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LEFT EIGENVALUES OF 2× 2 SYMPLECTIC MATRICES∗
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Abstract. A complete characterization is obtained of the 2 × 2 symplectic matrices that have

an infinite number of left eigenvalues. Also, a new proof is given of a result of Huang and So on the

number of eigenvalues of a quaternionic matrix. This is achieved by applying an algorithm for the

resolution of equations due to De Leo et al.
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1. Introduction. Left eigenvalues of n × n quaternionic matrices are still not
well understood. For n = 2, Huang and So gave in [6] a characterization of those
matrices having an infinite number of left eigenvalues. Their result (see Theorem 2.3
below) is based on previous explicit formulae by the same authors for solving some
quadratic equations [7]. Later, De Leo et al. proposed in [4] an alternative method
of resolution, which reduces the problem to finding the right eigenvalues of a matrix
associated to the equation.

In this paper, we firstly give a new proof of Huang-So’s result, based on the
method of De Leo et al. Secondly, we completely characterize those symplectic matri-
ces having an infinite number of left eigenvalues (see Theorem 6.2). The application
we have in mind is to compute in a simple way the so-called Lusternik-Schnirelmann
category of the symplectic group Sp(2). This will be done in a forthcoming paper [5].

2. Left eigenvalues of quaternionic matrices. Let

A =
[
a b

c d

]

be a 2 × 2 matrix with coefficients in the quaternion algebra H. We shall always
consider H

2 as a right vector space over H.

Definition 2.1. A left eigenvalue of A is any quaternion q ∈ H such that there
exists a nonzero u ∈ H2 with Au = qu.
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Clearly, if bc = 0, then the eigenvalues are the diagonal entries. For a non-
triangular matrix A, the following result appears in [6] (with a different proof).

Proposition 2.2. If bc �= 0, then the left eigenvalues of A are given by q = a+bp,
where p is any solution of the unilateral quadratic equation

p2 + a1p+ a0 = 0,(2.1)

with a1 = b−1(a− d) and a0 = −b−1c.

Proof. Let us write A = X + jY , where X,Y are complex 2× 2 matrices, and let

Ã =
[
X −Ȳ
Y X̄

]

be the complexification of A. Let Sdet(A) = | det(Ã)|1/2 be Study’s determinant. By
using the axiomatic properties of Sdet (see [1, 3]), we can triangularize the matrix
A− qI, obtaining that

Sdet(A− qI) = |a− q| · |(d− q)− c(a− q)−1b|.

It is easy to see that q = a would imply bc = 0. Hence, A− qI is not invertible if and
only if (d − q) − c(a − q)−1b = 0. By putting p = b−1(q − a), we obtain the desired
equation.

In [6], Huang and So also proved the following theorem.

Theorem 2.3. The matrix A has either one, two or infinite left eigenvalues. The
infinite case is equivalent to the conditions a1, a0 ∈ R, a0 �= 0 and ∆ = a2

1−4a0 < 0.

The original proof is based on a case by case study guided by the explicit formulae
that the same authors obtained in [7] for solving an equation like (2.1). In particular,
they prove that in the infinite case, the eigenvalues are given by the formula (a+ d+
bξ)/2, where ξ runs over the quaternions ξ ∈ 〈i, j, k〉 with |ξ|2 = |∆|.

It is easy to see that the conditions in Theorem 2.3 above are sufficient. In fact,
if a0 = s and a1 = t, s, t ∈ R, then the definition of eigenvalue leads to the equation
q2 + tq + s = 0 that, after the change p = q + t/2, gives p2 = ∆/4 < 0 which has
infinite solutions p = (

√−∆/2)ω, ω ∈ 〈i, j, k〉, |ω| = 1.

For the necessity of the conditions, we shall give an alternative proof. It exploits
an elegant method for the resolution of equations, proposed by De Leo et al. in [4] as
an improvement of a previous algorithm by Serôdio et al. [8]

3. The eigenvectors method. In order to facilitate the understanding of this
paper, we explicitly discuss in this section the algorithm of De Leo et al. cited above.
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Let

M =
[−a1 −a0

1 0

]

be the so-called companion matrix of equation (2.1). Then

M

[
p

1

]
=

[−a1p− a0

p

]
=

[
p2

p

]
=

[
p

1

]
p,

which shows that in order to find the solutions, we have to look for right eigenvalues
p of M corresponding to eigenvectors of the precise form (p, 1). Accordingly to [4],
we shall call p a privileged right eigenvalue.

Right eigenvalues. The theory of right eigenvalues is well established [2, 9]. A
crucial point is that the eigenvectors associated to a given right eigenvalue do not
form a (right) H-vector space.

Proposition 3.1. Let λ be a right eigenvalue, and let v be a λ-eigenvector. Then
vq−1 is a qλq−1-eigenvector for any nonzero q ∈ H.

Proof. Since Mv = vλ, we have M(vq−1) = vλq−1 = vq−1(qλq−1).

As a consequence, each eigenvector gives rise to a similarity class [λ] = {qλq−1: q ∈
H, q �= 0} of right eigenvalues. Recall that two quaternions λ′, λ are similar if and
only if they have the same norm, |λ′| = |λ|, and the same real part, �(λ′) = �(λ). In
particular, any quaternion λ is similar to a complex number and to its conjugate λ̄.

Eigenvectors. So, in order to solve the equation (2.1), we first need to find the
complex right eigenvalues of the companion matrix M . These correspond to the
eigenvalues of the complexified 4 × 4 matrix M̃ and can be computed by solving the
characteristic equation det(M̃ − λI) = 0. Due to the structure of M̃ , its eigenvalues
appear in pairs λ1, λ̄1, λ2, λ̄2 [9].

In order to compute the eigenvectors, let us consider the C-isomorphism

(z′, z) ∈ C
2 → z′ + jz ∈ H.(3.1)

Proposition 3.2. (x′, x, y′, y) ∈ C4 is a λ-eigenvector of the complexified matrix
M̃ if and only if (x′ + jy′, x+ jy) is a λ-eigenvector of M .

Equation solutions. Let M be the companion matrix of equation (2.1). Once
we have found a complex right eigenvalue λ of M and some λ-eigenvector (q′, q), we
observe that q′ = qλ, due to the special form of M . Hence, by Proposition 3.1, the
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vector [
q′

q

]
q−1 =

[
qλq−1

1

]

is a qλq−1-eigenvector, that is, p = qλq−1 is a privileged eigenvalue in the similarity
class [λ], and hence, it is the desired solution.

Notice that, by Proposition 3.1, two H-linearly dependent eigenvectors give rise
to the same privileged eigenvalue.

4. Number of solutions. Now we are in a position to discuss the number of
solutions of equation (2.1). This will give a new proof of Theorem 2.3.

Let V (λ) ⊂ C4 be the eigenspace associated to the eigenvalue λ of the complexified
matrix M̃ . By examining the possible complex dimensions of the spaces V (λk) and
V (λ̄k), 1 ≤ k ≤ 2, we see that:

1. If the four eigenvalues λ1, λ̄1, λ2, λ̄2 are different, then each V (λk) has dimen-
sion 1 and gives just one privileged eigenvalue pk. Since λ̄k gives pk too, it
follows that there are exactly two solutions.

2. If one of the eigenvalues is real, say λ1 ∈ R, then all its similar quaternions
equal p1 = λ1, independently of the dimension of V (λ1). So, there are one or
two solutions, depending on whether λ1 = λ2 or not.

3. The only case where infinite different privileged eigenvalues may appear is
when λ1 = λ2 �∈ R, which implies dimC V (λ1) = 2 = dimC V (λ̄1).

The infinite case. So, we focus on case 3, when M̃ has exactly two different
eigenvalues λ1, λ̄1. The following proposition states that we actually have an infinite
number of solutions (recall that λ1 /∈ R).

Proposition 4.1. In case 3, all the quaternions similar to λ1 are privileged right
eigenvalues of M .

Proof. Take a C-basis ũ, ṽ of V (λ1) ⊂ C4 and the corresponding vectors u, v in H2

by the isomorphism (3.1). Since the latter are of the form (qλ, q), it follows that the
second coordinates u2, v2 of u and v are C-independent in H, hence a C-basis. This
means that the privileged eigenvalues p = qλ1q

−1, where q is a C-linear combination
of u2 and v2, run over all possible quaternions similar to λ1.

The Huang-So conditions. It remains to verify that in case 3, the conditions of
Theorem 2.3 are satisfied.

Let H0
∼= R3 be the real vector space of quaternions with null real part. The

scalar product is given by 〈q, q′〉 = −�(qq′). An orthonormal basis is 〈i, j, k〉. If
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278 E. Maćıas-Virgós and M.J. Pereira-Sáez

ξ ∈ H0, then we have ξ̄ = −ξ and −ξ2 = |ξ|2. Let Ω = S3 ∩ H0 be the set of vectors
in H0 with norm 1. It coincides with the quaternions similar to the imaginary unit i.

Let λ1 = x + iy, y �= 0, be one of the two complex eigenvalues of M̃ and let
p ∈ [λ1] be any privileged eigenvalue of M . Since �(p) = �(λ1) and |p| = |λ1|, we
can write p = x+ |y|ω, where ω is an arbitrary element of Ω.

Put a1 = t + ξ1, with t ∈ R and ξ1 ∈ H0. ¿From equation (2.1) written in the
form a0 = −(p+ a1)p, we deduce that

�(a0) = xt+ x2 − |y|2 + |y|�(ξ1ω).
Hence, |y|〈ξ1, ω〉 does not depend on ω ∈ Ω. Since y �= 0, the following Lemma 4.2
ensures that ξ1 = 0, i.e. a1 ∈ R.

Lemma 4.2. Let ξ ∈ H0 satisfy 〈ξ, ω−ω′〉 = 0 for any pair ω, ω′ of vectors in Ω.
Then ξ = 0.

Proof. Let ξ = xi + yj + zk �= 0, and suppose for instance that x �= 0 (the
other cases are analogous). Take any ω ∈ Ω orthogonal to ξ and ω′ = i. Then
〈ξ, ω − ω′〉 = x �= 0.

Now, a consequence of Proposition 4.1 is that p = λ1 is a privileged eigenvalue of
M , and thus, by equation (2.1), a0 is a complex number. Since λ̄1 is a solution too,
we deduce that a0 = ā0 is a real number. Finally, from λ2

1 + a1λ1 + a0 = 0, it follows
that a2

1 − 4a0 < 0 because λ1 /∈ R.

This ends the verification of the Huang-So conditions given in Theorem 2.3.

5. Symplectic matrices. Let us consider the 10-dimensional Lie group Sp(2)
of 2 × 2 symplectic matrices, that is, quaternionic matrices A such that A∗A = I.
Geometrically, they correspond to the (right) H-linear endomorphisms of H

2 which
preserve the hermitian product

〈u, v〉 = u∗v = ū1v1 + ū2v2.(5.1)

Thus, a matrix is symplectic if and only if its columns form an orthonormal basis for
this hermitian product.

Let us find a general expression for any symplectic matrix.

Proposition 5.1. A symplectic matrix A ∈ Sp(2) is either diagonal or of the
form

A =
[
α −βγ
β βαβγ/|β|2

]
, β �= 0, |α|2 + |β|2 = 1, |γ| = 1.(5.2)
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Proof. By definition, the two columns A1, A2 of A form an orthonormal basis of
H2 for the hermitian product. Let the first one be

A1 =
[
α

β

]
, α, β ∈ H, |α|2 + |β|2 = 1.

If β = 0, then A is a diagonal matrix diag(α, δ), with |α| = 1 = |δ|.
Suppose β �= 0, and consider the (right) H-linear map 〈A1,−〉:H2 → H, which

is onto because |A1| = 1. Then its kernel K = (A1)⊥ has dimension dimH K = 1.
Clearly, the vector

u =
[ −β
βαβ/|β|2

]
�= 0,

where |u| = 1, is orthogonal to A1, so any other vector in K must be a quaternionic
multiple of u. Since A2 has norm 1, we have

A2 = uγ =
[ −βγ
βαβγ/|β|2

]
, γ ∈ H, |γ| = 1.

6. Left eigenvalues of a symplectic matrix. In this section, we apply The-
orem 2.3 to the symplectic case. We begin with a result that is also true for right
eigenvalues.

Proposition 6.1. The left eigenvalues of a symplectic matrix have norm 1.

Proof. For the hermitian product 〈, 〉 defined in (5.1), the usual euclidean norm
in H2 ∼= R4 is given by |u|2 = u∗u = 〈u, u〉. Let Au = qu, u �= 0. Then

|u|2 = 〈u, u〉 = 〈Au,Au〉 = 〈qu, qu〉 = u∗q̄qu = |q|2|u|2.

Theorem 6.2. The only symplectic matrices with an infinite number of left
eigenvalues are those of the form[

q cos θ −q sin θ
q sin θ q cos θ

]
, |q| = 1, sin θ �= 0.

Such a matrix corresponds to the composition Lq ◦Rθ of a real rotation Rθ �= ±id
with a left translation Lq, |q| = 1.

Proof. Clearly, the matrix above verifies the Huang-So conditions of Theorem 2.3.
Conversely, by taking into account Proposition 5.1, we must check those conditions
for the values a = α, b = −β̄γ, c = β, d = βᾱβ̄γ/|β|2, β �= 0. Since

a0 = −b−1c = γ̄β2/|β|2 = s ∈ R,
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it follows that s = |γ| = 1 (notice that the condition a2
1 − 4a0 < 0 implies a0 > 0).

Then

γ = (β/|β|)2 .

Substituting γ, we obtain b = −β and d = βᾱβ/|β|2. Then a0 = −b−1c = −β−1β = 1.

We now compute

a1 = b−1(a− d) = −β−1(α− βᾱβ/|β|2) = −1
|β|2 (β̄α− ᾱβ).

Hence, �(a1) = 0, so the condition a1 ∈ R implies a1 = 0. This means that β̄α equals
its conjugate ᾱβ, i.e. it is a real number. Denote r = β̄α ∈ R.

Since |α|2 + |β|2 = 1 and β �= 0, it is 0 < |β| ≤ 1. Take any angle θ such
that |β| = sin θ, sin θ �= 0. Define q = β/|β|, so we shall have β = q sin θ with
|q| = 1. On the other hand, the relationships |α| = | cos θ| and |r| = |β̄||α| imply that
r = ± sin θ cos θ. By changing the angle if necessary, we can assume that r = sin θ cos θ
without changing sin θ. Then

α = r(β̄)−1 = rβ/|β|2 = q cos θ.

Finally, d = βᾱβ/|β|2 = q cos θ, and the proof is complete.

Notice that the companion equation of a symplectic matrix is always p2 + 1 = 0.
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