THE JORDAN FORMS OF $A B$ AND $B A^{*}$

ROSS A. LIPPERT ${ }^{\dagger}$ AND GILBERT STRANG ${ }^{\ddagger}$

Abstract

The relationship between the Jordan forms of the matrix products $A B$ and $B A$ for some given A and B was first described by Harley Flanders in 1951. Their non-zero eigenvalues and non-singular Jordan structures are the same, but their singular Jordan block sizes can differ by 1. We present an elementary proof that owes its simplicity to a novel use of the Weyr characteristic.

Key words. Jordan form, Weyr characteristic, eigenvalues

AMS subject classifications. 15A21, 15A18

1. Introduction. Suppose A and B are $n \times n$ complex matrices, and suppose A is invertible. Then $A B=A(B A) A^{-1}$. The matrices $A B$ and $B A$ are similar. They have the same eigenvalues with the same multiplicities, and more than that, they have the same Jordan form. This conclusion is equally true if B is invertible.

If both A and B are singular (and square), a limiting argument involving $A+\epsilon I$ is useful. In this case $A B$ and $B A$ still have the same eigenvalues with the same multiplicities. What the argument does not prove (because it is not true) is that $A B$ is similar to $B A$. Their Jordan forms may be different, in the sizes of the blocks associated with the eigenvalue $\lambda=0$. This paper studies that difference in the block sizes.

The block sizes can increase or decrease by 1 . This is illustrated by an example in which $A B$ has Jordan blocks of sizes 2 and 1 while $B A$ has three 1 by 1 blocks. We could begin with Jordan matrices A and B :

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The product $A B$ is zero. The product $B A$ also has a triple zero eigenvalue but the

[^0]rank is 1. In fact, $B A$ is in Jordan form:
\[

B A=\left[$$
\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
$$\right]
\]

A different 3 by 3 example illustrates another possibility:

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

with

$$
A B=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad B A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Those examples show all the possible differences for $n=3$, when $A B$ is nilpotent. More generally, we want to find every possible pair of Jordan forms for $A B$ and $B A$, for any $n \times m$ matrix A and $m \times n$ matrix B over an algebraically closed field. The solution to this problem, generalized to matrices over an arbitrary field, was given over 50 years ago by Harley Flanders [3], with subsequent generalizations and specializations [4, 6]. In this article, we give a novel elementary proof by using the Weyr characteristic.
2. The Weyr Characteristic. There are two dual descriptions of the Jordan block sizes for a specific eigenvalue. We can list the block dimensions σ_{i} in decreasing order, giving the row lengths in Figure 2.1. This is the Segre characteristic. We can

$$
\omega_{1}=4 \omega_{2}=3 \quad \omega_{3}=2 \omega_{4}=2
$$

Fig. 2.1. A tableau representing the Jordan structure $J_{4} \oplus J_{4} \oplus J_{2} \oplus J_{1}$.
also list the column lengths $\omega_{1}, \omega_{2}, \ldots$ (they automatically come in decreasing order).

This is the Weyr characteristic. By convention, we define σ_{i} and ω_{i} for all $i>0$ by setting them to 0 for sufficiently large i. If we consider $\left\{\sigma_{i}\right\}$ and $\left\{\omega_{j}\right\}$ to be partitions of their common sum n, then they are conjugate partitions: σ_{i} counts the number of j 's for which $\omega_{j} \geq i$ and vice versa. The relationship between conjugate partitions $\left\{\sigma_{i}\right\}$ and $\left\{\omega_{i}\right\}$ is compactly summarized by $\omega_{\sigma_{i}} \geq i>\omega_{\sigma_{i}+1}$ (or by $\sigma_{\omega_{i}} \geq i>\sigma_{\omega_{i}+1}$), the first inequality making sense only when $\sigma_{i}>0$. Tying the two descriptions to linear algebra is the nullity index ν_{j} :

$$
\nu_{j}(A)=\operatorname{dim} N u l l\left(A^{j}\right)=\text { dimension of the nullspace of } A^{j} \quad\left(\text { with } \nu_{0}(A)=0\right)
$$

Thus ν_{j} counts the number of generalized eigenvectors for $\lambda=0$ with height j or less. In the example in Figure 2.1, ν_{0}, \ldots, ν_{5} are $0,4,7,9,11$. Then $\omega_{j}=\nu_{j}-\nu_{j-1}$ counts the number of Jordan blocks of size i or greater for $\lambda=0$. Further exposition of the Weyr characteristic can be found in [5] and some geometric applications in [1, 2].

Our main theorem is captured in the statement that $\omega_{i}(B A) \geq \omega_{i+1}(A B)$. Reversing A and B gives a parallel inequality that we re-index as $\omega_{i-1}(A B) \geq \omega_{i}(B A)$. This observation, although in different terms, was central to the original proof by Flanders [3].

Theorem 2.1. Let \mathbb{F} be an algebraically closed field. Given $A, B^{t} \in \mathbb{F}^{n \times m}$, the non-singular Jordan blocks of $A B$ and $B A$ have matching sizes, i.e., their Weyr characteristics are equal:

$$
\begin{equation*}
\omega_{i}(A B-\lambda I)=\omega_{i}(B A-\lambda I) \quad \text { for } \lambda \neq 0 \text { and all } i \tag{2.1}
\end{equation*}
$$

For the eigenvalue $\lambda=0$, the Jordan forms of $A B$ and $B A$ have Weyr characteristics that satisfy

$$
\begin{equation*}
\omega_{i-1}(A B) \geq \omega_{i}(B A) \geq \omega_{i+1}(A B) \quad \text { for all } i \tag{2.2}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\left|\sigma_{i}(A B)-\sigma_{i}(B A)\right| \leq 1 \quad \text { for all } i \tag{2.3}
\end{equation*}
$$

If $P \in \mathbb{F}^{n \times n}$ and $Q \in \mathbb{F}^{m \times m}$ satisfy $\omega_{i}(P-\lambda I)=\omega_{i}(Q-\lambda I)$ for $\lambda \neq 0$ and $\omega_{i-1}(P) \leq \omega_{i}(Q) \leq \omega_{i+1}(P)$, then there exist $A, B^{t} \in \mathbb{F}^{n \times m}$ such that $P=A B$ and $Q=B A$.

The equivalence of (2.2) and (2.3) is purely a combinatorial property of conjugate partitions (see Lemma 3.2).

The Jordan block sizes are hence restricted to change by at most 1 for $\lambda=0$. Taking Figure 2.1 as the Jordan structure of $A B$ at $\lambda=0$, Figure 2.2 is an admissible modification (by + and -) for $B A$.

$$
\omega_{1}=5 \quad \omega_{2}=4 \quad \omega_{3}=2 \quad \omega_{4}=0
$$

Fig. 2.2. If $A B$ is nilpotent with Jordan structure $J_{4} \oplus J_{4} \oplus J_{2} \oplus J_{1}$, then a permitted $B A$ structure is $J_{3} \oplus J_{3} \oplus J_{2} \oplus J_{2} \oplus J_{1}$.
3. Main results. Our results are ultimately derived from the associativity of matrix multiplication. A typical example is $B(A B \cdots A B)=(B A \cdots B A) B$.

Theorem 3.1. If A and B^{t} are $n \times m$ matrices over a field \mathbb{F}, then for all $i>0$

$$
\begin{array}{cl}
\omega_{i}(A B-\lambda I)=\omega_{i}(B A-\lambda I) & \text { for } \lambda \in \mathbb{F}-\{0\} \\
\omega_{i}(B A) \geq \omega_{i+1}(A B) & (\text { for } \lambda=0) .
\end{array}
$$

Proof. (For $\lambda \neq 0$) For any polynomial $p(x), p(B A) B=B p(A B)$. Thus $p(A B) v=0$ implies $p(B A) B v=0$. Since $B v=0$ implies $p(A B) v=p(0) v$, we have $\operatorname{dim} \operatorname{Null}(p(A B))=\operatorname{dim} \operatorname{Null}(p(B A))$ when $p(0) \neq 0$. Hence $\nu_{i}(A B-\lambda I)=$ $\nu_{i}(B A-\lambda I)$ when $\lambda \neq 0$.
(For $\lambda=0$) We define the following nullspaces for $i \geq 0$:

$$
\begin{aligned}
\mathcal{R}_{i} & =\left\{v \in \mathbb{F}^{n}: B(A B)^{i} v=0\right\} \\
\mathcal{R}_{i}^{\prime} & =\left\{v \in \mathbb{F}^{n}:(A B)^{i} v=0\right\} \\
\mathcal{L}_{i} & =\left\{v \in \mathbb{F}^{m}: v^{t}(B A)^{i}=0\right\} \\
\mathcal{L}_{i}^{\prime} & =\left\{v \in \mathbb{F}^{m}: v^{t}(B A)^{i} B=0\right\}
\end{aligned}
$$

We see that, $\mathcal{R}_{i} \subset \mathcal{R}_{i+1}^{\prime}$ and $\mathcal{L}_{i} \subset \mathcal{L}_{i+1}^{\prime}$, and $\operatorname{dim}\left\{\mathcal{R}_{i+1}\right\}-\operatorname{dim}\left\{\mathcal{R}_{i}\right\}=\operatorname{dim}\left\{\mathcal{L}_{i+1}^{\prime}\right\}-$ $\operatorname{dim}\left\{\mathcal{L}_{i}^{\prime}\right\}$.

Let $v_{1}, \ldots, v_{k} \in \mathcal{R}_{i+2}^{\prime}$ be a set of vectors that are linearly independent modulo \mathcal{R}_{i+1}. Thus $\sum_{i=1}^{k} c_{i} v_{i} \in \mathcal{R}_{i+1}$ only if $c_{1}=\cdots=c_{k}=0$. Then the vectors

Fig. 3.1. A tableau representing the Jordan structure $\sigma_{i}=(10,10,7,4,3,3,1,1,1,0, \ldots)$, with Weyr characteristic $\omega_{i}=(9,6,6,4,3,3,3,2,2,2,0, \ldots)$.
$A B v_{1}, \ldots, A B v_{k} \in \mathcal{R}_{i+1}^{\prime}$ are linearly independent modulo \mathcal{R}_{i}. Thus, $\operatorname{dim}\left\{\mathcal{R}_{i+1}^{\prime} / \mathcal{R}_{i}\right\} \geq \operatorname{dim}\left\{\mathcal{R}_{i+2}^{\prime} / \mathcal{R}_{i+1}\right\}$. If $v_{1}, \ldots, v_{k} \in \mathcal{L}_{i+2}^{\prime}$ is a set of vectors, linearly independent modulo \mathcal{L}_{i+1}, then the vectors $(B A)^{t} v_{1}, \ldots,(B A)^{t} v_{k} \in \mathcal{L}_{i+1}^{\prime}$ are linearly independent modulo \mathcal{L}_{i}. Thus, $\operatorname{dim}\left\{\mathcal{L}_{i+1}^{\prime} / \mathcal{L}_{i}\right\} \geq \operatorname{dim}\left\{\mathcal{L}_{i+2}^{\prime} / \mathcal{L}_{i+1}\right\}$. Notice that

$$
\begin{aligned}
\operatorname{dim}\left\{\mathcal{R}_{i+2}^{\prime} / \mathcal{R}_{i+1}\right\} & =\nu_{i+2}(A B)-\operatorname{dim}\left\{\mathcal{R}_{i+1}\right\} \\
\operatorname{dim}\left\{\mathcal{L}_{i+2}^{\prime} / \mathcal{L}_{i+1}\right\} & =\operatorname{dim}\left\{\mathcal{L}_{i+2}^{\prime}\right\}-\nu_{i+1}(B A)
\end{aligned}
$$

Then $\operatorname{dim}\left\{\mathcal{R}_{i+1}^{\prime} / \mathcal{R}_{i}\right\} \geq \operatorname{dim}\left\{\mathcal{R}_{i+2}^{\prime} / \mathcal{R}_{i+1}\right\}$ implies

$$
\operatorname{dim}\left\{\mathcal{R}_{i+2}\right\}-\operatorname{dim}\left\{\mathcal{R}_{i+1}\right\} \geq \nu_{i+2}(A B)-\nu_{i+1}(A B)
$$

and $\operatorname{dim}\left\{\mathcal{L}_{i+1}^{\prime} / \mathcal{L}_{i}\right\} \geq \operatorname{dim}\left\{\mathcal{L}_{i+2}^{\prime} / \mathcal{L}_{i+1}\right\}$ implies

$$
\nu_{i+1}(B A)-\nu_{i}(B A) \geq \operatorname{dim}\left\{\mathcal{L}_{i+2}^{\prime}\right\}-\operatorname{dim}\left\{\mathcal{L}_{i+1}^{\prime}\right\}
$$

Therefore, $\omega_{i+1}(B A) \geq \omega_{i+2}(A B)$, since $\omega_{i+1}=\nu_{i+1}-\nu_{i}$. $\mathrm{\square}$
The first part of Theorem 3.1 says that the Jordan structures of $A B$ and $B A$ for $\lambda \neq 0$ are identical, if \mathbb{F} is algebraically closed. For a general field, the results can be adapted to show that the elementary divisors of $A B$ and $B A$, that do not have zero as a root, are the same. An illustration is helpful in understanding the constraints implied by the second part, $\omega_{i-1}(A B) \geq \omega_{i}(B A) \geq \omega_{i+1}(A B)$. Suppose the tableau in Figure 3.1 represents the Jordan form of $A B$ at $\lambda=0$. Theorem 3.1 constrains the tableau of the Jordan form of $B A$ at $\lambda=0$ to be that of $A B$ plus or minus the areas covered by the circles of Figure 3.2.

The constraints on Weyr characteristics are equivalent to constraining the block sizes of the Jordan forms of $A B$ and $B A$ to differ by no more than 1. Although this

Fig. 3.2. Given $A B$ (boxes), Theorem 3.1 imposes these constraints on the Weyr characteristic of $B A$ (a circle can be added or subtracted from each row of the tableau): $\omega_{1} \geq 6,9 \geq \omega_{2} \geq 6,6 \geq$ $\omega_{3} \geq 4,6 \geq \omega_{4} \geq 3,4 \geq \omega_{5} \geq 3, \omega_{6}=3,3 \geq \omega_{7} \geq 2,3 \geq \omega_{8} \geq 2, \omega_{9}=2,2 \geq \omega_{9} \geq 0,2 \geq \omega_{10} \geq 0$.
equivalence "is not hard to see" [3] from Figure 3.1, it warrants a short proof. Taking $d=1$, Lemma 3.2 establishes the equivalence of (2.2) and (2.3).

LEMMA 3.2. Let $p_{1} \geq p_{2} \geq \cdots$ and $p_{1}^{\prime} \geq p_{2}^{\prime} \geq \cdots$ be partitions of n and n^{\prime} with conjugate partitions $q_{1} \geq q_{2} \geq \cdots$ and $q_{1}^{\prime} \geq q_{2}^{\prime} \geq \cdots$. Let $d \in \mathbb{N}$. Then
$q_{i}^{\prime} \geq q_{i+d}$ and $q_{i} \geq q_{i+d}^{\prime}$ for all $i>0$ if and only if $\left|p_{i}-p_{i}^{\prime}\right| \leq d$ for all $i>0$.
Proof. If $p_{i}^{\prime}>d$, then $q_{p_{i}^{\prime}}^{\prime} \geq i>q_{p_{i}+1}$ by the conjugacy conditions. By hypothesis, $q_{p_{i}^{\prime}-d} \geq q_{p_{i}^{\prime}}^{\prime}>q_{p_{i}+1}$ and thus $p_{i}^{\prime}-d<p_{i}+1$ since q_{j} is monotonically decreasing in j. Thus $p_{i}^{\prime} \leq p_{i}+d$ (trivially true when $p_{i}^{\prime} \leq d$). By a symmetric argument (switching primed and unprimed), we have $p_{i} \leq p_{i}^{\prime}+d$.

Conversely, if $q_{i+d}>0$, then $p_{q_{i+d}}^{\prime} \geq p_{q_{i+d}}-d \geq(i+d)-d=i>p_{q_{i}^{\prime}+1}^{\prime}$, the first inequality by hypothesis and the next two by the conjugacy conditions. Since p_{j}^{\prime} is monotonically decreasing, we have $q_{i+d}<q_{i}^{\prime}+1$, and thus $q_{i+d} \leq q_{i}^{\prime}$ for all $i>0$ (trivially true when $q_{i+d}=0$). A symmetric argument gives $q_{i+d}^{\prime} \leq q_{i}$.

What remains is to show that the constraints in Theorem 3.1 are exhaustive; we can construct matrices A, B that realize all the possibilities of the theorem. Here we find it easier to use the traditional Segre characteristic of block sizes σ_{i} :

Theorem 3.3. Let $\sigma_{1} \geq \sigma_{2} \geq \cdots$ and $\sigma_{1}^{\prime} \geq \sigma_{2}^{\prime} \geq \cdots$ be partitions of n and m respectively.

If $\left|\sigma_{i}-\sigma_{i}^{\prime}\right| \leq 1$, then there exist $n \times m$ matrices A and B^{t} such that $\sigma_{j}(A B)=\sigma_{j}$ and $\sigma_{j}(B A)=\sigma_{j}^{\prime}$.

Proof. For each j such that σ_{j} and $\sigma_{j}^{\prime} \geq 1$, we construct $\sigma_{j} \times \sigma_{j}^{\prime}$ matrices A_{j} and B_{j}^{t} such that $A_{j} B_{j}=J_{\sigma_{j}}(0)$ and $B_{j} A_{j}=J_{\sigma_{j}^{\prime}}(0)$ according to these three cases:

1. $\sigma_{j}=\sigma_{j}^{\prime}$: set $A_{j}=J_{\sigma_{j}}(0)$ and $B_{j}=I_{\sigma_{j}}$,
2. $\sigma_{j}+1=\sigma_{j}^{\prime}$: set $A_{j}=\left[\begin{array}{ll}0 & I_{\sigma_{j}}\end{array}\right]$ and $B_{j}=\left[\begin{array}{c}I_{\sigma_{j}} \\ 0\end{array}\right]$,
3. $\sigma_{j}=\sigma_{j}^{\prime}+1$: set $A_{j}=\left[\begin{array}{c}I_{\sigma_{j}^{\prime}} \\ 0\end{array}\right]$ and $B_{j}=\left[\begin{array}{ll}0 & I_{\sigma_{j}^{\prime}}\end{array}\right]$.

This defines $k=\min \left\{\omega_{1}(A B), \omega_{1}(B A)\right\}$ matrix pairs $\left(A_{j}, B_{j}\right)$. Consider $\left\{\sigma_{j}\right\}$ as a partition for n rows and $\left\{\sigma_{j}^{\prime}\right\}$ as a partition for m columns. Construct the block diagonal matrix $A=\operatorname{diag}\left(A_{1}, \ldots, A_{k}, 0, \ldots, 0\right)$ with zeros filling any remaining lower right part. Then with partitions $\left\{\sigma_{j}^{\prime}\right\}$ for m rows and $\left\{\sigma_{j}\right\}$ for n columns let $B=$ $\operatorname{diag}\left(B_{1}, \ldots, B_{k}, 0, \ldots, 0\right)$.

The final construction merely stitches together a singular piece with a nonsingular piece.

Corollary 3.4. Let $P \in \mathbb{F}^{n \times n}$ and $Q \in \mathbb{F}^{m \times m}$ have Segre characteristics σ_{i}^{λ} and $\sigma_{i}^{\prime \lambda}$ for each eigenvalue λ, i.e.

$$
P \sim \bigoplus_{\lambda \in \mathbb{F}} \bigoplus_{i>0} J_{\sigma_{i}^{\lambda}}(\lambda) \quad \text { and } \quad Q \sim \bigoplus_{\lambda \in \mathbb{F}} \bigoplus_{i>0} J_{\sigma_{i}^{\prime \lambda}}(\lambda)
$$

If $\sigma_{i}^{\lambda}=\sigma_{i}^{\prime \lambda}$ for all $\lambda \neq 0$ and $\left|\sigma_{i}^{0}-\sigma_{i}^{\prime 0}\right| \leq 1$, then there exist matrices A and B^{t} in $\mathbb{F}^{n \times m}$ such that $P=A B$ and $Q=B A$.

Proof. If $\tilde{P}=X^{-1} P X$ and $\tilde{Q}=Y^{-1} Q Y$ are in canonical form with $\tilde{P}=\tilde{A} \tilde{B}$ and $\tilde{Q}=\tilde{B} \tilde{A}$, then setting $A=X \tilde{A} Y^{-1}$ and $B=Y \tilde{B} X^{-1}$, we have $P=A B$ and $Q=B A$. Hence we take P and Q to be in canonical form.

Let $M=\bigoplus_{\lambda \neq 0} \bigoplus_{i>0} J_{\sigma_{i}}(\lambda)$, i.e., M is a (non-singular) $k \times k$ matrix in Jordan canonical form with Segre characteristic σ_{i}^{λ}, where $k=\sum_{\lambda \neq 0} \sum_{i} \sigma_{i}^{\lambda}$. Let A_{0} and B_{0} be the A and B matrices from Theorem 3.3 with $\sigma_{i}=\sigma_{i}^{0}$ and $\sigma_{i}^{\prime}=\sigma_{i}^{\prime 0}$. Then $A=M \oplus A_{0}$ and $B=I_{k} \oplus B_{0}$.

Acknowledgment. We thank Roger Horn for pointing us to the Flanders paper and others, and for his encouragement.

REFERENCES

[1] James W. Demmel and Alan Edelman. The dimension of matrices (matrix pencils) with given Jordan (Kronecker) canonical forms. Linear Algebra Appl., 230:61-87, 1995.
[2] Alan Edelman, Erik Elmroth, and Bo Kågström. A geometric approach to perturbation theory of matrices and matrix pencils. part II: A stratification-enhanced staircase algorithm. SIAM J. Matrix Anal. Appl., 20(3):667-699, 1999.
[3] Harley Flanders. Elementary divisors of AB and BA. Proc. Amer. Math. Soc., 2(6):871-874, 1951.
[4] W. V. Parker and B. E. Mitchell. Elementary divisors of certain matrices. Duke Math. J., 19(3):483-485, 1952.
[5] Helene Shapiro. The Weyr characteristic. Amer. Math. Monthly, 106(10):919-929, 1999.
[6] Robert C. Thompson. On the matrices AB and BA. Linear Algebra Appl., 1:43-58, 1968.

[^0]: * Received by the editors May 5, 2009. Accepted for publication May 28, 2009. Handling Editor: Roger A. Horn.
 $\dagger 123$ West 92 Street \#1, New York, NY 10025, USA (ross.lippert@gmail.com).
 \ddagger MIT Department of Mathematics, 77 Massachusetts Avenue, Building Room 2-240, Cambridge, MA 02139, USA (gs@math.mit.edu).

