

A NEW SOLVABLE CONDITION FOR A PAIR OF GENERALIZED SYLVESTER EQUATIONS*

QING WEN WANG[†], HUA-SHENG ZHANG[‡], AND GUANG-JING SONG[§]

Abstract. A necessary and sufficient condition is given for the quaternion matrix equations $A_iX + YB_i = C_i$ (i = 1, 2) to have a pair of common solutions X and Y. As a consequence, the results partially answer a question posed by Y.H. Liu (Y.H. Liu, Ranks of solutions of the linear matrix equation AX + YB = C, Comput. Math. Appl., 52 (2006), pp. 861-872).

Key words. Quaternion matrix equation, Generalized Sylvester equation, Generalized inverse, Minimal rank, Maximal rank.

AMS subject classifications. 15A03, 15A09, 15A24, 15A33.

1. Introduction. Throughout this paper, we denote the real number field by \mathbb{R} , the complex number field by \mathbb{C} , the set of all $m \times n$ matrices over the quaternion algebra

 $\mathbb{H} = \{a_0 + a_1 i + a_2 j + a_3 k \mid i^2 = j^2 = k^2 = ijk = -1, a_0, a_1, a_2, a_3 \in \mathbb{R}\}$

by $\mathbb{H}^{m \times n}$, the identity matrix with the appropriate size by I, the transpose of a matrix A by A^T , the column right space, the row left space of a matrix A over \mathbb{H} by $\mathcal{R}(A)$, $\mathcal{N}(A)$, respectively, a reflexive inverse of a matrix A by A^+ which satisfies simultaneously $AA^+A = A$ and $A^+AA^+ = A^+$. Moreover, R_A and L_A stand for the two projectors $L_A = I - A^+A$, $R_A = I - AA^+$ induced by A. By [1], for a quaternion matrix A, dim $\mathcal{R}(A) = \dim \mathcal{N}(A)$, which is called the rank of A and denoted by r(A).

Many problems in systems and control theory require the solution of the generalized Sylvester matrix equation AX + YB = C. Roth [2] gave a necessary and sufficient condition for the consistency of this matrix equation, which was called Roth's theorem on the equivalence of block diagonal matrices. Since Roth's paper appeared

^{*}Received by the editors August 1, 2008. Accepted for publication June 8, 2009. Handling Editor: Michael Neumann.

[†]Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China (wqw858@yahoo.com.cn). Supported by the Natural Science Foundation of China (60672160), the Scientific Research Innovation Foundation of Shanghai Municipal Education Commission (09YZ13), and Key Disciplines of Shanghai Municipality (S30104).

[‡]Department of Mathematics, Liaocheng University, Liaocheng 252059, P.R. China

[§]Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China. Supported by the Innovation Funds for Graduates of Shanghai University (shucx080125).

in 1952, Roth's theorem has been widely extended (see, e.g., [2]-[16]). Perturbation analysis of generalized Sylvester eigenspaces of matrix quadruples [17] leads to a pair of generalized Sylvester equations of the form

(1.1)
$$A_1X + YB_1 = C_1, A_2X + YB_2 = C_2.$$

In 1994, Wimmer [12] gave a necessary and sufficient condition for the consistency of (1.1) over \mathbb{C} by matrix pencils. In 2002, Wang, Sun and Li [14] established a necessary and sufficient condition for the existence of constant solutions with bi(skew)symmetric constrains to (1.1) over a finite central algebra. Liu [16] in 2006 presented a necessary and sufficient condition for the pair of equations in (1.1) to have a common solution X or Y over \mathbb{C} , respectively, and proposed an open problem: find a necessary and sufficient condition for system (1.1) to have a pair of solutions X and Y by ranks.

Motivated by the work mentioned above and keeping applications and interests of quaternion matrices in view (e.g., [18]-[34]), in this paper we investigate the above open problem over \mathbb{H} . In Section 2, we establish a necessary and sufficient condition for (1.1) to have a pair of solutions X and Y over \mathbb{H} . In section 3, we present a counterexample to illustrate the errors in Liu's paper [16]. A conclusion and a further research topic related to (1.1) are also given.

2. Main results. The following lemma is due to Marsaglia and Styan [35], which can also be generalized to \mathbb{H} .

LEMMA 2.1. Let $A \in \mathbb{H}^{m \times n}$, $B \in \mathbb{H}^{m \times k}$ and $C \in \mathbb{H}^{l \times n}$. Then they satisfy the following: (a) $r[A B] = r(A) + r(R_A B) = r(B) + r(R_B A)$. (b) $r\begin{bmatrix}A\\C\end{bmatrix} = r(A) + r(CL_A) = r(C) + r(AL_C)$. (c) $r\begin{bmatrix}A & B\\C & 0\end{bmatrix} = r(B) + r(C) + r(R_B A L_C)$.

From Lemma 2.1 we can easily get the following.

LEMMA 2.2. Let $A \in \mathbb{H}^{m \times n}$, $B \in \mathbb{H}^{m \times k}$, $C \in \mathbb{H}^{l \times n}$, $D \in \mathbb{H}^{j \times k}$ and $E \in \mathbb{H}^{l \times i}$. Then (a) $r(CL_A) = r \begin{bmatrix} A \\ C \end{bmatrix} - r(A)$. (b) $r \begin{bmatrix} B & AL_C \end{bmatrix} = r \begin{bmatrix} B & A \\ 0 & C \end{bmatrix} - r(C)$.

(c)
$$r\begin{bmatrix} C\\ R_BA \end{bmatrix} = r\begin{bmatrix} C & 0\\ A & B \end{bmatrix} - r(B).$$

(d)
$$r \begin{bmatrix} A & BL_D \\ R_E C & 0 \end{bmatrix} = r \begin{bmatrix} A & B & 0 \\ C & 0 & E \\ 0 & D & 0 \end{bmatrix} - r(D) - r(E).$$

The following three lemmas are due to Baksalary and Kala [6], Tian [36], [37], respectively, which can be generalized to \mathbb{H} .

LEMMA 2.3. Let $A \in \mathbb{H}^{m \times p}$, $B \in \mathbb{H}^{q \times n}$ and $C \in \mathbb{H}^{m \times n}$ be known and $X \in \mathbb{H}^{p \times q}$ unknown. Then the matrix equation AX + YB = C is solvable if and only if

$$r \left[\begin{array}{cc} B & A \\ 0 & C \end{array} \right] = r(A) + r(B)$$

In this case, the general solution to the matrix equation is given by

$$X = A^+C + UB + L_A V,$$

$$Y = R_A C - AU + L_A W R_B$$

,

where $U \in \mathbb{H}^{p \times q}, V \in \mathbb{H}^{p \times n}$ and $W \in \mathbb{H}^{m \times q}$ are arbitrary.

LEMMA 2.4. Let $A \in \mathbb{H}^{m \times n}$, $B \in \mathbb{H}^{m \times p}$, $C \in \mathbb{H}^{q \times n}$ be given, $Y \in \mathbb{H}^{p \times n}$, $Z \in \mathbb{H}^{m \times q}$ be two variant matrices. Then

(2.1)
$$\max_{Y,Z} r(A - BY - ZC) = \min\left\{m, n, r\left[\begin{array}{cc} A & B \\ C & 0 \end{array}\right]\right\};$$

(2.2)
$$\min_{Y,Z} r(A - BY - ZC) = r \begin{bmatrix} A & B \\ C & 0 \end{bmatrix} - r(B) - r(C).$$

LEMMA 2.5. The matrix equation $A_1X_1B_1 + A_2X_2B_2 + A_3Y + ZB_3 = C$ is solvable if and only if the following four rank equalities are all satisfied:

$$r\begin{bmatrix} C & A_1 & A_2 & A_3\\ B_3 & 0 & 0 & 0 \end{bmatrix} = r[A_1, A_2, A_3] + r(B_3),$$

$$r\begin{bmatrix} C & A_3\\ B_1 & 0\\ B_2 & 0\\ B_3 & 0 \end{bmatrix} = r(A_3) + r\begin{bmatrix} B_1\\ B_2\\ B_3 \end{bmatrix},$$

$$r\begin{bmatrix} C & A_1 & A_3\\ B_2 & 0 & 0\\ B_3 & 0 & 0 \end{bmatrix} = r\begin{bmatrix} B_2\\ B_3 \end{bmatrix} + r[A_1, A_3],$$

$$r\begin{bmatrix} C & A_2 & A_3\\ B_1 & 0 & 0\\ B_3 & 0 & 0 \end{bmatrix} = r\begin{bmatrix} B_1\\ B_3 \end{bmatrix} + r[A_2, A_3].$$

LEMMA 2.6. (Lemma 2.3 in [38]) Let A, B be matrices over \mathbb{H} and

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, B = [B_1, B_2], S = A_2 L_{A_1}, T = R_{B_1} B_2.$$

Then

$$A^{+} = \begin{bmatrix} A_{1}^{+} - L_{A_{1}}S^{+}A_{2}A_{1}^{+}, L_{A_{1}}S^{+} \end{bmatrix}, B^{+} = \begin{bmatrix} B_{1}^{+} - B_{1}^{+}B_{2}T^{+}R_{B_{1}} \\ T^{+}R_{B_{1}} \end{bmatrix}$$

are reflexive inverses of A and B, respectively.

LEMMA 2.7. Suppose $A_1, A_2 \in \mathbb{H}^{m \times p}, B_1, B_2 \in \mathbb{H}^{q \times n}$ and $\widehat{B} = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$ are given,

 $\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} and W = \begin{bmatrix} W_1 & W_2 \end{bmatrix} are any matrices with compatible dimensions.$ Then

(a) $[I_p, 0] L_{[A_1, A_2]}V$ and $[0, I_p] L_{[A_1, A_2]}V$ are independent, that is, for any $V = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$, $[I_p, 0] L_{[A_1, A_2]}V$ only relates to V_2 and the change of $[0, I_p] L_{[A_1, A_2]}V$ only relates to V_1 , if and only if

$$r [A_{1}, A_{2}] = r (A_{1}) + r (A_{2}).$$
(b) $WR_{\widehat{B}} \begin{bmatrix} I_{q} \\ 0 \end{bmatrix}$ and $WR_{\widehat{B}} \begin{bmatrix} 0 \\ I_{q} \end{bmatrix}$ are independent, that is, for any $W = [W_{1}, W_{2}]$,
 $WR_{\widehat{B}} \begin{bmatrix} I_{q} \\ 0 \end{bmatrix}$ only relates to W_{1} and $WR_{\widehat{B}} \begin{bmatrix} 0 \\ I_{q} \end{bmatrix}$ only relates to W_{2} , if and only if
 $r \begin{bmatrix} B_{1} \\ B_{2} \end{bmatrix} = r (B_{1}) + r (B_{2}).$

Proof. From Lemma 2.6, we have

$$\begin{split} & [I_p, 0] \, L_{[A_1, A_2]} V \\ &= [I_p, 0] \left(I - \left[\begin{array}{c} A_1^+ - A_1^+ A_2 [(I - A_1 A_1^+) A_2]^+ (I - A_1 A_1^+) \\ [(I - A_1 A_1^+) A_2]^+ (I - A_1 A_1^+) \end{array} \right] [A_1, A_2] \right) V \\ &= [I_p, 0] \left(I - \left[\begin{array}{c} A_1 A_1^+ & A_1^+ A_2 - A_1^+ A_2 [(I - A_1 A_1^+) A_2]^+ (I - A_1 A_1^+) A_2 \\ 0 & [(I - A_1 A_1^+) A_2]^+ (I - A_1 A_1^+) A_2 \end{array} \right] \right) \left[\begin{array}{c} V_1 \\ V_2 \end{array} \right] \\ &= V_1 - \left[A_1 A_1^+ , A_1^+ A_2 - A_1^+ A_2 [(I - A_1 A_1^+) A_2]^+ (I - A_1 A_1^+) A_2 \right] \left[\begin{array}{c} V_1 \\ V_2 \end{array} \right] . \end{split}$$

Similarly, we have

$$[0, I_p] L_{[A_1, A_2]} V$$

= $V_2 - [0, [(I - A_1 A_1^+) A_2]^+ (I - A_1 A_1^+) A_2] \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$

Thus, $[I_p, 0] L_{[A_1, A_2]}V$ and $[0, I_p] L_{[A_1, A_2]}V$ are independent if and only if $A_1^+ A_2 - A_1^+ A_2 [(I - A_1 A_1^+) A_2]^+ (I - A_1 A_1^+) A_2 = 0.$

According to Lemma 2.2, we have

$$r \left(A_{1}^{+}A_{2} - A_{1}^{+}A_{2}[(I - A_{1}A_{1}^{+})A_{2}]^{+}(I - A_{1}A_{1}^{+})A_{2}\right)$$

= $r \left[\begin{array}{c} (I - A_{1}A_{1}^{+})A_{2} \\ A_{1}^{+}A_{2} \end{array} \right] - r \left((I - A_{1}A_{1}^{+})A_{2}\right)$
= $r \left[\begin{array}{c} A_{2} & A_{1} \\ A_{1}^{+}A_{2} & 0 \end{array} \right] - r [A_{2}, A_{1}]$
= $r \left[\begin{array}{c} A_{2} & 0 \\ 0 & A_{1} \end{array} \right] - r [A_{2}, A_{1}].$

That is $r[A_1, A_2] = r(A_1) + r(A_2)$.

Similarly, we can prove (b).

Now we give the main result of this article.

THEOREM 2.8. Suppose that every matrix equation in system (1.1) is consistent and

(2.3)
$$r[A_1, A_2] = r(A_1) + r(A_2), r\begin{bmatrix} B_1\\ B_2 \end{bmatrix} = r(B_1) + r(B_2).$$

Then system (1.1) has a pair of solutions X and Y if and only if

(2.4)
$$r \begin{bmatrix} B_1 & 0 \\ B_2 & 0 \\ -C_1 & A_1 \\ C_2 & A_2 \end{bmatrix} = r \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} + r \begin{bmatrix} B_1 \\ B_2 \end{bmatrix},$$

(2.5)
$$r \begin{bmatrix} A_1 & A_2 & -C_1 & C_2 \\ 0 & 0 & B_1 & B_2 \end{bmatrix} = r [A_1, A_2] + r [B_1, B_2],$$

(2.6)
$$r \begin{bmatrix} 0 & B_1 & B_2 \\ A_1 & 0 & 0 \\ A_2 & 0 & F \end{bmatrix} = r \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} + r [B_1, B_2],$$

Electronic Journal of Linear Algebra ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 18, pp. 289-301, June 2009

Q.W. Wang, H.S. Zhang, and G.J. Song

(2.7)
$$r \begin{bmatrix} 0 & B_1 & B_2 \\ A_1 & 0 & 0 \\ A_2 & 0 & \widehat{F} \end{bmatrix} = r \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} + r [B_1, B_2],$$

where

(2.8)
$$F = A_1 \left(A_2^+ C_2 - A_1^+ C_1 \right) \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix}^+ \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix} + \Omega B_1$$

and

(2.9)
$$\widehat{F} = A_2 \left(A_2^+ C_2 - A_1^+ C_1 \right) \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix}^+ \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix} + \Omega B_2$$

with $\Omega = [-A_1, A_2] [-A_1, A_2]^+ (R_{A_2}C_2B_2^+ - R_{A_1}C_1B_1^+).$

Proof. Clearly, system (1.1) has a pair of solutions X and Y if and only if

$$(2.10) A_1 X_1 + Y_1 B_1 = C_1$$

$$(2.11) A_2 X_2 + Y_2 B_2 = C_2$$

are consistent and $X_1 = X_2$ and $Y_1 = Y_2$. It follows from Lemma 2.3 that $A_iX_i + Y_iB_i = C_i$, i = 1, 2, are consistent if and only if

$$C_i - A_i A_i^+ C_i - C_i B_i^+ B_i + A_i A_i^+ C_i B_i^+ B_i = 0, i = 1, 2.$$

In that case, the general solutions can be written as

(2.12)
$$X_i = A_i^+ C_i + U_i B_i + L_{A_i} V_i,$$

(2.13)
$$Y_i = R_{A_i}C_i - A_iU_i + L_{A_i}W_iR_{B_i},$$

where $U_i \in \mathbb{H}^{p \times q}, V_i \in \mathbb{H}^{p \times n}, W_i \in \mathbb{H}^{m \times q}, i = 1, 2$, are arbitrary. Hence,

$$\begin{array}{ll} (2.14) & X_1 - X_2 \\ & = A_1^+ C_1 - A_2^+ C_2 + [U_1, U_2] \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix} + [L_{A_1}, -L_{A_2}] \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}, \\ (2.15) & Y_1 - Y_2 \\ & = R_{A_1} C_1 B_1^+ - R_{A_2} C_2 B_2^+ + [-A_1, A_2] \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} + [W_1, W_2] \begin{bmatrix} R_{B_1} \\ -R_{B_2} \end{bmatrix}.$$

Obviously, the equations (2.10) and (2.11) have common solutions, $X_1 = X_2, Y_1 = Y_2$, if and only if there exist U_1 and U_2 in (2.14) and (2.15) such that

(2.16)
$$\min_{A_1X_1+Y_1B_1=C_1,A_2X_2+Y_2B_2=C_2} r(X_1-X_2) = 0,$$

(2.17)
$$\min_{A_1X_1+Y_1B_1=C_1,A_2X_2+Y_2B_2=C_2} r(Y_1-Y_2) = 0,$$

which is equivalent to the existence of U_1 and U_2 such that

(2.18)
$$A_1^+C_1 - A_2^+C_2 + [U_1, U_2] \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix} + [L_{A_1}, -L_{A_2}] \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = 0,$$

and

(2.19)
$$R_{A_1}C_1B_1^+ - R_{A_2}C_2B_2^+ + [-A_1, A_2] \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} + [W_1, W_2] \begin{bmatrix} R_{B_1} \\ -R_{B_2} \end{bmatrix} = 0.$$

It follows from (2.16-2.17) and Lemma 2.3 that

(2.20)
$$\min_{A_1X_1+Y_1B_1=C_1,A_2X_2+Y_2B_2=C_2} r(X_1-X_2)$$
$$= r \begin{bmatrix} B_1 & 0 \\ B_2 & 0 \\ -C_1 & A_1 \\ C_2 & A_2 \end{bmatrix} - r \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} - r \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} = 0$$

and

(2.21)
$$\min_{A_1X_1+Y_1B_1=C_1,A_2X_2+Y_2B_2=C_2} r(Y_1 - Y_2) = r \begin{bmatrix} A_1 & A_2 & -C_1 & C_2 \\ 0 & 0 & B_1 & B_2 \end{bmatrix} - r[A_1,A_2] - r[B_1,B_2] = 0$$

implying, from Lemma 2.3, that (2.18) and (2.19) are solvable for $[U_1, U_2]$ and $\begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$, respectively, and

(2.22)
$$[U_1, U_2] = R_{[L_{A_1}, -L_{A_2}]} \left(A_2^+ C_2 - A_1^+ C_1 \right) \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix}^+ - [L_{A_1}, -L_{A_2}] \widetilde{U} + W R_{\widehat{B}},$$

and

(2.23)
$$\begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$$
$$= [-A_1, A_2]^+ (R_{A_2}C_2B_2^+ - R_{A_1}C_1B_1^+) + \hat{U} \begin{bmatrix} R_{B_1} \\ -R_{B_2} \end{bmatrix} + L_{[-A_1, A_2]}V,$$

where $\widehat{U}, \widetilde{U}, W$ and V are any matrices over $\mathbb H$ with appropriate dimensions. Clearly,

(2.24)
$$[U_1, U_2] \begin{bmatrix} I_q \\ 0 \end{bmatrix} = [I_p, 0] \begin{bmatrix} U_1 \\ U_2 \end{bmatrix},$$

Electronic Journal of Linear Algebra ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 18, pp. 289-301, June 2009

Q.W. Wang, H.S. Zhang, and G.J. Song

.

and

(2.25)
$$[U_1, U_2] \begin{bmatrix} 0\\ I_q \end{bmatrix} = [0, I_p] \begin{bmatrix} U_1\\ U_2 \end{bmatrix}$$

Substituting (2.22) and (2.23) into (2.24) and (2.25) yields

$$(2.26) R_{[L_{A_1}, -L_{A_2}]} \left(A_2^+ C_2 - A_1^+ C_1 \right) \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix}^+ \begin{bmatrix} I_q \\ 0 \end{bmatrix} - [I_p, 0] \alpha$$
$$= [L_{A_1}, -L_{A_2}] \widetilde{U} \begin{bmatrix} I_q \\ 0 \end{bmatrix} + [I_p, 0] \widetilde{U} \begin{bmatrix} R_{B_1} \\ -R_{B_2} \end{bmatrix} - W R_{\widehat{B}} \begin{bmatrix} I_q \\ 0 \end{bmatrix} + [I_p, 0] L_{[-A_1, A_2]} V,$$

and

$$(2.27) R_{[L_{A_1}, -L_{A_2}]} \left(A_2^+ C_2 - A_1^+ C_1 \right) \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix}^+ \begin{bmatrix} 0 \\ I_q \end{bmatrix} - [0, I_p] \alpha$$
$$= [L_{A_1}, -L_{A_2}] \widetilde{U} \begin{bmatrix} 0 \\ I_q \end{bmatrix} + [0, I_p] \widehat{U} \begin{bmatrix} R_{B_1} \\ -R_{B_2} \end{bmatrix} - W R_{\widehat{B}} \begin{bmatrix} 0 \\ I_q \end{bmatrix} + [0, I_p] L_{[-A_1, A_2]} V$$

where

$$\alpha = [-A_1, A_2]^+ \left(R_{A_2} C_2 B_2^+ - R_{A_1} C_1 B_1^+ \right), \hat{B} = \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix}.$$

Let

$$\widetilde{U} = \left[\widetilde{U}_1, \widetilde{U}_2\right], \widehat{U} = \left[\begin{array}{c} \widehat{U}_1\\ \widehat{U}_2 \end{array}\right]$$

in (2.26) and (2.27) where $\tilde{U}_1, \tilde{U}_2, \hat{U}_1$ and \hat{U}_2 are matrices over \mathbb{H} with appropriate dimensions. Then it follows from (2.3) and Lemma 2.7 that (2.26) and (2.27) can be written as

(2.28)
$$R_{[L_{A_1},-L_{A_2}]} \left(A_2^+ C_2 - A_1^+ C_1 \right) \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix}^+ \begin{bmatrix} I_q \\ 0 \end{bmatrix} - [I_p,0] \alpha$$
$$= [L_{A_1},-L_{A_2}] \widetilde{U}_1 + \widehat{U}_1 \begin{bmatrix} R_{B_1} \\ -R_{B_2} \end{bmatrix} - W_1 R_{B_2 L_{B_1}} + V_1 R_{A_1},$$

and

(2.29)
$$R_{[L_{A_1},-L_{A_2}]} \left(A_2^+ C_2 - A_1^+ C_1 \right) \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix}^+ \begin{bmatrix} 0 \\ I_q \end{bmatrix} - [0,I_p] \alpha$$
$$= [L_{A_1},-L_{A_2}] \widetilde{U}_2 + \widehat{U}_2 \begin{bmatrix} R_{B_1} \\ -R_{B_2} \end{bmatrix} - W_2 L_{B_1} + V_2 L_{R_{A_1}A_2}.$$

Therefore, the equations (2.10) and (2.11) have common solutions, $X_1 = X_2, Y_1 = Y_2$, if and only if there exist $W_1, V_1, \widetilde{U_1}, \widetilde{U_1}, W_2, V_2, \widetilde{U_2}, \widetilde{U_2}$ such that (2.28) and (2.29) hold, respectively. By Lemma 2.5, the equation (2.28) is solvable if and only if

(2.30)
$$r \begin{bmatrix} C & [L_{A_1}, -L_{A_2}] & [I_p, 0] L_{[-A_1, A_2]} \\ \begin{bmatrix} R_{B_1} \\ -R_{B_2} \end{bmatrix} & 0 & 0 \\ R_{\widehat{B}} \begin{bmatrix} -I_q \\ 0 \end{bmatrix} & 0 & 0 \end{bmatrix}$$
$$= r \begin{bmatrix} R_{B_1} \\ -R_{B_2} \\ R_{\widehat{B}} \begin{bmatrix} -I_q \\ 0 \end{bmatrix} \end{bmatrix} + r([L_{A_1}, -L_{A_2}], [I_p, 0] L_{[-A_1, A_2]}),$$

where

$$C = \left(I - [L_{A_1}, -L_{A_2}] [L_{A_1}, -L_{A_2}]^+\right) \left(A_2^+ C_2 - A_1^+ C_1\right) \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix}^+ \begin{bmatrix} I_q \\ 0 \end{bmatrix}$$
$$- [I_p, 0] [-A_1, A_2]^+ \left(R_{A_2} C_2 B_2^+ - R_{A_1} C_1 B_1^+\right).$$

It follows from Lemma 2.2, (2.8) and block Gaussian elimination that

$$r \begin{bmatrix} C & [L_{A_1}, -L_{A_2}] & [I_p, 0] L_{[-A_1, A_2]} \\ \begin{bmatrix} R_{B_1} \\ -R_{B_2} \end{bmatrix} & 0 & 0 \\ R_{\hat{B}} \begin{bmatrix} -I_q \\ 0 \end{bmatrix} & 0 & 0 \end{bmatrix}$$

$$= r \begin{bmatrix} C & L_{A_1} & -L_{A_2} & I_p & 0 & 0 \\ R_{B_1} & 0 & 0 & 0 & 0 & 0 \\ -R_{B_2} & 0 & 0 & 0 & 0 & B_1 \\ 0 & 0 & 0 & 0 & 0 & B_1 \\ 0 & 0 & 0 & 0 & 0 & -B_2 \\ 0 & 0 & 0 & -A_1 & A_2 & 0 \end{bmatrix} - r [-A_1, A_2] - r \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix}]$$

$$= r \begin{bmatrix} 0 & B_1 & B_2 \\ A_1 & 0 & 0 \\ A_2 & 0 & F \end{bmatrix} + p + q - r [-A_1, A_2] - r \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix},$$

$$r \begin{bmatrix} R_{B_1} \\ -R_{B_2} \end{bmatrix} \\ R_{\widehat{B}} \begin{bmatrix} -I_q \\ 0 \end{bmatrix} \end{bmatrix} = r [B_1, B_2] + q - r (B_1) - r (B_2),$$

$$r\left[\left[L_{A_{1}},-L_{A_{2}}\right],\left[I_{p},0\right]L_{\left[-A_{1},A_{2}\right]}\right]=r\left[\begin{array}{c}A_{1}\\A_{2}\end{array}\right]+p-r\left(A_{1}\right)-r\left(A_{2}\right)$$

implying that (2.6) follows from (2.3) and (2.30).

Similarly, the equation (2.29) is solvable if and only if

$$(2.31) real r \begin{bmatrix} \hat{C} & J & K \\ \begin{bmatrix} R_{B_1} \\ -R_{B_2} \end{bmatrix} & 0 & 0 \\ R_{\hat{B}} \begin{bmatrix} 0 \\ I_q \end{bmatrix} & 0 & 0 \end{bmatrix} = r \begin{bmatrix} \begin{bmatrix} R_{B_1} \\ -R_{B_2} \end{bmatrix} \\ R_{\hat{B}} \begin{bmatrix} 0 \\ I_q \end{bmatrix} \end{bmatrix} + r (J, K),$$

-

where

$$J = [L_{A_1}, -L_{A_2}], K = [0, I_p] L_{[-A_1, A_2]},$$
$$\widehat{C} = \left(I - [L_{A_1}, -L_{A_2}] [L_{A_1}, -L_{A_2}]^+\right) \left(A_2^+ C_2 - A_1^+ C_1\right) \begin{bmatrix} B_1 \\ -B_2 \end{bmatrix}^+ \begin{bmatrix} 0 \\ I_q \end{bmatrix}$$
$$- [0, I_p] [-A_1, A_2]^+ \left(R_{A_2} C_2 B_2^+ - R_{A_1} C_1 B_1^+\right).$$

Simplifying (2.31) yields (2.7) from (2.3) and (2.9). Moreover, (2.4) and (2.5) follow from (2.20) and (2.21), respectively. This proof is completed.

Under an assumption, we have derived a necessary and sufficient condition for system (1.1) to have a pair of solutions X and Y over \mathbb{H} by ranks. The open problem in [16] is, therefore, partially solved. By the way, we find that Corollary 2.3 in [16] is wrong.

Now we present a counterexample to illustrate the error. We first state the wrong corollary mentioned above: Suppose that the complex matrix equation $(A_0 + A_1 i) X +$ $Y(B_0 + B_1 i) = (C_0 + C_1 i)$ is consistent. Then

(a) Equation $(A_0 + A_1i)X + Y(B_0 + B_1i) = (C_0 + C_1i)$ has a pair of real solutions $X = X_0$ and $Y = Y_0$ if and only if

(2.32)
$$r \begin{bmatrix} B_0 & 0\\ B_1 & 0\\ C_0 & A_0\\ C_1 & A_1 \end{bmatrix} = r \begin{bmatrix} A_0\\ A_1 \end{bmatrix} + r \begin{bmatrix} B_0\\ B_1 \end{bmatrix},$$

(2.33)
$$r \begin{bmatrix} A_0 & A_1 & C_0 & C_1 \\ 0 & 0 & B_0 & B_1 \end{bmatrix} = r [A_0, A_1] + r [B_0, B_1].$$

A counterexample is as follows. Let

$$A_0 = B_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, A_1 = B_1 = C_0 = 0, C_1 = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}.$$

Then we have

$$r\begin{bmatrix} B_{0} & 0\\ B_{1} & 0\\ C_{0} & A_{0}\\ C_{1} & A_{1} \end{bmatrix} = r\begin{bmatrix} A_{0} & A_{1} & C_{0} & C_{1}\\ 0 & 0 & B_{0} & B_{1} \end{bmatrix} = 4,$$
$$r\begin{bmatrix} A_{0}\\ A_{1} \end{bmatrix} = r\begin{bmatrix} B_{0}\\ B_{1} \end{bmatrix} = r[A_{0}, A_{1}] = r[B_{0}, B_{1}] = 2,$$

i.e. (2.32) and (2.33) hold. However, the following matrix equation

$$\left[\begin{array}{rrr}1&0\\0&1\end{array}\right]X+Y\left[\begin{array}{rrr}1&0\\0&1\end{array}\right]=\left[\begin{array}{rrr}i&0\\0&i\end{array}\right]$$

has no real solution obviously.

Similarly, we can give a counterexample to illustrate that the part (c) of Corollary 2.3 in [16] is also wrong.

Using the methods in this paper, we can correct the mistakes mentioned above. We are planning to present these corrections in a separate article.

Acknowledgment. The authors would like to thank Professor Michael Neumann and a referee for their valuable suggestions and comments which resulted in great improvement of the original manuscript.

REFERENCES

- [1] T.W. Hungerford. Algebra. Spring-Verlag Inc, New York, 1980.
- [2] W.E. Roth. The equations AX XB = C and AX YB = C in matrices. Proc. Amer. Math. Soc., 3:392–396, 1952.
- [3] R. Hartwig. Roth's equivalence problem in unite regular rings. Proc. Amer. Math. Soc., 59:39–44, 1976.
- [4] W. Gustafson. Roth's theorems over commutative rings. Linear Algebra Appl., 23:245–251, 1979.
- [5] W. Gustafson and J. Zelmanowitz. On matrix equivalence and matrix equations. *Linear Algebra Appl.*, 27:219–224, 1979.
- [6] J.K. Baksalary and R.Kala. The matrix equation AX + YB = C. Linear Algebra Appl., 25:41–43, 1979.
- [7] R. Hartwig. Roth's removal rule revisited. Linear Algebra Appl., 49:91–115, 1984.
- [8] R.M. Guralnick. Roth's theorems for sets of matrices. Linear Algebra Appl., 71:113-117, 1985.
- [9] R.M. Guralnick. Roth's theorems and decomposition of modules. *Linear Algebra Appl.*, 39:155– 165, 1981.
- [10] R.M. Guralnick. Matrix equivalence and isomorphism of modules. *Linear Algebra Appl.*, 43:125–136, 1982.
- [11] H.K. Wimmer. Roth's theorems for matrix equations with symmetry constraints. *Linear Algebra Appl.*, 199:357–362, 1994.

- [12] H.K. Wimmer. Consistency of a pair of Generalized Sylvester equations. IEEE Trans. Automat. Control, 39(5):1014-1016, 1994.
- [13] L. Huang and J. Liu. The extension of Roth's theorem for matrix equations over a ring. *Linear Algebra Appl.*, 259:229–235, 1997.
- [14] Q.W. Wang, J.H. Sun, and S.Z. Li. Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra. *Linear Algebra Appl.*, 353:169–182, 2002.
- [15] Q.W. Wang and H.S. Zhang. On solutions to the quaternion matrix equation AXB+CYD = E. Electron. J. Linear Algebra, 17:343–358, 2008.
- [16] Y.H. Liu. Ranks of solutions of the linear matrix equation AX + YB = C. Comput. Math. Appl., 52:861-872, 2006.
- [17] J. Demmel and B. Kagstrom. Computing stable eigendecompositions of matrix pencils. *Linear Algebra Appl.*, 88/89:139–186, 1987.
- [18] S.L. Adler. Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, Oxford, 1995.
- [19] F. Zhang. Quaternions and matrices of quaternions. Linear Algebra Appl., 251:21–57, 1997.
- [20] A. Baker. Right eigenvalues for quaternionic matrices: a topological approach. Linear Algebra Appl., 286:303-309, 1999.
- [21] C.E. Moxey, S.J. Sangwine, and T.A. Ell. Hypercomplex correlation techniques for vector images. *IEEE Trans. Signal Process.*, 51(7):1941–1953, 2003.
- [22] N. Le Bihan and J. Mars. Singular value decomposition of matrices of quaternions: a new tool for vector-sensor signal processing. *Signal Processing*, 84(7):1177–1199, 2004.
- [23] N. Le Bihan and S.J. Sangwine. Quaternion principal component analysis of color images. IEEE International Conference on Image Processing (ICIP), Barcelona, Spain, September 2003.
- [24] S.J. Sangwine and N. Le Bihan. Quaternion singular value decomposition based on bidiagonalization to a real or complex matrix using quaternion Householder transformations. Appl. Math. Comput., 182(1):727–738, 2006.
- [25] Q.W. Wang. The general solution to a system of real quaternion matrix equations. Comput. Math. Appl., 49:665–675, 2005.
- [26] Q.W. Wang. Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations. Comput. Math. Appl., 49:641–650, 2005.
- [27] Q.W. Wang, Z.C. Wu and C.Y. Lin. Extremal ranks of a quaternion matrix expression subject to consistent systems of quaternion matrix equations with applications. *Appl. Math. Comput.*, 182:1755–1764, 2006.
- [28] Q.W. Wang, G.J. Song, and C.Y. Lin. Extreme ranks of the solution to a consistent system of linear quaternion matrix equations with an application. *Appl. Math. Comput.*, 189:1517– 1532, 2007.
- [29] Q.W. Wang, F. Zhang. The reflexive re-nonnegative definite solution to a quaternion matrix equation. *Electron. J. Linear Algebra*, 17:88–101, 2008.
- [30] Q.W. Wang, S.W. Yu, and C.Y. Lin Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications. *Appl. Math. Comput.*, 195:733–744, 2008.
- [31] Q.W. Wang, J.W. van der Woude, H.X. Chang. A system of real quaternion matrix equations with applications. *Linear Algebra Appl.*, to appear (doi:10.1016/j.laa.2009.02.010).
- [32] Q.W.Wang, G.J. Song, and X. Liu. Maximal and minimal ranks of the common solution of some linear matrix equations over an arbitrary division ring with applications. *Algebra Collog.*, 16(2):293–308, 2009.
- [33] Q.W. Wang and C.K. Li. Ranks and the least-norm of the general solution to a system of quaternion matrix equations. *Linear Algebra Appl.*, 430:1626–1640, 2009.
- [34] Q.W. Wang, S.W. Yu, and Q. Zhang. The real solutions to a system of quaternion matrix equations with applications. Comm. Algebra, 37:2060–2079, 2009.

301

A New Solvable Condition for a Pair of Generalized Sylvester Equations

- [35] G. Marsaglia and G.P.H. Styan. Equalities and inequalities for ranks of matrices. *Linear and Multilinear Algebra*, 2:269–292,1974.
- [36] Y. Tian. The minimal rank of the matrix expression A BX YC. Missouri J. Math. Sci, 14(1):40–48, 2002.
- [37] Y. Tian. The solvability of two linear matrix equations. Linear Algebra Appl., 48:123–147, 2000.
- [38] Q.W. Wang. A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity. *Linear Algebra Appl.*, 384:43–54, 2004.