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STRONGLY STABLE GYROSCOPIC SYSTEMS∗

PETER LANCASTER†

Abstract. Here, gyroscopic systems are time-invariant systems for which motions can be char-
acterized by properties of a matrix pencil L(λ) = λ2I + λG − C, where GT = −G and C > 0. A
strong stability condition is known which depends only on |G| (= (GT G)1/2 ≥ 0) and C. If a system
with coefficients G0 and C satisfies this condition then all systems with the same C and with a G
satisfying |G| ≥ |G0| are also strongly stable. In order to develop a sense of those variations in
G0 which are admissible (preserve strong stability), the class of real skew-symmetric matrices G for
which this inequality holds is investigated, and also those G for which |G| = |G0|.
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1. Introduction. For the purposes of this paper a gyroscopic system is defined
to be an n× n matrix-valued function

L(λ) = λ2A+ λG+K,

where A,G,K ∈ Rn×n, AT = A,GT = −G, and KT = K (the index T denotes
transposition). There is, of course, an underlying system of homogeneous differential
equations:

Aẍ(t) +Gẋ(t) +Kx(t) = 0(1.1)

(where dots denote t-derivatives). We are mainly interested in the case that A,K
are positive and negative definite, respectively, written A > 0,K < 0. There is no
loss of generality if it is assumed from the beginning that A = I and K is diagonal.
This can be achieved by employing modal coordinates determined by A and K. We
write K = −C = −diag[c21, c

2
2, . . . , c

2
n] and assume cj > 0 for j = 1,2,. . . ,n. Thus, we

consider the reduced form:

L(λ) = λ2I + λG− C.(1.2)

The eigenvalues of a system are the zeros of det(L(λ)) and the multiplicity of an
eigenvalue is the order of the corresponding zero in det(L(λ)). If λ0 is an eigenvalue,
the nonzero vectors in the nullspace of L(λ0) are the eigenvectors associated with
λ0. As a set of numbers in the complex plane, the eigenvalues have “Hamiltonian”
symmetry, i.e., they are symmetrically placed (with associated multiplicities) with
respect to both the real and imaginary axes. These facts follow from the relations

L(λ)∗ = L(−λ̄), L(λ)T = L(−λ),

and ∗ denotes the conjugate transpose.
The system is said to be stable if all solutions of (1.1) are bounded for all non-

negative t. Algebraically, this is equivalent to having all eigenvalues of L(λ) on the
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imaginary axis and, in addition, all eigenvalues semi-simple, i.e., if the eigenvalue has
multiplicity k, there are k linearly independent associated eigenvectors. A less familiar
concept which plays a major role in this work is that of strong stability. A system has
this property when it is stable and, in addition, all neighbouring systems are stable.
By a neighbouring system we mean one with coefficients A,G,K, which are arbitrarily
close to the given system but have the same symmetries. Thus, strong stability is a
form of “robustness”, and it means that, for neighbouring systems, the Hamiltonian
symmetry of the set of eigenvalues (the spectrum) is preserved. Of course, strong
stability requires that all eigenvalues are on the imaginary axis and are semi-simple,
but in addition they must have a definiteness property (see [BLM], for example). In
particular, all simple eigenvalues (with multiplicity one) are necessarily definite, so
strong stability depends on the nature of the multiple eigenvalues on the imaginary
axis, if any.

The hypothesis C > 0, (or K < 0), implies that when G = 0 the system is
unstable. The eigenvalues are just ±c1,±c2, . . . ,±cn and the positive eigenvalues
account for the instability. We are to investigate a class of matrices G (resulting from
gyroscopic effects) for which the system is strongly stable which means, in particular,
that all eigenvalues are on the imaginary axis.

The objective of this paper is easily explained. It is known that if the inequality

|G| > kI + k−1C(1.3)

holds for some k > 0, then the system (1.2) is strongly stable (see [BL] and [BLM]).
Here, |G| denotes the positive semi-definite square root of GTG. (However if (1.3)
holds, then |G| is necessarily positive definite.) Thus, if a gyroscopic term G0 satisfies
such an inequality then so does every matrix in the class of gyroscopic (real skew-
symmetric) terms

G = {G ∈ Rn×n : GT = −G and |G| ≥ |G0|}.

Naturally, there is special interest in the subset

G0 = {G ∈ Rn×n : GT = −G and |G| = |G0|}.
The strategy is to take a fixed easily recognized G0 satisfying (1.3) and then

examine G and G0 with a view to identifying variations in the gyroscopic term (with
C fixed) which retain strong stability of the system. In Section 2 we consider a useful
class of initial stabilizing matrices G0. In Sections 3, 4, and 5 we examine G0 and
include a complete decription in Section 4, and a constructive procedure in Section 5.
In Section 6 we discuss the more problematic class G.

There are two ways in which this analysis may be useful. Firstly, in the sense of
inverse problems, for a given diagonal matrix C it may be possible to choose a strongly
stabilizing G from the classes described here. Secondly, for a given system, it may
be possible to identify a stabilizing sub-matrix G0 within G and, knowing something
about the classes described here, deduce a stabilizing property for the whole matrix
G.

The idea of strong stability has a long history in the mathematics literature but,
with the possible exception of Duffin’s work on over-damped systems, has not been
widely recognized in the engineering literature. Works of M.G.Krein [K] and Gelfand
and Lidskii [GL] of 1955 concern differential equations with periodic coefficients which,
by the Floquet theory, are transformed to time-invariant systems. In their work the
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phrase systems with “strongly bounded solutions” is used. When put into our context
this turns out to be essentially the same notion as “strong stability”. For more recent
developments and further references see, for example, [GLR] (especially Theorem
III.2.2) and [LMM] (especially Theorem 8).

2. Perfectly matched systems. We are to build up a class of simple gyroscopic
terms, G0, beginning with the (generic) 2 × 2 example. It will be useful to examine
it in detail. Let

G =
[

0 g
−g 0

]
, C =

[
c21 0
0 c22

]
.

The eigenvalues are the zeros of

det(L(λ)) = λ4 + (g2 − c21 − c22)λ2 + c21c
2
2 = 0.

We follow the eigenvalues as functions of g as g increases from zero, keeping the
Hamiltonian symmetry in mind. Supposing c2 > c1, the behaviour is illustrated in
Figure 1. At g = 0 there are four distinct real eigenvalues.

(λ)

(λ)

-c -c c c

Im 

Re

2 1 21

g = c   + c

g = c   - c

1 2

2 1

Figure 1. Locus of eigenvalues for 2 × 2 systems.

At g = c2 − c1 there are two double real eigenvalues at λ = ±√
c1c2. As g increases

further the eigenvalues lie on the circle |λ| =
√
c1c2 and at g = c1 + c2 there are

two double eigenvalues at λ = ±i√c1c2. Thereafter there are four distinct purely
imaginary eigenvalues. The system is unstable for 0 ≤ g ≤ c1 + c2, and strongly
stable for g > c1 + c2.

For gyroscopic systems of order 2n the idea of (pairwise) “perfect matching” of
gyroscopic forces has been introduced by Seyranian et al. [SSK]. The matrix G is
said to couple the coordinates in a pefect matching if G contains one and only one
non-zero element in each row and column. It is not difficult to see that such a matrix
can be expressed in the form G = PJ0PT where P is a permutation matrix,

J0 = diag
{[

0 g1
−g1 0

]
,

[
0 g2

−g2 0

]
, . . .

[
0 gn

−gn 0

]}
,



ELA
56 P. Lancaster

and g1, g2, . . . , gn are non-zero. Thus, J0 couples coordinates 1 and 2, 3 and 4, and
so on. Such matrices will appear frequently in the sequel so let us introduce the

abbreviations Ĵ =
[

0 1
−1 0

]
and

J0 = diag[g1Ĵ , g2Ĵ , . . . , gnĴ ].(2.1)

It will also be convenient to assume that gj > 0 for j = 1, 2, . . . , n. We say that a
system of the form (1.2) is perfectly matched if G is defined by a perfect matching.

For a perfectly matched system we may now write

L(λ) = λ2I + λG− C = P (λ2I + λJ0 − C0)PT ,

where C0 retains the diagonal property. Thus, to within a permutation of coordinates
(which does not affect the eigenvalues of L(λ)), a perfectly matched system is just a
direct sum of 2× 2 gyroscopic systems. If we now write C0 = diag[c21, c

2
2, . . . , c

2
n] then

each component 2 × 2 system is strongly stable if

gj > c2j−1 + c2j , j = 1, 2, . . . , n

(see the discussion above). However, their direct sum need not be stable because
eigenvalues of two or more components may coincide to form a multiple eigenvalue of
L(λ). We make two formal statements about strong stability.

Theorem 2.1. A perfectly matched system for which each component system is
stable and for which all 2n eigenvalues are distinct is strongly stable.

Proof. The fact that the n component systems are stable means that all eigenval-
ues of L(λ) are purely imaginary. Now the eigenvalues are assumed to be distinct and
they depend continuously on G and C. Furthermore, the admissible perturbations
retain the Hamiltonian symmetry of the eigenvalue distribution. Consequently, for
sufficiently small perturbations the eigenvalues remain purely imaginary and distinct
so the system remains stable.

Theorem 2.1 concerns small perturbations. The next result admits finite varia-
tions above a certain limit. To that end, let us define

c+ = max
1≤k≤2n

(ck), c− = min
1≤k≤2n

(ck),

g+ = max
1≤k≤n

(gk), g− = min
1≤k≤n

(gk).

Proposition 2.2. Let L(λ) be a perfectly matched system for which

g− > 2c+.(2.2)

Then L(λ) is strongly stable.
Proof. Choose k = c+. Then

k + k−1c2j = c+ + c2j/c+ ≤ 2c+,

for 1 ≤ j ≤ 2n. Now, using (2.2), we have

|J0| > 2c+I ≥ kI + k−1C,
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and it follows from Theorem 3.2 of [BLM] (see also (1.3) above) that L(λ) is strongly
stable.

The last statement involves some easy technicalities. The theorem in question is
stated in terms of

M(µ) := µ2I + µ(−iG0) + C

with Hermitian coefficients, and obtained from L(λ) by setting λ = iµ. The strong
stability notion used here corresponds to the fact that all eigenvalues of M(µ) have
“definite type” as defined in [BLM].

There is an interesting parallel between perfectly matched gyroscopic systems and
damped (non-gyroscopic) systems with proportional damping. Systems of the latter
type are frequently used models in the engineering literature, and more complicated
systems are discussed as perturbations or variations about a system with proportional
damping. An underlying reason for this is that, in general, three real symmetric
matrix coefficients cannot be diagonalized simultaneously by congruence, so two are
diagonalized and the third (as a first approximation) is taken as a linear combination
of them. Likewise, for gyroscopic systems, the three matrix coefficients cannot be
simultaneously diagonalized; indeed, with one of them skew-symmetric this would
mean reduction to the zero matrix. However, two may be diagonalized (A and K in
our case), and the simplest form for G is associated with the perfect matching concept.
Here, more general problems are then generated by perturbations (not necessarily
small) about the perfectly matched system.

It will also be useful to note that matrices of the form (2.1) arise naturally as a
canonical form for real skew-symmetric matrices under similarity. Indeed, we have
the following result.

Theorem 2.3. A matrix G ∈ Rn×n is skew-symmetric if and only if there is a
real matrix J0 of the form (2.1) and a real orthogonal matrix U such that G = UJ0UT .
In this case, |G| = U |J0|UT and

|J0| = diag[g1, g1, g2, . . . , gn, gn].

In this context, J0 is recognized as the real Jordan form for G (see [LT], for example).
Thus, perfect matching also plays a fundamental algebraic role.

Proof. In one direction the proof of this theorem is immediate. For the converse,
the proof is a special case of a more general theorem from a famous work of Ostrowski
and Schneider (Theorem 2 of [OS]). For the last statement observe that

|G|2 = GTG = U(JT
0 J0)UT = (U |J0|UT )2.

The expression for |J0| is easily verified.
It is apparent from this theorem that the eigenvalues of G are just those of J0,

namely ±ig1,±ig2, . . . ,±ign. With this result in hand, we easily see that Proposi-
tion 2.2 is just a special case of Theorem 6 of [BL], as follows.

Theorem 2.4. Let L(λ) be a gyroscopic system, and let the matrix G have J0
for its real Jordan form. Then the system is strongly stable if g− > 2c+.

Proof. Clearly, using the diagonal form of |J0|, the hypothesis implies that |J0| >
2c+I. But the preceding theorem now gives

|G| − 2c+I = U(|J0| − 2c+I)UT > 0
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where U is real orthogonal. Thus, as in the proof of Proposition 2.2,

|G| > 2c+I ≥ kI + k−1C,

where k = c+, and the result follows.

3. The class G0: the Riccati approach. In this section we make some prelim-
inary investigations of the set G0. In the next section it will be seen how they fit into
a complete description of G0. A constructive way of finding members of this class is
described in Section 5. Observe first that G = G0 +X ∈ G0 if and only if XT = −X
and X satisfies the Riccati-like equation

GT
0X +XTG0 +XTX = 0.(3.1)

Indeed, if we define A = iG0 and Y = iX then A is Hermitian and we seek Hermitian
solutions Y of the Riccati equation

Y 2 + Y A+AY = 0.

Information about the solution set can be obtained from the general analysis of [LR],
for example (see especially their Corollary 7.3.3), via properties of the asociated
Hamiltonian matrix [

A I
0 −A

]
.

In particular, it is found that when g1, g2, . . . , gn are all distinct there are only
finitely many solutions of (3.1) (including the trivial solutionsX = 0 and X = −2G0).
However, when there is at least one repetition among the gj there is a continuum of
Hermitian solutions Y of the Riccati equation. Guided by this qualitative information
we make a case study of 4 × 4 systems in which g1 = g2 = g > 0. Thus,

G0 = g
[
Ĵ 0
0 Ĵ

]
,(3.2)

and we anticipate a continuum of solutions.
Let us write

X =
[
x1Ĵ Γ
−ΓT x2Ĵ

]
,(3.3)

where Γ, x1, x2 represent six scalar parameters. Then the upper-right block of
equation (3.1) gives

ĝ1ĴΓ + ĝ2ΓĴ = 0,

where ĝ1 = g+x1 and ĝ2 = g+x2. Then this is equivalent to the four scalar equations

ĝ2γ11 + ĝ1γ22 = 0, ĝ1γ12 − ĝ2γ21 = 0,
ĝ1γ11 + ĝ2γ22 = 0, −ĝ2γ12 + ĝ1γ21 = 0.

For the existence of solutions with Γ 
= 0 we must have ĝ22 = ĝ12 and when this holds
Γ has one of two forms:

Γ = Γ1 =
[
γ1 γ2
−γ2 γ1

]
, Γ = Γ2 =

[
γ1 γ2
γ2 −γ1

]
,(3.4)
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and in either case detΓ 
= 0. In the first case ĝ2 = −ĝ1 (so that x1 + x2 = 2g), and in
the second ĝ2 = ĝ1 (so that x1 = x2).

The upper-left and lower-right blocks of equation (3.1) give

xj(2g + xj)I + ΓΓT = 0

for j = 1, 2, and since ΓΓT = (γ2
1 + γ2

2)I, we find that x1, x2 are roots of

x2 + 2gx+ (γ2
1 + γ2

2) = 0.(3.5)

The results can be summarized as follows.
Proposition 3.1. Let G0 and X have the forms (3.2) and (3.3), respectively,

and assume Γ 
= 0. Then G0 + X ∈ G0 if and only if Γ has one of the forms (3.4)
and γ2

1 + γ2
2 ≤ g2. In this case x1 and x2 are roots of equation (3.5). Furthermore, if

Γ = Γ1 then x1 and x2 are the two roots of (3.5), and if Γ = Γ2 then x1 = x2.
We observe that there are just two free parameters defining the class G0. The

next examples are simple one parameter families.
Example 3.2. Put g = 1, γ1 = t, γ2 = 0 and take the first choice in (3.4). It is

found that the following family is in G0:

G(t) =




0
√

1 − t2 t 0
−√

1 − t2 0 0 t

−t 0 0 −√
1 − t2

0 −t √
1 − t2 0


 , t ∈ [−1, 1].

Example 3.3. Put g = 1, γ1 = γ2 = s/
√

2 and take the second choice of Γ
in (3.4). We obtain the following family G(s) in G0:

G(s) =




0
√

1 − s2 s/
√

2 s/
√

2
−√

1 − s2 0 s/
√

2 −s/√2
−s/√2 −s/√2 0

√
1 − s2

−s/√2 s/
√

2 −√
1 − s2 0


 , s ∈ [−1, 1].

Observe that G(0) = G0 and

G(1) =
1√
2




0 0 1 1
0 0 1 −1
−1 −1 0 0
−1 1 0 0


 .

4. Characterization of G0. In this section we give a complete description of
the class G0 and show how the results of the preceding section fit into this description.
We first need an important lemma. In particular, it shows that matrices of G0 are
isospectral and, since the spectral norm is unitarily invariant, it implies (as is otherwise
clear) that all members of G0 have the same spectral norm.

Lemma 4.1. If G ∈ G0 then G and G0 are orthogonally similar.
Proof. Let G ∈ G0. Using Theorem 2.3 write

G =WJWT , G0 =W0J0W
T
0 ,

where J and J0 are real Jordan forms and W , W0 are orthogonal. Also, without loss
of generality, it may be assumed that the diagonal entries of the diagonal matrices |J |
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and |J0| are in non-decreasing order. Then the second part of Theorem 2.3 implies
that

|J | = (WTW0)|J0|(WTW0)T(4.1)

and WTW0 is real orthogonal. But this is a similarity and implies that |J | and|J0|
have the same eigenvalues. Because the diagonal entries are ordered it follows that
|J | = |J0|. Using our convention that gj > 0 we obtain J = J0 and

G =WJWT =WJ0WT = (WWT
0 )G0(WWT

0 )T .

Theorem 4.2. Let G0 =W0J0W
T
0 be the real Jordan representation of G0. Then

G ∈ G0 if and only if

G = (W0U)J0(W0U)T

for a real orthogonal matrix U which commutes with |J0|, i.e., U |J0| = |J0|U .
Proof. If |G| = |G0| then, as in the lemma, J0 is a real Jordan form for both

G and G0. If we define U = WT
0 W , (4.1) gives |J0|U = U |J0|. Furthermore, G =

WJ0W
T = (W0U)J0(W0U)T , as required. For the converse, the last equation implies

|G| = (W0U)|J0|(W0U)T =W0|J0|WT
0 = |G0|.

It remains to describe those real orthogonal matrices U which commute with
|J0|. For this purpose re-define the symbols g1, . . . , gr (all positive) as the distinct
eigenvalues of |G0| (r ≤ n) and then

J0 = diag[g1J1, g2J2, . . . , grJr],

where (as in (3.2)) Jj is a direct sum of mj copies of Ĵ , for j = 1, 2, . . . , r. Now we
have

|J0| = diag[g1I2m1 , . . . , grI2mr ].

It is easily seen that if U commutes with |J0| and is orthogonal, then

U = diag[V1, V2, . . . , Vr],(4.2)

where Vj is a real orthogonal matrix of size 2mj.
Corollary 4.3. The matrix G ∈ G0 if and only if there are real orthogonal

matrices V1, V2, . . . , Vr such that

G =W0 diag[g1V1J1V
T
1 , g2V2J2V

T
2 , . . . , grVrJrV

T
r ]WT

0 .(4.3)

Now consider some special cases. First, when G0 is associated with a perfect
matching, then G0 = J0 and W0 = I in the above discussion. Retain this hypothesis
and assume also that r = n (i.e., g1, . . . , gn are positive and distinct), then there are
n 2× 2 blocks in (4.3). It is easily verified (using the general form of 2× 2 orthogonal
matrices) that

gjVjJjV
T
j = ±gjĴ .

Thus, in this case, and as predicted in Section 3, G0 consists of 2n distinct real skew-
symmetric matrices; not an interesting case.
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When r < n there is a continuum of matrices in G0 representing more interesting
possibilities for variation about G0 without change in absolute value. These results are
consistent with those of Section 3. In particular, when r = 1 and n = 2 Proposition
3.1 applies and gives a more detailed description of G0.

To interpret Example 3.2 in the present context, observe that G0 = J0, and the
matrix function G(t) of that example would be represented here in the form

G(t) = V (t)J0V (t)T

for a function V (t) taking values in the real orthogonal matrices for t ∈ [−1, 1].
Similarly for Example 3.3. In these examples J0 is orthogonal and so G(t), G(s) are
also orthogonal families.

These results can be interpreted in a rather different way concerning the set of
square roots of positive definite matrices, as follows.

Theorem 4.4. Let a real 2n × 2n matrix A > 0 be given. Then there exists a
real skew-symmetric matrix G for which A

1
2 = |G| if and only if the eigenvalues of A

occur in equal (positive) pairs.
If, in Theorem 4.2, we put A = |G0|2, then Corollary 4.3 describes all real skew-

symmetric matrices G for which |G| = A
1
2 .

5. Constructing matrices in G0. Here, we give another construction for ma-
trices G ∈ G0. It is assumed that the real Jordan canonical form J0 of G0 is known.
Indeed, this approach will be most useful when G0 already has real Jordan form, i.e.,
in the context of gyroscopic systems, G0 corresponds to a perfect matching.

In general, suppose that we have a real Jordan representationG0 =W0J0W
T
0 and

define Λ = diag[g1, g2, . . . , gn]. We also introduce the permutation matrix P defined
by unit coordinate vectors as follows:

P = [e1 e3 e5 . . . e2n−1 e2 e4 . . . e2n].

Guided by Corollary 4.3 and equation (4.2), determine a real orthogonal matrix
U such that U |J0| = |J0|U .

Now define 2n× n matrices X and Y by writing

[X Y ] =W0UP,

and it is claimed that the real skew-symmetric matrix

G := XΛY T − Y ΛXT

is in G0. Furthermore, it can be shown that the map from matrices U to G0 defined
in this way is surjective.

Let us verify the first claim. Note first that the matrix [X Y ] = W0UP is real
and orthogonal and this implies that XTY = Y TX = 0. Then a simple computation
gives

GTG = [X Y ]
[

Λ2 0
0 Λ2

] [
XT

Y T

]
,

and hence

|G| =W0UP

[
Λ 0
0 Λ

]
PTUTWT

0 .
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But we also have P
[

Λ 0
0 Λ

]
PT = |J0|. Thus, by definition of U ,

|G| =W0U |J0|UTWT
0 =W0|J0|WT

0 = |G0|.
The matrices Λ, X and Y defined in this way also contain complete information

on the spectral properties of G over the complex field. The following statements are
easily verified:

1. (Eigenvalue-eigenvector decomposition)

G(X + iY ) = (X + iY )iΛ, G(X − iY ) = (X − iY )(−iΛ)

and the matrix Z := 1√
2
[X + iY X − iY ] is unitary.

2. (Spectral decomposition)

G = Z
[
iΛ 0
0 −iΛ

]
Z∗.

3. |G| = XΛXT + Y ΛY T .

6. The class G. Our concern now is with a fixed real, skew-symmetric matrix G0

with a known real Jordan form, J0, as described above, and with properties of matrices
in the associated class G. Our results here are fragmentary and a full description of G
in spectral terms is not known. We begin with a strong sufficient condition for G ∈ G.

Theorem 6.1. Let G have eigenvalues ±iγj, for j = 1, 2, . . . , n and γ− =
min1≤j≤n|γj |. Then γ− ≥ g+ implies that G ∈ G.

Proof. Let G and G0 have real Jordan forms J and J0, respectively. Then, by
Theorem 2.3, there are real orthogonal matrices U and V such that |G| = U |J |UT and
|G0| = V |J0|V T . For any vector x with ‖x‖ = 1 we also have ‖UTx‖ = ‖V Tx‖ = 1
and so

xTV |J0|V Tx ≤ g+ ≤ γ− ≤ xTU |J |UTx.

It follows that V |J0|V T ≤ U |J |UT , i.e., |G0| ≤ |G|, as required.

Now we can give a complete description of G in a special case.
Theorem 6.2. Let G0 have only two distinct eigenvalues, ±ig1, g1 > 0. Then

G ∈ G if and only if G = UJUT where U is real orthogonal, and

J = diag[γ1Ĵ , . . . , γnĴ ]

with minj |γj | ≥ g1.
Proof. If G has the given form it follows from the preceding theorem that G ∈ G.

Conversely, we have |G| = U |J |UT and Theorem 2.3 gives |G0| = g1I. Thus, |G| ≥
|G0| implies U |J0|UT ≥ g1I, or |J0| ≥ γI. Hence minj |γj | ≥ g1.

To start a different line of attack, letG ∈ G and (as in Section 3) writeG = G0+X ,
where XT = −X . Define � by writing GTG = GT

0G0 + �. Thus,

� = GT
0X +XTG0 +XTX,(6.1)

and observe that G ∈ G if � ≥ 0 (see Appendix A). As in Theorem (2.3) write
G0 = UJ0UT , and if we define Y = UTXU then

UT�U = JT
0 Y + Y TJ0 + Y TY.
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If G0 corresponds to a perfect matching then, of course, we may take U = I and
Y = X .

We generalize the basic asumption of the last theorem and suppose now that G0

has size 2n and four eigenvalues; namely ±ig1 and ±ig2. Then a real Jordan form for
G0 is

J0 = diag[g1J1, g2J2].(6.2)

where J1 and J2 have the form diag[Ĵ , Ĵ , . . . , Ĵ ] with, say, m1 and m2 blocks, respec-
tively, and we assume that m1 ≤ m2. Thus, when g1 
= g2, ig1 and −ig1 each have
mutilplicity m1, ig2 and −ig2 each have multiplicity m2, and m1 +m2 = n. Note also
that J2

1 = −I2m1 and J2
2 = −I2m2 .

Now partition Y in the form

Y =
[
Y1 Γ

−ΓT Y2

]
,(6.3)

where Y T
1 = −Y1, Y T

2 = −Y2 and Γ has size 2m1 × 2m2. Then it is found that

UT�U =
[ �1 F
FT �2

]
,

where

�1 = g1(JT
1 Y1 + Y T

1 J1) + Y T
1 Y1 + ΓΓT ,(6.4)

�2 = g2(JT
2 Y2 + Y T

2 J2) + Y T
2 Y2 + ΓT Γ, and(6.5)

F = (g1JT
1 + Y T

1 )Γ − Γ(g2J2 + Y2).(6.6)

To characterize the condition � ≥ 0 (i.e., G ∈ G) we now apply a well-known criterion
for this 2 × 2 block matrix to be positive-semidefinite (see [A], for example). Thus,
we have � ≥ 0 if and only if

�1 ≥ 0, �2 ≥ FT�+
1 F, �1�+

1 F = F,(6.7)

where the index + denotes the Moore-Penrose generalized inverse. (The reason for
assuming only two pairs of eigenvalues for G0 is now clear. If there are more blocks
in Y we do not have a nice extension of the criteria (6.7).)

Theorem 6.3. If G0 has the real Jordan form (6.2) then, with Y = UTXU
and the definitions (6.4), (6.5), and (6.6), G = G0 +X ∈ G if conditions (6.7) are
satisfied.

Now we introduce some hypotheses that make this result more tractable.
Hypothesis 6.4. G0 is defined by a perfect matching. (Then U = I and Y =

X .)
Hypothesis 6.5. �1 ≥ 0 and �2 ≥ 0. (For example, this is the case when

U = I and Y1 = Y2 = 0 and, with Hypothesis 6.4, the variation about G0 is confined
to the linking term Γ.) When this holds write

�1 = Γ1ΓT
1 , �2 = ΓT

2 Γ2(6.8)

(so that Γj = Γ if Yj = 0, for j = 1, 2).
Hypothesis 6.6. �1 > 0. (Since m1 ≤ m2 this is equivalent to rank(Γ1) = 2m1.

Now �+ = �−1 and the last condition of (6.7) always holds.)
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Corollary 6.7. If Hypotheses 6.5 and 6.6 hold, and �2 ≥ FT�−1
1 F then

G ∈ G.
Hypothesis 6.8. m1 = m2 and �2 > 0.
Corollary 6.9. If Hypotheses 6.6 and 6.8 hold, then G ∈ G if

‖Γ−1
1 {(g1J1 − Y T

1 )Γ + Γ(g2J1 + Y2)}Γ−1
2 ‖s ≤ 1.(6.9)

Proof. (Here, ‖.‖s denotes the spectral matrix norm, i.e., the norm induced by
the euclidean vector norm.) These hypotheses imply that Γ1, F , and Γ2 are square
matrices of the same size and Γ1,Γ2 are nonsingular. The preceding Corollary holds
and, using (6.8), gives G ∈ G if

ΓT
2 Γ2 ≥ FT (Γ1ΓT

1 )−1F.

This is equivalent to (Γ−1
1 FΓ−1

2 )T (Γ−1
1 FΓ−1

2 ) ≤ I which, in turn (and using (6.6)), is
equivalent to (6.9). Note also that now J1 = J2.

An interesting special case arises when the four hypotheses hold and Y1 = Y2 = 0.
We suppose that (2.2) is satisfied when G = G0 so that the unperturbed system is
perfectly matched and strongly stable. The condition Y1 = Y2 = 0 means that
variations about G0 are confined to the linking term Γ (see (6.3)). Now (6.9) reduces
to

‖g1Γ−1J1 + g2J1Γ−1‖s ≤ 1.(6.10)

Here, g1, g2 and J1 are determined by G0 and there is a suggestion that stability is
ensured if only Γ is “large” in such a way that Γ−1 is “small”. On the other hand,
because the unperturbed system is strongly stable, we have stability for Γ sufficiently
small. Thus, as Γ increases the stabilizing role is transferred from the entries g1J1, g2J1
to those of Γ. However there may be an interregnum of instability. This is illustrated
in Examples 6.11 and 6.12 below.

Notice also that this argument depends on the existence of Γ−1. Indeed, examples
suggest that if Γ is singular (Hypothesis 6.8 does not hold) then increasing Γ will
generally be destabilizing. This is supported by Examples 6.13 and 6.14 below and
the next result.

Theorem 6.10. Let Hypothesis 6.4 hold and let Y1 = Y2 = 0. If the nullspace
of Γ has dimension one then � is not positive semi-definite (or definite), i.e., G =
G0 +X /∈ G.

Proof. We now have

UT�U =
[

ΓΓT F
FT ΓT Γ

]
,

where F = g1JT
1 Γ + g2ΓJT

1 . Choose an x0 
= 0 such that ΓTx0 = 0. Then J1x0 is
not a multiple of x0, so that ΓT (J1x0) 
= 0. If also Γy0 = 0, y0 
= 0, then define
y = y0 − εΓTJ1x0 and a computation gives

[xT
0 yT ]UT�U

[
x0

y

]
= −2εg1‖ΓTJ1x0‖2 + ε2‖ΓΓTJ1x0‖2.

Since ΓTJ1x0 
= 0 there is an ε such that the right-hand side is negative. Hence the
result.
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Notice that if n = 2 the conditions of this theorem are satisfied when detΓ = 0
and Γ 
= 0.

Example 6.11. Suppose m1 = m2 = 1 (so that n = 2) and Y1 = Y2 = 0. Let
Hypothesis 6.4 hold and Γ = γI2 > 0. Then in (6.10),

g1Γ−1J1 + g2J1Γ−1 =
g1 + g2
γ

[
0 1
−1 0

]

and G ∈ G provided γ ≥ g1 + g2. Thus, if G0 satisfies (1.3) so does

G =




0 g1 γ 0
−g1 0 0 γ
−γ 0 0 g2
0 −γ −g2 0




provided γ ≥ g1 + g2, by Corollary 6.9. Also, condition (1.3) ensures that the system
defined by G is strongly stable when γ is sufficiently small.

Example 6.12. This is a special case of Example 6.11 obtained by setting
C = diag[0.1, 0.2, 0.15, 0.24], g1 = g2 = 1, and Γ = γI2 > 0. Thus

G =




0 1 γ 0
−1 0 0 γ
−γ 0 0 1
0 −γ −1 0


 .

It is easily verified that, when γ = 0, the system is perfectly matched and strongly
stable. As in Example 6.11 the system is strongly stable when γ > g1 + g2 = 2.
Numerical experiments show that the system is, in fact, unstable for 0.168 ≤ γ ≤
1.836.

Example 6.13. Here, we use the same data as in Example 6.12 except that

Γ =
[
γ 0
0 0

]
, a singular matrix. Now Hypothesis 6.6 fails and our Corollaries do

not apply. Numerical experiments show instability for all γ ≥ 0.326.
Example 6.14. Let

G0 =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 , Gα =




0 1 0 0
−1 0 α 0
0 −α 0 1
0 0 −1 0


 .

Here, Γ is singular and Theorem 6.10 holds. Direct calculations confirm that |Gα| ≥
|G0| does not hold for any nonzero α. In fact, |G0| has all eigenvalues equal to one,
and the eigenvalues of |Gα| are the zeros of µ2 − (2 +α2)µ+ 1, each with multiplicity
two. Two of these have magnitudes less than one and the other two exceed one in
magnitude.

Appendix A. A note on the partial order.It is well-known that, if matrices
A and B satisfy A ≥ B ≥ 0 then it is not necessarily the case that A2 ≥ B2 ≥ 0 (see
Chapter 5 of [B], for example). In contrast, the square-root function is better behaved
(is “operator monotone”). In our context the following question arises naturally: If G
and H are real, nonsingular, skew-symmetric matrices and |G| ≥ |H |, does it follow
that |G|2 ≥ |H |2? It is trivially true that the answer is “yes” if the matrices are of
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size 2 × 2. However, this property does not extend to matrices of size four as the
following example shows.

Example A.1. Let

G =
1
2




0 5 0 1
−5 0 −1 0
0 1 0 1
−1 0 −1 0


 , H =




0 2 0 0
−2 0 0 0
0 0 0 0
0 0 0 0


 .

It is found that |G| ≥ |H | but |G|2 − |H |2 is not positive semi-definite.
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