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Abstract. A necessary and sufficient condition is given for the quaternion matrix equations

AiX + Y Bi = Ci (i = 1, 2) to have a pair of common solutions X and Y . As a consequence, the

results partially answer a question posed by Y.H. Liu (Y.H. Liu, Ranks of solutions of the linear

matrix equation AX + Y B = C, Comput. Math. Appl., 52 (2006), pp. 861-872).
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1. Introduction. Throughout this paper, we denote the real number field by
R, the complex number field by C, the set of all m× n matrices over the quaternion
algebra

H = {a0 + a1i + a2j + a3k | i2 = j2 = k2 = ijk = −1, a0, a1, a2, a3 ∈ R}
by Hm×n, the identity matrix with the appropriate size by I, the transpose of a
matrix A by AT , the column right space, the row left space of a matrix A over H by
R (A), N (A) , respectively, a reflexive inverse of a matrix A by A+ which satisfies
simultaneously AA+A = A and A+AA+ = A+. Moreover, RA and LA stand for the
two projectors LA = I −A+A, RA = I −AA+ induced by A. By [1], for a quaternion
matrix A, dimR (A) = dimN (A) , which is called the rank of A and denoted by
r(A).

Many problems in systems and control theory require the solution of the general-
ized Sylvester matrix equation AX+Y B = C. Roth [2] gave a necessary and sufficient
condition for the consistency of this matrix equation, which was called Roth’s the-
orem on the equivalence of block diagonal matrices. Since Roth’s paper appeared
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in 1952, Roth’s theorem has been widely extended (see, e.g., [2]-[16]). Perturbation
analysis of generalized Sylvester eigenspaces of matrix quadruples [17] leads to a pair
of generalized Sylvester equations of the form

A1X + Y B1 = C1, A2X + Y B2 = C2.(1.1)

In 1994, Wimmer [12] gave a necessary and sufficient condition for the consistency of
(1.1) over C by matrix pencils. In 2002, Wang, Sun and Li [14] established a necessary
and sufficient condition for the existence of constant solutions with bi(skew)symmetric
constrains to (1.1) over a finite central algebra. Liu [16] in 2006 presented a necessary
and sufficient condition for the pair of equations in (1.1) to have a common solution
X or Y over C, respectively, and proposed an open problem: find a necessary and
sufficient condition for system (1.1) to have a pair of solutions X and Y by ranks.

Motivated by the work mentioned above and keeping applications and interests
of quaternion matrices in view (e.g., [18]-[34]), in this paper we investigate the above
open problem over H. In Section 2, we establish a necessary and sufficient condition
for (1.1) to have a pair of solutions X and Y over H. In section 3, we present a
counterexample to illustrate the errors in Liu’s paper [16]. A conclusion and a further
research topic related to (1.1) are also given.

2. Main results. The following lemma is due to Marsaglia and Styan [35], which
can also be generalized to H.

Lemma 2.1. Let A ∈ Hm×n, B ∈ Hm×k and C ∈ Hl×n. Then they satisfy the
following:
(a) r[ A B ] = r(A) + r(RAB) = r(B) + r(RBA).

(b) r

[
A

C

]
= r(A) + r(CLA) = r(C) + r(ALC).

(c) r

[
A B

C 0

]
= r(B) + r(C) + r(RBALC).

From Lemma 2.1 we can easily get the following.

Lemma 2.2. Let A ∈ Hm×n, B ∈ Hm×k, C ∈ Hl×n, D ∈ Hj×k and E ∈ Hl×i.

Then

(a) r(CLA) = r

[
A

C

]
− r(A).

(b) r
[

B ALC

]
= r

[
B A

0 C

]
− r(C).

(c) r

[
C

RBA

]
= r

[
C 0
A B

]
− r(B).
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(d) r

[
A BLD

REC 0

]
= r

 A B 0
C 0 E

0 D 0

 − r(D) − r(E).

The following three lemmas are due to Baksalary and Kala [6], Tian [36],[37],
respectively, which can be generalized to H.

Lemma 2.3. Let A ∈ Hm×p, B ∈ Hq×n and C ∈ Hm×n be known and X ∈ Hp×q

unknown. Then the matrix equation AX + Y B = C is solvable if and only if

r

[
B A

0 C

]
= r(A) + r(B).

In this case, the general solution to the matrix equation is given by

X = A+C + UB + LAV,

Y = RAC −AU + LAWRB,

where U ∈ Hp×q, V ∈ Hp×n and W ∈ Hm×q are arbitrary.

Lemma 2.4. Let A ∈ Hm×n, B ∈ Hm×p, C ∈ Hq×n be given, Y ∈ Hp×n,

Z ∈ Hm×q be two variant matrices. Then

max
Y,Z

r(A −BY − ZC) = min
{
m, n, r

[
A B

C 0

]}
;(2.1)

min
Y,Z

r(A −BY − ZC) = r

[
A B

C 0

]
− r(B) − r(C).(2.2)

Lemma 2.5. The matrix equation A1X1B1 + A2X2B2 + A3Y + ZB3 = C is
solvable if and only if the following four rank equalities are all satisfied:

r

[
C A1 A2 A3

B3 0 0 0

]
= r [A1, A2, A3] + r(B3),

r


C A3

B1 0
B2 0
B3 0

 = r(A3) + r

 B1

B2

B3

 ,

r

 C A1 A3

B2 0 0
B3 0 0

 = r

[
B2

B3

]
+ r [A1, A3] ,
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r

 C A2 A3

B1 0 0
B3 0 0

 = r

[
B1

B3

]
+ r [A2, A3] .

Lemma 2.6. (Lemma 2.3 in [38]) Let A,B be matrices over H and

A =
[

A1

A2

]
, B = [B1, B2] , S = A2LA1 , T = RB1B2.

Then

A+ =
[
A+

1 − LA1S
+A2A

+
1 , LA1S

+
]
, B+ =

[
B+

1 −B+
1 B2T

+RB1

T+RB1

]
are reflexive inverses of A and B, respectively.

Lemma 2.7. Suppose A1, A2 ∈ Hm×p, B1, B2 ∈ Hq×n and B̂ =
[

B1

B2

]
are given,

V =
[

V1

V2

]
and W =

[
W1 W2

]
are any matrices with compatible dimensions.

Then

(a) [Ip, 0]L[A1,A2]V and [0, Ip]L[A1,A2]V are independent, that is, for any V =
[

V1

V2

]
,

[Ip, 0]L[A1,A2]V only relates to V2 and the change of [0, Ip]L[A1,A2]V only relates to
V1, if and only if

r [A1, A2] = r (A1) + r (A2) .

(b) WR
bB

[
Iq

0

]
and WR

bB

[
0
Iq

]
are independent, that is, for any W = [W1,W2] ,

WR
bB

[
Iq

0

]
only relates to W1 and WR

bB

[
0
Iq

]
only relates to W2, if and only if

r

[
B1

B2

]
= r (B1) + r (B2) .

Proof. From Lemma 2.6, we have

[Ip, 0]L[A1,A2]V

= [Ip, 0]
(
I −

[
A+

1 −A+
1 A2[(I −A1A

+
1 )A2]+(I −A1A

+
1 )

[(I −A1A
+
1 )A2]+(I −A1A

+
1 )

]
[A1, A2]

)
V

= [Ip, 0]
(
I −

[
A1A

+
1 A+

1 A2 −A+
1 A2[(I −A1A

+
1 )A2]+(I −A1A

+
1 )A2

0 [(I −A1A
+
1 )A2]+(I −A1A

+
1 )A2

]) [
V1

V2

]
= V1 −

[
A1A

+
1 , A+

1 A2 −A+
1 A2[(I −A1A

+
1 )A2]+(I −A1A

+
1 )A2

] [
V1

V2

]
.
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Similarly, we have

[0, Ip]L[A1,A2]V

= V2 −
[
0, [(I −A1A

+
1 )A2]+(I −A1A

+
1 )A2

] [
V1

V2

]
.

Thus, [Ip, 0]L[A1,A2]V and [0, Ip]L[A1,A2]V are independent if and only if

A+
1 A2 −A+

1 A2[(I −A1A
+
1 )A2]+(I −A1A

+
1 )A2 = 0.

According to Lemma 2.2, we have

r
(
A+

1 A2 −A+
1 A2[(I −A1A

+
1 )A2]+(I −A1A

+
1 )A2

)
= r

[
(I −A1A

+
1 )A2

A+
1 A2

]
− r

(
(I −A1A

+
1 )A2

)
= r

[
A2 A1

A+
1 A2 0

]
− r [A2, A1]

= r

[
A2 0
0 A1

]
− r [A2, A1] .

That is r [A1, A2] = r (A1) + r (A2) .

Similarly, we can prove (b) .

Now we give the main result of this article.

Theorem 2.8. Suppose that every matrix equation in system (1.1) is consistent
and

r [A1, A2] = r (A1) + r (A2) , r
[

B1

B2

]
= r (B1) + r (B2) .(2.3)

Then system (1.1) has a pair of solutions X and Y if and only if

r


B1 0
B2 0
−C1 A1

C2 A2

 = r

[
A1

A2

]
+ r

[
B1

B2

]
,(2.4)

r

[
A1 A2 −C1 C2

0 0 B1 B2

]
= r [A1, A2] + r [B1, B2] ,(2.5)

r

 0 B1 B2

A1 0 0
A2 0 F

 = r

[
A1

A2

]
+ r [B1, B2] ,(2.6)
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r

 0 B1 B2

A1 0 0
A2 0 F̂

 = r

[
A1

A2

]
+ r [B1, B2] ,(2.7)

where

F = A1

(
A+

2 C2 −A+
1 C1

) [
B1

−B2

]+ [
B1

−B2

]
+ ΩB1(2.8)

and

F̂ = A2

(
A+

2 C2 −A+
1 C1

) [
B1

−B2

]+ [
B1

−B2

]
+ ΩB2(2.9)

with Ω = [−A1, A2] [−A1, A2]
+ (

RA2C2B
+
2 −RA1C1B

+
1

)
.

Proof. Clearly, system (1.1) has a pair of solutions X and Y if and only if

A1X1 + Y1B1 = C1(2.10)

A2X2 + Y2B2 = C2(2.11)

are consistent and X1 = X2 and Y1 = Y2. It follows from Lemma 2.3 that AiXi +
YiBi = Ci, i = 1, 2, are consistent if and only if

Ci −AiA
+
i Ci − CiB

+
i Bi + AiA

+
i CiB

+
i Bi = 0, i = 1, 2.

In that case, the general solutions can be written as

Xi = A+
i Ci + UiBi + LAiVi,(2.12)

Yi = RAiCi −AiUi + LAiWiRBi ,(2.13)

where Ui ∈ Hp×q, Vi ∈ Hp×n,Wi ∈ Hm×q, i = 1, 2, are arbitrary. Hence,

X1 −X2(2.14)

= A+
1 C1 −A+

2 C2 + [U1, U2]
[

B1

−B2

]
+ [LA1 ,−LA2 ]

[
V1

V2

]
,

Y1 − Y2(2.15)

= RA1C1B
+
1 −RA2C2B

+
2 + [−A1, A2]

[
U1

U2

]
+ [W1,W2]

[
RB1

−RB2

]
.

Obviously, the equations (2.10) and (2.11) have common solutions, X1 = X2, Y1 = Y2,

if and only if there exist U1 and U2 in (2.14) and (2.15) such that

min
A1X1+Y1B1=C1,A2X2+Y2B2=C2

r(X1 −X2) = 0,(2.16)

min
A1X1+Y1B1=C1,A2X2+Y2B2=C2

r(Y1 − Y2) = 0,(2.17)
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which is equivalent to the existence of U1 and U2 such that

A+
1 C1 −A+

2 C2 + [U1, U2]
[

B1

−B2

]
+ [LA1 ,−LA2 ]

[
V1

V2

]
= 0,(2.18)

and

RA1C1B
+
1 −RA2C2B

+
2 + [−A1, A2]

[
U1

U2

]
+ [W1,W2]

[
RB1

−RB2

]
= 0.(2.19)

It follows from (2.16-2.17) and Lemma 2.3 that

min
A1X1+Y1B1=C1,A2X2+Y2B2=C2

r (X1 −X2)(2.20)

= r


B1 0
B2 0
−C1 A1

C2 A2

 − r

[
A1

A2

]
− r

[
B1

B2

]
= 0

and

min
A1X1+Y1B1=C1,A2X2+Y2B2=C2

r (Y1 − Y2)(2.21)

= r

[
A1 A2 −C1 C2

0 0 B1 B2

]
− r [A1, A2]− r [B1, B2] = 0

implying, from Lemma 2.3, that (2.18) and (2.19) are solvable for [U1, U2] and
[

U1

U2

]
,

respectively, and

[U1, U2](2.22)

= R[LA1 ,−LA2 ]
(
A+

2 C2 −A+
1 C1

) [
B1

−B2

]+

− [LA1 ,−LA2 ] Ũ + WR
bB,

and [
U1

U2

]
(2.23)

= [−A1, A2]
+ (

RA2C2B
+
2 −RA1C1B

+
1

)
+ Û

[
RB1

−RB2

]
+ L[−A1,A2]V,

where Û , Ũ ,W and V are any matrices over H with appropriate dimensions. Clearly,

[U1, U2]
[

Iq

0

]
= [Ip, 0]

[
U1

U2

]
,(2.24)
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and

[U1, U2]
[

0
Iq

]
= [0, Ip]

[
U1

U2

]
.(2.25)

Substituting (2.22) and (2.23) into (2.24) and (2.25) yields

R[LA1 ,−LA2 ]
(
A+

2 C2 −A+
1 C1

) [
B1

−B2

]+ [
Iq

0

]
− [Ip, 0]α(2.26)

= [LA1 ,−LA2] Ũ
[

Iq

0

]
+ [Ip, 0] Û

[
RB1

−RB2

]
−WR

bB

[
Iq

0

]
+ [Ip, 0]L[−A1,A2]V,

and

R[LA1 ,−LA2]
(
A+

2 C2 −A+
1 C1

) [
B1

−B2

]+ [
0
Iq

]
− [0, Ip]α(2.27)

= [LA1 ,−LA2 ] Ũ
[

0
Iq

]
+ [0, Ip] Û

[
RB1

−RB2

]
−WR

bB

[
0
Iq

]
+ [0, Ip]L[−A1,A2]V

where

α = [−A1, A2]
+ (

RA2C2B
+
2 −RA1C1B

+
1

)
, B̂ =

[
B1

−B2

]
.

Let

Ũ =
[
Ũ1, Ũ2

]
, Û =

[
Û1

Û2

]

in (2.26) and (2.27) where Ũ1, Ũ2, Û1 and Û2 are matrices over H with appropriate
dimensions. Then it follows from (2.3) and Lemma 2.7 that (2.26) and (2.27) can be
written as

R[LA1 ,−LA2]
(
A+

2 C2 −A+
1 C1

) [
B1

−B2

]+ [
Iq

0

]
− [Ip, 0]α(2.28)

= [LA1,−LA2 ] Ũ1 + Û1

[
RB1

−RB2

]
−W1RB2LB1

+ V1RA1 ,

and

R[LA1 ,−LA2]
(
A+

2 C2 −A+
1 C1

) [
B1

−B2

]+ [
0
Iq

]
− [0, Ip]α(2.29)

= [LA1,−LA2 ] Ũ2 + Û2

[
RB1

−RB2

]
−W2LB1 + V2LRA1A2 .
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Therefore, the equations (2.10) and (2.11) have common solutions, X1 = X2, Y1 = Y2,

if and only if there exist W1, V1, Ũ1, Û1; W2, V2, Ũ2, Û2 such that (2.28) and (2.29) hold,
respectively. By Lemma 2.5, the equation (2.28) is solvable if and only if

r


C [LA1 ,−LA2 ] [Ip, 0]L[−A1,A2][

RB1

−RB2

]
0 0

R
bB

[ −Iq

0

]
0 0

(2.30)

= r


[

RB1

−RB2

]
R

bB

[ −Iq

0

]
 + r([LA1 ,−LA2] , [Ip, 0]L[−A1,A2]),

where

C =
(
I − [LA1 ,−LA2 ] [LA1 ,−LA2 ]

+
) (

A+
2 C2 −A+

1 C1

) [
B1

−B2

]+ [
Iq

0

]
− [Ip, 0] [−A1, A2]

+ (
RA2C2B

+
2 −RA1C1B

+
1

)
.

It follows from Lemma 2.2, (2.8) and block Gaussian elimination that

r


C [LA1 ,−LA2] [Ip, 0]L[−A1,A2][

RB1

−RB2

]
0 0

R
bB

[ −Iq

0

]
0 0



= r



C LA1 −LA2 Ip 0 0
RB1 0 0 0 0 0
−RB2 0 0 0 0 0
−Iq 0 0 0 0 B1

0 0 0 0 0 −B2

0 0 0 −A1 A2 0


− r [−A1, A2] − r

[
B1

−B2

]

= r

 0 B1 B2

A1 0 0
A2 0 F

 + p + q − r [−A1, A2]− r

[
B1

−B2

]
,

r


[

RB1

−RB2

]
R
bB

[ −Iq

0

]
 = r [B1, B2] + q − r (B1) − r (B2) ,
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r
[
[LA1 ,−LA2 ] , [Ip, 0]L[−A1,A2]

]
= r

[
A1

A2

]
+ p− r (A1) − r (A2)

implying that (2.6) follows from (2.3) and (2.30).

Similarly, the equation (2.29) is solvable if and only if

r


Ĉ J K[

RB1

−RB2

]
0 0

R
bB

[
0
Iq

]
0 0

 = r


[

RB1

−RB2

]
R

bB

[
0
Iq

]
 + r (J,K) ,(2.31)

where

J =[LA1 ,−LA2 ] ,K = [0, Ip]L[−A1,A2],

Ĉ =
(
I − [LA1 ,−LA2] [LA1 ,−LA2]

+
) (

A+
2 C2 −A+

1 C1

) [
B1

−B2

]+ [
0
Iq

]
− [0, Ip] [−A1, A2]

+ (
RA2C2B

+
2 − RA1C1B

+
1

)
.

Simplifying (2.31) yields (2.7) from (2.3) and (2.9). Moreover, (2.4) and (2.5) follow
from (2.20) and (2.21), respectively. This proof is completed.

Under an assumption, we have derived a necessary and sufficient condition for
system (1.1) to have a pair of solutions X and Y over H by ranks. The open problem
in [16] is, therefore, partially solved. By the way, we find that Corollary 2.3 in [16] is
wrong.

Now we present a counterexample to illustrate the error. We first state the wrong
corollary mentioned above: Suppose that the complex matrix equation (A0 + A1i)X+
Y (B0 + B1i) = (C0 + C1i) is consistent. Then
(a) Equation (A0 + A1i)X + Y (B0 + B1i) = (C0 + C1i) has a pair of real solutions
X = X0 and Y = Y0 if and only if

r


B0 0
B1 0
C0 A0

C1 A1

 = r

[
A0

A1

]
+ r

[
B0

B1

]
,(2.32)

r

[
A0 A1 C0 C1

0 0 B0 B1

]
= r [A0, A1] + r [B0, B1] .(2.33)

A counterexample is as follows. Let

A0 = B0 =
[

1 0
0 1

]
, A1 = B1 = C0 = 0, C1 =

[
i 0
0 i

]
.
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Then we have

r


B0 0
B1 0
C0 A0

C1 A1

 = r

[
A0 A1 C0 C1

0 0 B0 B1

]
= 4,

r

[
A0

A1

]
= r

[
B0

B1

]
= r [A0, A1] = r [B0, B1] = 2,

i.e. (2.32) and (2.33) hold. However, the following matrix equation[
1 0
0 1

]
X + Y

[
1 0
0 1

]
=

[
i 0
0 i

]
has no real solution obviously.

Similarly, we can give a counterexample to illustrate that the part (c) of Corollary
2.3 in [16] is also wrong.

Using the methods in this paper, we can correct the mistakes mentioned above.
We are planning to present these corrections in a separate article.
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