POLYNOMIAL NUMERICAL HULLS OF ORDER 3*

H.R. AFSHIN ${ }^{\dagger}$, M.A. MEHRJOOFARD ${ }^{\dagger}$, AND A. SALEMI ${ }^{\ddagger}$
Dedicated to Professor Chandler Davis for his outstanding contributions to Mathematics

Abstract

In this note, analytic description of $V^{3}(A)$ is given for normal matrices of the form $A=A_{1} \oplus i A_{2}$ or $A=A_{1} \oplus e^{i \frac{2 \pi}{3}} A_{2} \oplus e^{i \frac{4 \pi}{3}} A_{3}$, where A_{1}, A_{2}, A_{3} are Hermitian matrices. The new concept " $k^{t h}$ roots of a convex set" is used to study the polynomial numerical hulls of order k for normal matrices.

Key words. Polynomial numerical hull, Numerical order, $K^{t h}$ roots of a convex set.

AMS subject classifications. 15A60, 15A18, 15A57.

1. Introduction. Let $A \in M_{n}(\mathbb{C})$, where $M_{n}(\mathbb{C})$ denotes the set of all $n \times n$ complex matrices. The numerical range of A is denoted by

$$
W(A):=\left\{x^{*} A x:\|x\|=1\right\} .
$$

Let $p(\lambda)$ be any complex polynomial. Define

$$
V_{p}(A):=\{\lambda:|p(\lambda)| \leq\|p(A)\|\} .
$$

If p is not constant, $V_{p}(A)$ is a compact convex set which contains $\sigma(A)$ (for more details see [5]). The polynomial numerical hull of A of order k, denoted by $V^{k}(A)$ is defined by

$$
V^{k}(A):=\bigcap V_{p}(A),
$$

where the intersection is taken over all polynomials p of degree at most k.
The intersection over all polynomials is called the polynomial numerical hull of A and is denoted by

$$
V(A):=\bigcap_{k=1}^{\infty} V^{k}(A) .
$$

[^0]The following proposition due to O. Nevanlinna states the relationship between polynomial numerical hull of order one and the numerical range of a bounded operator.

Proposition 1.1. Let A be a bounded linear operator on a Hilbert space H, then $V^{1}(A)=\overline{W(A)}($ see $[5,4])$.

In the finite dimensional case $V^{1}(A)=W(A)$. If $A \in M_{n}(\mathbb{C})$ and the degree of the minimal polynomial of A is k, then $V^{i}(A)=\sigma(A)$ for all $i \geq k$. The integer m is called the numerical order of A and is denoted by num (A) provided that $V^{m}(A)=V(A)$ and $V^{m-1}(A) \neq V(A)$. So the numerical order of A is less than or equal to the degree of the minimal polynomial of A. Nevanlinna in [6] proved the following result and Greenbaum later in [4] showed this proposition with a shorter proof.

Proposition 1.2. Let $A \in M_{n}(\mathbb{C})$ be Hermitian. Then $\operatorname{num}(A) \leq 2$ and $V^{2}(A)=\sigma(A)$.

The joint numerical range of $\left(A_{1}, \ldots, A_{m}\right) \in M_{n} \times \cdots \times M_{n}$ is denoted by

$$
W\left(A_{1}, \ldots, A_{m}\right)=\left\{\left(x^{*} A_{1} x, x^{*} A_{2} x, \ldots, x^{*} A_{m} x\right): x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

By the result in [3] (see also [1]),

$$
V^{k}(A)=\left\{\xi \in \mathbb{C}:(0, \ldots, 0) \in \operatorname{conv}\left(W\left((A-\xi I),(A-\xi I)^{2}, \ldots,(A-\xi I)^{k}\right)\right)\right\}
$$

where $\operatorname{conv}(X)$ denotes the convex hull of $X \subseteq \mathbb{C}^{k}$.
Throughout this paper all direct sums are assumed to be orthogonal and we fix the following notations. Define $i[a, b]=\{i t: a \leq t \leq b\}$ and $i(a, b)=\{i t: a<t<b\}$, where a and b are real numbers. Also $|A B|$ means the length of the line segment $A B$, and $S^{\frac{1}{n}}=\left\{z \in \mathbb{C}: z^{n} \in S\right\}$. Let $k \in \mathbb{N}$. Define

$$
\begin{equation*}
R_{k}^{j}:=\left\{r e^{i \theta}: r \geq 0, \frac{j \pi}{k} \leq \theta \leq \frac{(j+1) \pi}{k}\right\}, 0 \leq j \leq 2 k-1 . \tag{1.1}
\end{equation*}
$$

$k=1$
$k=2$
$k=3$

In Section 2, we give an analytic description of $V^{3}(A)$ for any matrix $A \in M_{n}$ of the form $A=A_{1} \oplus i A_{2}$, where $A_{1}^{*}=A_{1}, A_{2}^{*}=A_{2}$. Section 3 concerns matrices of the form $A=A_{1} \oplus e^{i \frac{2 \pi}{3}} A_{2} \oplus e^{i \frac{4 \pi}{3}} A_{3}$, where $A_{1}^{*}=A_{1}, A_{2}^{*}=A_{2}, A_{3}^{*}=A_{3}$. Additional results and remarks about the polynomial numerical hulls of order k of normal matrices are given by a new concept " $k^{t h}$ roots of a convex set" in section 4 .
2. Matrices of the form $A=A_{1} \oplus i A_{2}$. In this section we shall characterize $V^{3}(A)$, where

$$
\begin{equation*}
A=A_{1} \oplus i A_{2}, \quad A_{1}^{*}=A_{1}, \quad A_{2}^{*}=A_{2} \tag{2.1}
\end{equation*}
$$

Lemma 2.1. Let H be a semi-definite Hermitian matrix and $k \geq 2$ be an integer such that $X^{*} H^{k} X=\left(X^{*} H X\right)^{k}$ for some unit vector $X=\left(x_{1}, \ldots, x_{n}\right)^{t}$. Then $X^{*} H X \in \sigma(H)$.

Proof. Without loss of generality, we assume that $H=\operatorname{diag}\left(h_{1}, h_{2}, \ldots, h_{n}\right)$, where $h_{i} \geq 0, i=1, \ldots, n$. Define $P_{i}=\left(h_{i}, h_{i}^{k}\right) \in \mathbb{R}^{2}, i=1, \ldots, n$. Let $\mu=X^{*} H X$. By assumption $\mu^{k}=\left(X^{*} H X\right)^{k}=X^{*} H^{k} X$. Hence $\left\|x_{1}\right\|^{2}\left(h_{1}, h_{1}^{k}\right)+\cdots+\left\|x_{n}\right\|^{2}\left(h_{n}, h_{n}^{k}\right)=$ $\left(\mu, \mu^{k}\right) \in \mathbb{R}^{2}$. Since the graph of the function $y=x^{k}, x \geq 0$ is convex, we have $\mu=h_{i}$ for some $i=1, \ldots, n$. Consequently, $\mu \in \sigma(A)$.

THEOREM 2.2. Let A be of the form (2.1) and A_{2} be a semi-definite matrix. Then $V^{3}(A)=\sigma(A)$.

Proof. Without loss of generality, we assume that A_{2} is a positive definite matrix. By [2, Theorem 2.2], we know that

$$
V^{3}(A) \subseteq V^{2}(A) \subseteq \sigma\left(A_{1}\right) \cup\left\{i \gamma: 0 \leq \gamma \leq r\left(A_{2}\right)\right\}
$$

where $r\left(A_{2}\right)$ is the spectral radius of A_{2}. Then, $V^{3}(A) \cap \mathbb{R} \subseteq \sigma(A)$. Now, let i $\eta \in$ $V^{3}(A) \cap i \mathbb{R}$. Thus there exists a unit vector $x=x_{1} \oplus x_{2}$ such that

$$
\begin{aligned}
\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2} & =1 \\
x_{1}^{*} A_{1} x_{1}+i x_{2}^{*} A_{2} x_{2} & =i \mu \\
x_{1}^{*} A_{1}^{2} x_{1}-x_{2}^{*} A_{2}^{2} x_{2} & =-\mu^{2} \\
x_{1}^{*} A_{1}^{3} x_{1}-i x_{2}^{*} A_{2}^{3} x_{2} & =-i \mu^{3} .
\end{aligned}
$$

The above relations imply that $\left(\mu, \mu^{3}\right)=\left(x_{2}^{*} A_{2} x_{2}, x_{2}^{*} A_{2}^{3} x_{2}\right)$. Define $H=0 \oplus A_{2}$, where 0 is the zero matrix of the same size as A_{1}. Hence $H \geq 0$ and $X^{*} H^{3} X=\left(X^{*} H X\right)^{3}$. By Lemma 2.1, $\mu \in \sigma(H)$. Hence $\mu=0$ or $\mu \in \sigma\left(A_{2}\right) \subseteq \sigma(A)$. It is enough to show that if $\mu=0$, then $\mu \in \sigma(A)$. By [2, Lemma 2.3] we know that $0 \in \sigma(A)$ if and only if $0 \in V^{2}(A)$. Since $0 \in V^{3}(A) \subseteq V^{2}(A)$, we obtain $\mu=0 \in \sigma(A)$.

Corollary 2.3. Let $A=\operatorname{diag}(\alpha,-\beta, 0, i \gamma)$, where α, β and γ are positive numbers. Then $V^{3}(A)=\sigma(A)$ and therefore $\operatorname{num}(A)=3$.

Corollary 2.4. Let $A=\operatorname{diag}(\alpha,-\beta, i \gamma, i \theta)$ such that $\alpha>0, \beta>0$ and $0 \leq \gamma<$ θ. Then $V^{3}(A)=\sigma(A)$.

Theorem 2.5. Let $A=\operatorname{diag}(\alpha,-\beta, i \gamma,-i \theta)$ and α, β, γ and θ be positive numbers. Then
(a) $\alpha=\beta$ and $\gamma=\theta$ if and only if $V^{3}(A)=\sigma(A) \cup\{0\}$.
(b) If $\alpha=\beta$ and $\gamma \neq \theta$, then $V^{3}(A)=\sigma(A) \cup\left(\left\{\frac{\alpha^{2}(\theta-\gamma)}{\alpha^{2}+\theta \gamma}\right\} i \cap W(A)\right)$.
(c) If $\alpha \neq \beta$ and $\gamma=\theta$, then $V^{3}(A)=\sigma(A) \cup\left(\left\{\frac{\gamma^{2}(\beta-\alpha)}{\gamma^{2}+\beta \alpha}\right\} \cap W(A)\right)$.
(d) If $\alpha \neq \beta$ and $\gamma \neq \theta$, then $V^{3}(A)=\sigma(A)$.

Proof. (a) Let $\alpha=\beta$ and $\gamma=\theta$. Define $X=(x, y, z, t)^{t}$, where

$$
\begin{aligned}
& x=\left(\frac{\gamma^{2}+\theta^{2}}{2\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\theta^{2}\right)}\right)^{\frac{1}{2}}, y=\left(\frac{\gamma^{2}+\theta^{2}}{2\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\theta^{2}\right)}\right)^{\frac{1}{2}} \\
& z=\left(\frac{\alpha^{2}+\beta^{2}}{2\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\theta^{2}\right)}\right)^{\frac{1}{2}}, t=\left(\frac{\alpha^{2}+\beta^{2}}{2\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\theta^{2}\right)}\right)^{\frac{1}{2}}
\end{aligned}
$$

It is easy to show that X is a unit vector and $X^{*} A X=X^{*} A^{2} X=X^{*} A^{3} X=0$ and hence $0 \in V^{3}(A)$.

Now, let $\eta \in V^{3}(A)$. Then there exists a unit vector $X=(x, y, z, t)^{t}$ such that

$$
\begin{gather*}
|x|^{2}+|y|^{2}+|z|^{2}+|t|^{2}=1 \tag{2.2}\\
X^{*} A X=\alpha|x|^{2}-\beta|y|^{2}+i \gamma|z|^{2}-i \theta|t|^{2}=\eta \tag{2.3}\\
X^{*} A^{2} X=\alpha^{2}|x|^{2}+\beta^{2}|y|^{2}-\gamma^{2}|z|^{2}-\theta^{2}|t|^{2}=\eta^{2} \tag{2.4}\\
X^{*} A^{3} X=\alpha^{3}|x|^{2}-\beta^{3}|y|^{2}-i \gamma^{3}|z|^{2}+i \theta^{3}|t|^{2}=\eta^{3} \tag{2.5}
\end{gather*}
$$

Conversely, let $\eta=0$. The relations (2.3) and (2.5) imply that $\left(\beta=\alpha\right.$ or $|x|^{2}=$ $\left.|y|^{2}=0\right)$ and $\left(\theta=\gamma\right.$ or $\left.|z|^{2}=|t|^{2}=0\right)$. Since $\alpha, \beta, \gamma, \theta$ are positive numbers and $X \neq 0$, by (2.4), we obtain $\alpha=\beta$ and $\gamma=\theta$.
(b) By $\left[3\right.$, Theorem 2.6], we know that $V^{2}(A) \subseteq[-\alpha, \alpha] \cup i[-\theta, \gamma]$. Let $\eta \in V^{3}(A)$, then $\eta \in[-\alpha, \alpha]$ or $\eta \in i[-\theta, \gamma]$. If $\eta \in \mathbb{R}$, then the relations (2.3) and (2.5) imply that $|z|^{2}=|t|^{2}=0$. Therefore, $|x|^{2}+|y|^{2}=1$ and hence $\eta= \pm \alpha$. Thus, $V^{3}(A) \cap \mathbb{R}=$ $\{-\alpha, \alpha\} \subseteq \sigma(A)$.

Let $i \eta \in V^{3}(A) \cap i \mathbb{R}$. Then $\eta \in[-\theta, \gamma]$. By (2.3) and (2.5), we obtain

$$
|x|^{2}=|y|^{2}=\frac{-\eta^{2}+\gamma^{2}|z|^{2}+\theta^{2}|t|^{2}}{2 \alpha^{2}},|z|^{2}=\frac{\eta\left(\eta^{2}-\theta^{2}\right)}{\gamma\left(\gamma^{2}-\theta^{2}\right)},|t|^{2}=\frac{\eta\left(\eta^{2}-\gamma^{2}\right)}{\theta\left(\gamma^{2}-\theta^{2}\right)} .
$$

Now, replacing the above equations in (2.2), we can write

$$
1=\frac{\left[\gamma \theta+\alpha^{2}\right] \eta^{3}-[\gamma \theta(\gamma-\theta)] \eta^{2}-\left[\gamma^{2} \theta^{2}+\theta^{2}-\alpha^{2} \gamma \theta-\alpha^{2} \gamma^{2}\right] \eta}{\alpha^{2} \gamma \theta(\gamma-\theta)}
$$

Define $P(\eta):=\left[\gamma \theta+\alpha^{2}\right] \eta^{3}-[\gamma \theta(\gamma-\theta)] \eta^{2}-\left[\gamma^{2} \theta^{2}+\theta^{2}-\alpha^{2} \gamma \theta-\alpha^{2} \gamma^{2}\right] \eta-\alpha^{2} \gamma \theta(\gamma-\theta)$ Since $\{i \gamma,-i \theta\} \subseteq V^{3}(A)$, the polynomial $P(\eta)$ is divided by $(\eta-\gamma)(\eta+\theta)$. Hence

$$
\begin{equation*}
P(\eta)=(\eta-\gamma)(\eta+\theta)\left[\left(\gamma \theta+\alpha^{2}\right) \eta-(\theta-\gamma) \alpha^{2}\right] \tag{2.6}
\end{equation*}
$$

Therefore, $V^{3}(A) \cap i \mathbb{R} \subseteq\left\{i \gamma,-i \theta, i \frac{(\theta-\gamma) \alpha^{2}}{\alpha^{2}+\theta \gamma}\right\}$. We are looking to find $\eta \in \mathbb{R}$ such that $P(\eta)=0$ and

$$
\begin{equation*}
\frac{-\eta^{2}+\gamma^{2}|z|^{2}+\theta|t|^{2}}{2 \alpha^{2}} \geq 0, \quad \frac{\eta\left(\eta^{2}-\theta^{2}\right)}{\gamma\left(\gamma^{2}-\theta^{2}\right)} \geq 0, \quad \frac{\eta\left(\eta^{2}-\gamma^{2}\right)}{\theta\left(\gamma^{2}-\theta^{2}\right)} \geq 0 \tag{2.7}
\end{equation*}
$$

Let $\eta=\frac{(\theta-\gamma) \alpha^{2}}{\alpha^{2}+\theta \gamma} \in[-\theta, \gamma]$. It is readily seen that the relations in (2.7) hold and by $(2.6), P(\eta)=0$. Therefore, $V^{3}(A) \cap i \mathbb{R}=\{i \gamma,-i \theta\} \cup\left\{i \frac{\alpha^{2}(\theta-\gamma)}{\alpha^{2}+\gamma \theta} \cap i[-\theta, \gamma]\right\}$.
(c) It is enough to consider $i A$ instead of A.
(d) Let $\eta \in V^{3}(A) \cap \mathbb{R}$. Then, there exists a unit vector X such that $X^{*} A X=$ $\eta, X^{*} A^{2} X=\eta^{2}$ and $X^{*} A^{3} X=\eta^{3}$. These relations imply that $|x|^{2}=\frac{\eta+\beta}{\alpha+\beta},|y|^{2}=\frac{\alpha-\eta}{\alpha+\beta}$, and $|z|^{2}=|t|^{2}=0$. Also, we have $\eta^{2}+(\beta-\alpha) \eta-\alpha \beta=0$. Therefore, $\eta=-\beta$ or $\eta=\alpha$ which are in $\sigma(A)$. Similarly, if $\eta \in V^{3}(A) \cap i \mathbb{R}$ is pure imaginary, then $\eta=-i \theta$ or $i \gamma$ which are in $\sigma(A)$.

REmark 2.6. In the above Figure, we find a geometric interpretations for the $5^{t h}$ point in $V^{3}(A)$, where A is a 4×4 normal matrix as in Theorem $2.5(\mathrm{~b})$, see $\quad[1$, Theorem 5.1]. The points M and K are the orthocenters of the triangles $A B C$ and $A B D$, respectively. Let L be the intersection of the line $C D$ and the line passing through A and perpendicular to $H J$. It is readily seen that the slope of the lines $H J$ and $A P$ are $\cot (\psi-\varphi)$ and $-\tan (\psi-\varphi)$, respectively. Also, $-\tan (\psi-\varphi)=$ $\frac{\tan (\varphi)-\tan (\psi)}{1+\tan (\psi) \tan (\varphi)}=\frac{\theta / \alpha-\gamma / \alpha}{1+(\gamma / \alpha)(\theta / \alpha)}$. Hence $L=\left(0, \frac{\alpha^{2}(\theta-\gamma)}{\alpha^{2}+\gamma \theta}\right)$.

For a 3×3 normal matrix A, the $4^{t h}$ point in $V^{2}(A)$ (if any) is the orthocenter of the triangle generated by $\sigma(A)$. It is interesting that if $\gamma \rightarrow \infty$, then $i \frac{\alpha^{2}(\theta-\gamma)}{\alpha^{2}+\gamma \theta} \rightarrow i \frac{-\alpha^{2}}{\theta}$, where $i \frac{-\alpha^{2}}{\theta}$ is the orthocenter of the triangle generated by $\{\alpha,-\alpha,-i \theta\}[2$, Theorem 2.4].
3. Matrices of the form $A=A_{1} \oplus e^{i \frac{2 \pi}{3}} A_{2} \oplus e^{i \frac{4 \pi}{3}} A_{3}$. In this section, we study the polynomial numerical hull of order 3 of matrices of the form

$$
\begin{equation*}
A=A_{1} \oplus e^{i \frac{2 \pi}{3}} A_{2} \oplus e^{i \frac{4 \pi}{3}} A_{3}, \quad A_{1}^{*}=A_{1}, A_{2}^{*}=A_{2} \text { and } \mathrm{A}_{3}^{*}=\mathrm{A}_{3} \tag{3.1}
\end{equation*}
$$

Theorem 3.1. Let A be a normal matrix such that $\sigma(A) \subseteq R_{3}^{1} \cup R_{3}^{3} \cup R_{3}^{5}$. Then $V^{3}(A) \subseteq R_{3}^{1} \cup R_{3}^{3} \cup R_{3}^{5}$.

Proof. we know that $z \in R_{3}^{1} \cup R_{3}^{3} \cup R_{3}^{5}$ if and only if $z^{3} \in R_{1}^{1}$ (lower half plane), whereas $\sigma\left(A^{3}\right)=\left\{z^{3}: z \in \sigma(A)\right\}$ and $\sigma(A) \subseteq R_{3}^{1} \cup R_{3}^{3} \cup R_{3}^{5}$. Then $\sigma\left(A^{3}\right) \subseteq R_{1}^{1}$ and hence $W\left(A^{3}\right)=\operatorname{conv}\left(\sigma\left(A^{3}\right)\right) \subseteq R_{1}^{1}$. Thus, $V^{3}(A) \subseteq R_{3}^{1} \cup R_{3}^{3} \cup R_{3}^{5}$. \square

Corollary 3.2. Let A be a normal matrix such that $\sigma(A) \subset S=\mathbb{R} \cup e^{i \frac{2 \pi}{3}} \mathbb{R} \cup$ $e^{i \frac{4 \pi}{3}} \mathbb{R}$. Then $V^{3}(A) \subset S$.

Proof. Since $\sigma(A) \subseteq S$ and $S=\left(R_{3}^{0} \cup R_{3}^{2} \cup R_{3}^{4}\right) \cap\left(R_{3}^{1} \cup R_{3}^{3} \cup R_{3}^{5}\right)$, by Theorem 3.1, we obtain $V^{3}(A) \subset S$. \square

Remark 3.3. Let A be as in (3.1). Then $V^{3}(A) \subseteq \mathbb{R} \cup e^{i \frac{2 \pi}{3}} \mathbb{R} \cup e^{i \frac{4 \pi}{3}} \mathbb{R}$. Since $V^{3}\left(e^{i \frac{2 \pi}{3}} A\right) \cap \mathbb{R}=V^{3}(A) \cap e^{i \frac{4 \pi}{3}} \mathbb{R}$, it is enough to find $V^{3}(A) \cap \mathbb{R}$.

Lemma 3.4. Let A be as in (3.1). Then

$$
V^{3}(A) \cap \mathbb{R}=\left\{\eta=x_{1}^{*} A_{1} x_{1}-x_{2}^{*} A_{2} x_{2}:\left[\begin{array}{l}
x_{1}^{*} x_{1}+x_{2}^{*} x_{2}+x_{3}^{*} x_{3}=1 \\
x_{2}^{*} A_{2} x_{2}=x_{3}^{*} A_{3} x_{3} \\
x_{2}^{*} A_{2}^{2} x_{2}=x_{3}^{*} A_{3}^{2} x_{3} \\
\eta^{2}=x_{1}^{*} A_{1}^{2} x_{1}-x_{2}^{*} A_{2}^{2} x_{2} \\
\eta^{3}=x_{1}^{*} A_{1}^{3} x_{1}+x_{2}^{*} A_{2}^{3} x_{2}+x_{3}^{*} A_{3}^{3} x_{3}
\end{array}\right\}\right.
$$

Proof. Suppose that $x=x_{1} \oplus x_{2} \oplus x_{3}$ and $\eta=x^{*} A x \in V^{3}(A) \cap \mathbb{R}$. So

$$
\left\{\begin{array}{l}
x_{1}^{*} x_{1}+x_{2}^{*} x_{2}+x_{3}^{*} x_{3}=x^{*} x=1, \\
\eta=x^{*} A x=x_{1}^{*} A_{1} x_{1}+e^{i \frac{i \pi}{3}} x_{2}^{*} A_{2} x_{2}+e^{i \frac{4 \pi}{3}} x_{3}^{*} A_{3} x_{3}, \\
\eta^{2}=x^{*} A^{2} x=x_{1}^{*} A_{1}^{2} x_{1}+e^{i \frac{4 \pi}{3}} x_{2}^{*} A_{2}^{2} x_{2}+e^{i \frac{2 \pi}{3}} x_{3}^{*} A_{3}^{2} x_{3}, \\
\eta^{3}=x^{*} A^{3} x=x_{1}^{*} A_{1}^{3} x_{1}+x_{2}^{*} A_{2}^{3} x_{2}+x_{3}^{*} A_{3}^{3} x_{3}
\end{array}\right.
$$

Since $\eta \in \mathbb{R}$,

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \eta = x _ { 1 } ^ { * } A _ { 1 } x _ { 1 } + \operatorname { c o s } \frac { 2 \pi } { 3 } x _ { 2 } ^ { * } A _ { 2 } x _ { 2 } + \operatorname { c o s } \frac { 4 \pi } { 3 } x _ { 3 } ^ { * } A _ { 3 } x _ { 3 } , } \\
{ \operatorname { s i n } \frac { 2 \pi } { 3 } x _ { 2 } ^ { * } A _ { 2 } x _ { 2 } + \operatorname { s i n } \frac { 4 \pi } { 3 } x _ { 3 } ^ { * } A _ { 3 } x _ { 3 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\eta=x_{1}^{*} A_{1} x_{1}-x_{2}^{*} A_{2} x_{2} \\
x_{2}^{*} A_{2} x_{2}=x_{3}^{*} A_{3} x_{3}
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ \eta ^ { 2 } = x _ { 1 } ^ { * } A _ { 1 } ^ { 2 } x _ { 1 } + \operatorname { c o s } \frac { 4 \pi } { 3 } x _ { 2 } ^ { * } A _ { 2 } ^ { 2 } x _ { 2 } + \operatorname { c o s } \frac { 2 \pi } { 3 } x _ { 3 } ^ { * } A _ { 3 } ^ { 2 } x _ { 3 } , } \\
{ \operatorname { s i n } \frac { 4 \pi } { 3 } x _ { 2 } ^ { * } A _ { 2 } ^ { 2 } x _ { 2 } + \operatorname { s i n } \frac { 2 \pi } { 3 } x _ { 3 } ^ { * } A _ { 3 } ^ { 2 } x _ { 3 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\eta^{2}=x_{1}^{*} A_{1}^{2} x_{1}-x_{2}^{*} A_{2}^{2} x_{2} \\
x_{2}^{*} A_{2}^{2} x_{2}=x_{3}^{*} A_{3}^{2} x_{3}
\end{array}\right.\right.
\end{aligned}
$$

and

$$
\eta^{3}=x^{*} A^{3} x=x_{1}^{*} A_{1}^{3} x_{1}+x_{2}^{*} A_{2}^{3} x_{2}+x_{3}^{*} A_{3}^{3} x_{3} . \square
$$

Theorem 3.5. Let $A=A_{1} \oplus e^{i \frac{2 \pi}{3}} A_{2}$ and $A_{1}^{*}=A_{1}, A_{2}^{*}=A_{2}$. Then $V^{3}(A)=$ $\sigma(A)$.

Proof. By using [2, Lemma 2.3], $V^{2}(A) \subseteq R_{3}^{2} \cup R_{3}^{5}$ and by Corollary 3.2, $V^{3}(A) \subseteq$ $\mathbb{R} \cup e^{i \frac{2 \pi}{3}} \mathbb{R} \cup e^{i \frac{4 \pi}{3}} \mathbb{R}$. Hence $V^{3}(A) \subseteq V^{2}(A) \cap\left(\mathbb{R} \cup e^{i \frac{2 \pi}{3}} \mathbb{R}\right)$. Now, we will show that

$$
V^{2}(A) \cap\left(\mathbb{R} \cup e^{i \frac{2 \pi}{3}} \mathbb{R}\right) \subseteq \sigma(A)
$$

First, we show that $V^{2}(A) \cap \mathbb{R} \subseteq \sigma\left(A_{1}\right)$. Suppose that $x=x_{1} \oplus x_{2}$ and $\eta=x^{*} A x \in$ $V^{2}(A) \cap \mathbb{R}$. By the same method as in the proof of Lemma 3.4, we have

$$
V^{2}(A) \cap \mathbb{R}=\left\{\eta=x_{1}^{*} A_{1} x_{1}:\left[\begin{array}{l}
x_{1}^{*} x_{1}+x_{2}^{*} x_{2}=1 \\
\eta^{2}=x_{1}^{*} A_{1}^{2} x_{1}
\end{array}\right\}\right.
$$

Then, $\left(x_{1}^{*} A_{1} x_{1}\right)^{2}=x_{1}^{*} A_{1}^{2} x_{1}=\left\|A_{1} x_{1}\right\|^{2}$.
By the Cauchy-Schwarz Inequality, we have $\left(x_{1}^{*} A_{1} x_{1}\right)^{2} \leq\left\|x_{1}\right\|^{2}\left\|A_{1} x_{1}\right\|^{2}$. Hence $A_{1} x_{1}=0$ or $\left\|x_{1}\right\|=1$. In both cases $\eta=x_{1}^{*} A_{1} x_{1} \in \sigma\left(A_{1}\right) \subseteq \sigma(A)$. Since $V^{2}\left(e^{i \alpha} A\right)=$ $e^{i \alpha} V^{2}(A)$, similarly, $V^{2}(A) \cap e^{i \frac{2 \pi}{3}} \mathbb{R} \subseteq \sigma\left(e^{i \frac{2 \pi}{3}} A_{2}\right) \subseteq \sigma(A)$. Therefore, $V^{3}(A)=\sigma(A) . \square$

In the following Theorem, we show that if A_{1}, A_{2} and A_{3} are positive semi-definite matrices as in (3.1), then $V^{3}(A)=\sigma(A)$.

THEOREM 3.6. Let A be as in (3.1). If A_{1}, A_{2}, A_{3} are positive semi-definite matrices, then $V^{3}(A)=\sigma(A)$.

Proof. By Lemma 3.4,

$$
\begin{aligned}
& V^{3}(A) \cap \mathbb{R} \subset\left\{\eta:\left[\begin{array}{l}
x_{1}^{*} x_{1}+x_{2}^{*} x_{2}+x_{3}^{*} x_{3}=1, \\
\eta=x_{1}^{*} A_{1} x_{1}-x_{2}^{*} A_{2} x_{2}, \\
\eta^{3}=x_{1}^{*} A_{1}^{3} x_{1}+x_{2}^{*} A_{2}^{3} x_{2}+x_{3}^{*} A_{3}^{3} x_{3}
\end{array}\right\}\right. \\
& =\left\{\eta:\left(\eta, \eta^{3}\right) \in \operatorname{conv}\left(\left\{\left(a, a^{3}\right)\right\}_{a \in \sigma\left(A_{1}\right)} \cup\left\{\left(-b, b^{3}\right)\right\}_{b \in \sigma\left(A_{2}\right)} \cup\left\{\left(0, c^{3}\right)\right\}_{c \in \sigma\left(A_{3}\right)}\right)\right\} .
\end{aligned}
$$

Assume $A_{1}=\operatorname{diag}\left(a_{1}, \cdots, a_{\ell}\right), A_{2}=\operatorname{diag}\left(b_{1}, \ldots, b_{m}\right)$, and $A_{3}=\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)$, where $0 \leq a_{1} \leq \cdots \leq a_{\ell}, 0 \leq b_{1} \leq \cdots \leq b_{m}$, and $0 \leq c_{1} \leq \cdots \leq c_{n}$ Let $p_{i}=$ $\left(a_{i}, a_{i}^{3}\right), q_{j}=\left(-b_{j}, b_{j}^{3}\right), r_{k}=\left(0, c_{k}^{3}\right)$. By the following Figure, $V^{3}(A) \cap \mathbb{R}=\sigma\left(A_{1}\right)$. Similarly, $V^{3}(A) \cap e^{i \frac{2 \pi}{3}} \mathbb{R} \subseteq \sigma\left(A_{2}\right)$ and $V^{3}(A) \cap e^{i \frac{4 \pi}{3}} \mathbb{R} \subseteq \sigma\left(A_{3}\right)$. Hence, $V^{3}(A)=\sigma(A)$ and the proof is complete.

Proposition 3.7. Let A be as in (3.1). Assume A_{1}, A_{2} are positive semidefinite matrices and A_{3} is a negative semi definite matrix. Then $V^{3}(A) \subseteq \sigma(A) \cup e^{i \frac{\pi}{3}}(0, \infty)$.

Proof. Without loss of generality, we assume that A_{3} is a negative definite matrix. By [2, Theorem 1.4.], $V^{2}(A) \cap\left(\mathbb{R} \cup e^{i \frac{2 \pi}{3}} \mathbb{R}\right) \subseteq \sigma(A)$. Hence $V^{3}(A) \cap\left(\mathbb{R} \cup e^{i \frac{2 \pi}{3}} \mathbb{R}\right) \subseteq$ $\sigma(A)$. By Corollary $3.2, V^{3}(A) \subseteq\left(\mathbb{R} \cup e^{i \frac{2 \pi}{3}} \mathbb{R}\right) \cup e^{i \frac{4 \pi}{3}} \mathbb{R}$. Also, $V^{3}(A) \subseteq W(A)$, therefore, $V^{3}(A) \subseteq \sigma(A) \cup e^{i \frac{\pi}{3}}(0, \infty)$.

In the following example, we show that Theorem 3.6 may not be true if A_{1}, A_{2} are positive semi definite matrices and A_{3} is a negative definite matrix.

Example 3.8. Let $A=\operatorname{diag}\left(0,2 \sqrt{3}, \sqrt{1} 2 e^{i \frac{2 \pi}{3}},-\sqrt{1} 2 e^{i \frac{4 \pi}{3}}\right)$. After a rotation and a translation, by using Theorem 2.5 (a), it is readily seen that $V^{3}(A)=\sigma(A) \cup\left\{\sqrt{3} e^{i \frac{\pi}{3}}\right\}$.
4. $K^{t h}$ roots of a convex set. In this section we introduce the concept of $k^{t h}$ roots of a convex set and we show that the concepts "inner cross" and "outer cross" in $[2$, Section 3] are special cases of this concept.

Definition 4.1. Let S be a convex set and $R:=S^{\frac{1}{k}}=\left\{z \in \mathbb{C}: z^{k} \in S\right\}$. Then R is called $k^{t h}$ root of the convex set S.

In the following Lemma, we list some properties of the $k^{t h}$ roots of a convex set.
Lemma 4.2. Let P and Q be two convex sets. Then
a) $(P \cap Q)^{\frac{1}{k}}=P^{\frac{1}{k}} \cap Q^{\frac{1}{k}}$.
b) $\left(P^{c}\right)^{\frac{1}{k}}=\left(P^{\frac{1}{k}}\right)^{c}$.
c) $\left(e^{i k \theta} P\right)^{\frac{1}{k}}=e^{i \theta} P^{\frac{1}{k}}$.

The following is a key Theorem in this section:
Theorem 4.3. Let A be a normal matrix and S be an arbitrary convex set. If $\sigma(A) \subset S^{\frac{1}{k}}$, then $V^{k}(A) \subset S^{\frac{1}{k}}$.

Proof. If $\sigma(A) \subset S^{\frac{1}{k}}$, then $\sigma\left(A^{k}\right) \subset S$. Since $W\left(A^{k}\right)=\operatorname{conv}\left(\sigma\left(A^{k}\right)\right) \subset S$. Thus, $\left\{z^{k}: z \in V^{k}(A)\right\} \subset S$, and hence $V^{k}(A) \subset S^{\frac{1}{k}}$.

Lemma 4.4. The 2-roots of a line is a rectangular hyperbola with center at the origin.

Proof. Suppose that $(a, b) \neq(0,0)$ and let $S=\{(x, y): a x+b y+c=0\}$. Therefore

$$
R=S^{\frac{1}{2}}=\left\{(x, y): a\left(x^{2}-y^{2}\right)+b(2 x y)+c=0\right\}
$$

It is clear that R is an arbitrary rectangular hyperbola with center at the origin.
Corollary 4.5. [2, Theorem 3.1] Let $A \in M_{n}$ be a normal matrix and $\sigma(A) \subseteq$ R, where R is a rectangular hyperbola. Then $V^{2}(A) \subset R$.

Proof. Since $V^{2}(\alpha A+\beta I)=\alpha V^{2}(A)+\beta$, we assume that the center of R is origin. Now, by Theorem 4.3 and Lemma 4.4 the result holds.

Corollary 4.6. [2, Lemma 3.3] Let $A \in M_{n}(\mathbb{C})$ be a normal matrix and Δ be an inner or outer cross. If $\sigma(A) \subseteq \Delta$, then $V^{2}(A) \subseteq \Delta$.

Proof. Without loss of generality we assume that $\Delta=\left\{x+i y: x^{2}-y^{2} \leq 1\right\}$. Then, $\Delta=\left\{z \in \mathbb{C} \mid: \Re\left(z^{2}\right) \leq 1\right\}$. Define $S:=\{z \in \mathbb{C} \mid: \Re(z) \leq 1\}$. Thus, $\Delta=S^{1 / 2}$. This means that Δ is the $2^{\text {nd }}$ root of the convex set S. By Theorem 4.3, the result holds.

Let

$$
\begin{equation*}
R_{k}^{e}=\bigcup_{t=0}^{k-1} R_{k}^{2 t} \quad \text { and } \quad \mathrm{R}_{\mathrm{k}}^{\mathrm{o}}=\bigcup_{\mathrm{t}=0}^{\mathrm{k}-1} \mathrm{R}_{\mathrm{k}}^{2 \mathrm{t}+1} \tag{4.1}
\end{equation*}
$$

where R_{k}^{t} be as in (1.1). It is clear that $\mathbb{C}=R_{k}^{e} \cup R_{k}^{o}$ and $R_{k}^{o}=e^{\frac{i \pi}{k}} R_{k}^{e}$. The following is a generalization of Theorem 3.1.

Theorem 4.7. Let A be a normal matrix and let $z_{0} \in \mathbb{C}$ and $\eta \in \mathbb{R}$. If $\sigma(A) \subseteq$ $z_{0}+e^{i \eta} R_{k}^{e}$, then $V^{k}(A) \subseteq z_{0}+e^{i \eta} R_{k}^{e}$.

Proof. Let $\hat{A}:=e^{-i \eta}\left(A-z_{0} I\right)$, then $\sigma(\hat{A}) \subseteq R_{k}^{e}$. Define $S=R_{1}^{0}$ (upper half plane), it is easy to show that $S^{1 / k}=R_{k}^{e}$. Since $\sigma(\hat{A}) \subseteq S^{1 / k}=R_{k}^{e}$, by Theorem 4.3 $V^{k}(\hat{A}) \subseteq S^{1 / k}=R_{k}^{e}$. Also, $V^{k}(\hat{A})=e^{-i \eta}\left(V^{k}(A)-z_{0}\right)$, hence

$$
V^{k}(A) \subseteq z_{0}+e^{i \eta} R_{k}^{e}
$$

Corollary 4.8. Let A be a normal matrix of the form

$$
A=A_{1} \oplus e^{i \frac{2 \pi}{k}} A_{2} \oplus \cdots \oplus e^{i \frac{2(k-1) \pi}{k}} A_{k}, \quad A_{i}^{*}=A_{i}, \quad i=1, \ldots, k
$$

Then, $V^{k}(A) \subseteq \mathbb{R} \cup e^{i \frac{2 \pi}{k}} \mathbb{R} \cup \cdots \cup e^{i \frac{2(k-1) \pi}{k}} \mathbb{R}$.
Proof. It is clear that $\sigma(A) \subseteq \mathbb{R} \cup e^{i \frac{2 \pi}{k}} \mathbb{R} \cup \cdots \cup e^{i \frac{2(k-1) \pi}{k}} \mathbb{R}=R_{k}^{e} \cap R_{k}^{o}$, where R_{k}^{e} and R_{k}^{o} be as in (4.1). By Theorem 4.7,

$$
V^{k}(A) \subseteq R_{k}^{e} \cap R_{k}^{o}=\mathbb{R} \cup e^{i \frac{2 \pi}{k}} \mathbb{R} \cup \cdots \cup e^{i \frac{2(k-1) \pi}{k}} \mathbb{R}
$$

Acknowledgement. This research has been supported by Mahani Mathematical Research Center, Kerman, Iran. Research of the first author was supported by Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran.

REFERENCES

[1] Ch. Davis, C. K. Li, and A. Salemi. Polynomial numerical hulls of matrices. Linear Algebra and its Applications, 428:137-153, 2008.
[2] Ch. Davis and A. Salemi. On polynomial numerical hulls of normal matrices. Linear Algebra and its Applications, 383: 151-161, 2004.
[3] V. Faber, W. Joubert, M. Knill, and T. Manteuffel. Minimal residual method stronger than polynomial preconditioning. SIAM Journal on Matrix Analysis and Applications, 17: 707729, 1996.
[4] A. Greenbaum. Generalizations of the field of values useful in the study of polynomial functions of a matrix. Linear Algebra and Its Applications, 347: 233-249, 2002.
[5] O. Nevanlinna. Convergence of Iterations for Linear Equations. Birkhäuser, Basel 1993.
[6] O. Nevanlinna. Hessenberg matrices in Krylov subspaces and the computation of the spectrum. Numerical Functional Analysis and Optimization, 16:443-473, 1995.

[^0]: *Received by the editors December 28, 2008. Accepted for publication April 17, 2009. Handling Editor: Bit-Shun Tam
 ${ }^{\dagger}$ Department of Mathematics, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran (afshin@mail.vru.ac.ir, aahaay@gmail.com).
 \ddagger Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran, and Center of Excellence in Linear Algebra and Optimization of Shahid Bahonar University of Kerman, Iran (salemi@mail.uk.ac.ir).

