = d̃c(φ(A), φ(B)).

Proof. A Möbius transformation defines a bijection on S̃.
We don’t know if the metric dc is geodesic on the multisets with fixed cardinality,

but its restriction to any circle or line is.

Proposition 3.9. Let l ⊂ C be a circumference or a straight line. Let A,B ⊂M l,
|A| = |B| = n and d̃c(A,B) = k ≥ 2. Then there exists C ⊂M l, |C| = n such that
d̃c(A, C) = 1 and d̃c(C,B) = k − 1.

Proof. By Proposition 3.8, it suffices to prove the assertion for the unit circle. Let
us start with the case in which set(A) ∩ set(B) = ∅. Let Γ = set(A) ∪ set(B) ⊂ S1.
Let |Γ| = r. We cyclically (anticlockwise) order Γ = {γ0, γ1, ..., γr−1} by elements of
Zr. To construct C we move each element of A to the next element in Γ, precisely,
set(C) ⊆ Γ and

χC(γi) = max{0, χA(γi)− 1}+ χset(A)(γi−1),

in other words

χC(γi) =




χA(γi)− 1 if γi ∈ set(A) and γi−1 �∈ set(A)
1 if γi �∈ set(A) and γi−1 ∈ set(A)
χA(γi) for the other cases

Check that C satisfies our needs: For x, y ∈ Γ let [x, y] denote the closed segment
of S1, starting from x and going anticlockwise to y (so [x, y] ∪ [y, x] = S1). For
X,Y ⊂M Γ one has d̃c(X,Y ) = max{|(|X ∩ [α, β]| − |Y ∩ [α, β]|)| : α, β ∈ set(X) ∪
set(Y )}. Let

∑
[α,β](X,Y ) = |X ∩ [α, β]| − |Y ∩ [α, β]|. Note that if X ∩ Y = ∅

and
∑

[γi,γj ]
(X,Y ) = d̃c(X,Y ), then without loss of generality we may suppose that

γi, γj ∈ X and γi−1, γj+1 �∈ X .

Now, d̃c(A, C) = d̃c(A\C, C \A) = 1, since A\C = F1 = {γi | γi ∈ set(A)∧γi−1 �∈
set(A)} and C \ A = F2 = {γi | γi �∈ set(A) ∧ γi−1 ∈ set(A)} are interlacing sets on
S1. (In defining F1 and F2, we use the fact that set(A) ∩ set(B) = ∅. The following
consideration is useful. An interval [γi, γj ] ∩ Γ ⊂ set(A) is said to be A-maximal if
γi−1, γj+1 ∈ B. In the same way we define B-maximal intervals. Then Γ is the union
of interlacing A-maximal and B-maximal intervals. Any A-maximal interval contains
exactly one point of F1; any B-maximal interval contains exactly one point of F2.) If
we suppose further that d̃c(C,B) = d̃c(C \ B,B \ C) ≥ k, then there exists [γi, γj ] such
that either:
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1.
∑

[γi,γj]
(C \ B,B \ C) = d̃c(C \ B,B \ C) ≥ k,

or
2.

∑
[γi,γj]

(C \ B,B \ C) ≤ −k.
It suffices to consider the first case only. One checks that C \ B = A \ F1 and
B\C = B\F2, so set(C\B) ⊆ set(A) and set(B\C) ⊆ set(B). It follows that there exist
i, j, satisfying the inequality of item 1, with γi, γj ∈ A and γi−1, γj+1 �∈ A. This means
that |[γi, γj ]∩F1| = |[γi, γj]∩F2|+1. So,

∑
[γi,γj]

(A,B) = ∑
[γi,γj ]

(C \B,B \C)+1 ≥
k + 1, a contradiction. The second case may be reduced to the first (γi ↔ γj).

If set(A) ∩ set(B) �= ∅ then we can find C′ for A \ B and B \ A and then take
C = C′ �X , where X = A \ (A \ B) = B \ (B \ A)2.

Here are some other simple properties of dc. Let X,Y ⊂M C and dc(X,Y ) = 1.
Then:

• if |X | = |Y | = 2 then X ∪ Y lies on a circle (a line);
• if X ∩ Y = ∅ and p0, p1, ..., pn−1 are the vertexes of the convex hull of X ∪ Y

then p0, p1, ..., pn−1 is an interlacing sequence, that is, pi ∈ X if and only if
pi±1 ∈ Y ;

• if |X | = |Y | ≥ 3 and X lies on a circle (a line) l, then Y lies on the same line
l.

We also can show that {X ⊂M C | |X | = 2} is geodesic (with respect to dc = d̃c).
The line capacity of X ⊂ C (notation: c(X)) is the minimal k such that there exist
circles (lines) l1, l2, ..., lk, containing X (X ⊂ l1 ∪ l2 ∪ ... ∪ lk). It is easy to construct
nonintersecting multisets M1,M2 with dc(M1,M2) = c(M1 ∪M2) − 1. But we have
not been able to find nonintersecting M1,M2 with dc(M1,M2) < c(M1 ∪M2)− 1.

Question. Does dc(M1,M2) ≥ c(M1 ∪M2) − k for any nonintersecting finite
multisets M1,M2 and some k independent of Mi?

4. Proofs of Theorems.

4.1. Proof of Theorem 2.1. It suffices to prove the theorem for k = 1. Indeed,
assume that the theorem is valid for k = 1. Then we may consider the Weyr char-
acteristics as a map η : Cn×n → �n that satisfies Proposition 3.1. So, Theorem 2.1
follows, because it states that η(Ok(A)) = Ok(η(A)).

Let us prove Theorem 2.1 for k = 1. For a given eigenvalue λ ∈ sp(A) the sequence
q1(A, λ) ≥ q2(A, λ) ≥ · · · of sizes of the λ-Jordan blocks in the Jordan normal form
of A is known as the Segre characteristic of A relative to λ [15, 20].

2We use this strange expression for X just because we have not defined an intersection of multi-

sets.
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b1 b2 b3 b4 · · · bk
a1 • • • • · · · •
a2 • • • · · · •
a3 • • · · · •
...

...
an−1 • · · · •
an •

Fig. 4.1. Ferrers diagram.

The similarity invariant factors of A ∈ Cn×n are sequence of monic polynomials in
x, hn(A) | hn−1(A) | hn−2(A) | · · · | h1(A). It is known that hi(A) =

∏
λ(λ−x)qi(A,λ).

So, by Thompson’s theorem 2.3, rank(A−B) = 1 if and only if

q1(B, λ) ≥ q2(A, λ) ≥ q3(B, λ) ≥ · · · ,
q1(A, λ) ≥ q2(B, λ) ≥ q3(A, λ) ≥ · · · .(4.1)

For fixed B and λ, the Weyr characteristic ηi(B, λ) is the conjugate partition of
the Segre characteristic qi(B, λ) [15]. So, the theorem follows from

Proposition 4.1. Let a1 ≥ a2 ≥ · · · be the conjugate partition for b1 ≥ b2 ≥ · · ·
and let a′1 ≥ a′2 ≥ · · · be the conjugate partition for b′1 ≥ b′2 ≥ · · ·. Then |bi − b′i| ≤ 1
for all i if and only if ai+1 ≤ a′i ≤ bi−1.

Proof. The Ferrers diagram for a is the set Fa = {(i, j) ∈ Z+ × Z+ | j ≤ ai};
see Figure 4.1. The conjugate partition b is defined by the formula bj = |{(x, y) ∈
FλB | x = j}|. The inequality a′i ≥ ai+1 is equivalent to the statement ∀i (i +
1, j) ∈ Fa → (i, j) ∈ Fa′ (Figure 4.1). The statement is equivalent to the inequality
b′j ≥ bj − 1. Similarly, ai ≥ a′i+1 with 1 ≤ i ≤ n− 1 is equivalent to bj ≥ b′j − 1.

The referee pointed out that this proposition was proved by Ross A. Lippert,
2005, using the inequalities bai ≥ i and i ≥ bai+1.

4.2. Proof of Theorem 2.4. Let X⊥ be the orthogonal complement of a sub-
space X and let PX be the orthogonal projection on X .

Lemma 4.2. Let N : L → L be a normal operator and let X be a subspace of L
such that ‖(N − λ)x‖ ≤ ε‖x‖ for any x ∈ X. Then (we write R(λ, ε) for R(N,λ, ε))

1. PR(λ,ε)x �= 0 for any x ∈ X, x �= 0.

2. ‖PR(λ,aε)x‖ ≥
√
1− 1

a2 ‖x‖ for any x ∈ X.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 302-316, June 2009



ELA

314 L. Glebsky and L. M. Rivera

3. dim(R(λ, ε)) ≥ dim(X)

Proof. It is clear that (1) implies (3).

1. Let e1, e2, ..., en be a diagonal orthonormal basis for N and let λ1, λ2, ...λn
be corresponding eigenvalues (Nei = λiei). Let x = α1e1 + α2e2 + · · · + αnen ∈ X

with ‖x‖ =
n∑
i=1

|αi|2 = 1. Now, ‖(N − λ)x‖2 =
n∑
i=1

|αi|2|λi − λ|2 ≤ ε2 implies that∑
i | |λi−λ|>ε

|αi|2 < 1. So, PR(λ,ε)x =
∑

i | |λi−λ|≤ε
αiei �= 0.

2. Similarly,

∑
i | |λi−λ|>aε

|αi|2 < 1
a2

and
∑

i | |λi−λ|≤aε
|αi|2 ≥ (1− 1

a2
),

so, ‖PR(λ,aε)x‖ ≥
√
1− 1

a2 ‖x‖.

Now we are ready to prove Theorem 2.4. Let rank(A − B) = r and let X =
R(A, λ, ε) ∩ ker(A − B). Then dim(X) ≥ dim(R(A, λ, ε)) − r and A|X = B|X .
So, ‖(B − λ)|X‖ ≤ ε and, by Lemma 4.2, dim(R(B, λ, ε)) ≥ dim(R(A, λ, ε)) − r.
Theorem 2.4 follows by symmetry.

4.3. Proofs of Theorem 2.6 and Theorem 2.7.

• It suffices to prove Theorem 2.7 for self-adjoint matrices. Indeed, let
sp(A),B ⊂M l, |B| = n for a circle (line) l ⊂ C. Then there exists a Möbius
transformation φ, defined on sp(A) ∪ B, that maps l to the real line. Then
φ(A) is self-adjoint and we can apply Theorem 2.6 to φ(A) and φ(B) to find
B̃ with sp(B̃) = φ(B) and rank(φ(A) − B̃) = d̃c(φ(sp(A)), φ(B)). Now take
B = φ−1(B̃) and the result follows, since Möbius transformations preserve
arithmetic distance on Cn×n as well as the distance d̃c on multisets (Propo-
sition 3.4 and Proposition 3.8).

• It suffices to prove Theorem 2.7 for dc(sp(A),B) = 1 and the rest follows
from Proposition 3.1, Proposition 3.9, and Lemma 3.2.

• Also without loss of generality we may assume that set(sp(A)) ∩ set(B) = ∅.
If X = sp(A) \ (sp(A) \ B) we can write A = A1 ⊕A2 with sp(A1) = X and
sp(A2) = sp(A)\X . We can findB2 with sp(B2) = B\X and rank(A2−B2) =
1. Now, take B = A1 ⊕B2.

• Let A,B ⊂M R, set(A) ∩ set(B) = ∅, |A| = |B|, and dc(A,B) = 1. Then A
and B are interlacing sets. This means that for A = {α1, α2, ..., αn} and B =
{β1, β2, ..., βn} we have α1 < β1 < α2 < β2 < · · · or β1 < α1 < β2 < α2 < · · ·.

Theorem 2.7 follows from:
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Lemma 4.3. Let A ∈ Cn×n be self-adjoint and have a simple spectrum. Let
B ⊂ R with |B| = n. If sp(A) and B are interlacing then there exists a self-adjoint B
with sp(B) = B and rank(A−B) = 1.

Proof. This is a special case of Theorem 2 in [17].

4.4. Proof of Theorem 2.10. Let rank(A∗A − E) = r, so there exists a
subspace X ⊂ Cn with dim(X) = n − r and such that A∗A|X = E|X . Consider
A|X : X → Y = A(X), so that A∗(Y ) = X . It follows that (A|X)∗ = A∗|Y : Y → X ,
so A|X : X → Y is a unitary operator. Choose any unitary operator B : X⊥ → Y ⊥

(B∗B = EX⊥). Then U = A|X ⊕B meets the requirements.

4.5. Proof of Theorem 2.11. We use the fact that the matrix M = [xij ] with
xij = 1

αi−λj
is nonsingular if all λ1, ..., λk, α1, ..., αk are different [1], p.119.

Proof. Consider the matrix equation

AX −XA = [cij ],(4.2)

with cij = i+ jmod2. Let A = diag(λ1, λ2, ..., λn) be a diagonal matrix with a simple
spectrum. The solution X = [xij ] of (4.2) is

xij =

{
cij

λi−λj
for i �= j

0 for i = j

Every matrix B that commutes with A is necessarily diagonal. If we delete from
X −B the odd columns and the even rows, we obtain the �n2  × �n2  -submatrix

[x′ij ] =
[

1
λi∗ − λj∗

]

with i∗ = 2i−1, j∗ = 2j. This matrix is nonsingular. Therefore, rank(X−B) ≥ n
2 .
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