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POLYNOMIAL NUMERICAL HULLS OF ORDER 3*
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Abstract. In this note, analytic description of V3(A) is given for normal matrices of the form
A=A ®iAsor A=A1 & e"%rAg ® ei%r As, where A1, Aa, A3 are Hermitian matrices. The new
concept “kt" roots of a convex set” is used to study the polynomial numerical hulls of order k for
normal matrices.
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1. Introduction. Let A € M, (C), where M, (C) denotes the set of all n x n
complex matrices. The numerical range of A is denoted by

W(A) :={z* Az : ||z|| = 1}.
Let p(\) be any complex polynomial. Define
Vp(4) == {X: [p(V)] < [Ip(A)]1}-

If p is not constant, V,(A) is a compact convex set which contains o(A4) (for more

details see [5]). The polynomial numerical hull of A of order k, denoted by V*(A) is
defined by

VE(A) =V, (A),

where the intersection is taken over all polynomials p of degree at most k.

The intersection over all polynomials is called the polynomial numerical hull of
A and is denoted by

V(4) = VF(A).

k=1

*Received by the editors December 28, 2008. Accepted for publication April 17, 2009. Handling
Editor: Bit-Shun Tam.

TDepartment of Mathematics, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
(afshin@mail.vru.ac.ir, aahaay@gmail.com).

fDepartment of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran, and Center
of Excellence in Linear Algebra and Optimization of Shahid Bahonar University of Kerman, Iran
(salemi@mail.uk.ac.ir).

253



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 18, pp. 253-263, May 2009

254 H.R. Afshin, M.A. Mehrjoofard, and A. Salemi

The following proposition due to O. Nevanlinna states the relationship between poly-
nomial numerical hull of order one and the numerical range of a bounded operator.

PROPOSITION 1.1. Let A be a bounded linear operator on a Hilbert space H, then
V1(A) = W(A) (see [5, 4]).

In the finite dimensional case V(A) = W(A). If A € M,,(C) and the degree of the
minimal polynomial of A is k, then Vi(A) = o(A) for all i > k. The integer m is called
the numerical order of A and is denoted by num(A) provided that V™ (A) = V(A)
and V™~1(A) # V(A). So the numerical order of A is less than or equal to the degree
of the minimal polynomial of A. Nevanlinna in [6] proved the following result and
Greenbaum later in [4] showed this proposition with a shorter proof.

PROPOSITION 1.2. Let A € M,(C) be Hermitian. Then num(A) < 2 and
V2(A) = o(A).

The joint numerical range of (A41,...,A;,) € M, X --- X M, is denoted by
W (A1,...,An) ={(z" A1z, 2" Aoz, ... ,0" App) : . € C* 2¥x = 1}
By the result in [3] (see also [1]),
VE(A) = {ge C:(0,...,0) ¢ conV(W ((Afgf),(Af§I)2,...,(Af§I)k))}
where conv(X) denotes the convex hull of X C C*.

Throughout this paper all direct sums are assumed to be orthogonal and we fix
the following notations. Define i[a,b] = {it : a« <t < b} and i(a,b) = {it: a < t < b},
where a and b are real numbers. Also |AB| means the length of the line segment AB,
and S» ={z€C:z" e S}. Let k € N. Define

_ | . -
(1.1) Ri:_{re”:rzo,]]:gegwr}, 0<j<2k—1.
RO 1 0 Rl
1 R, R,
Ry R
5
" % . -
Ry
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In Section 2, we give an analytic description of V3(A) for any matrix A € M,, of
the form A = A; @ iAs, where A} = Ay, A5 = As. Section 3 concerns matrices of the
form A = A @elT Ay@e’ T As, where AT = Ay, A5 = Ay, A5 = As. Additional results
and remarks about the polynomial numerical hulls of order k of normal matrices are
given by a new concept “k" roots of a convex set” in section 4.

2. Matrices of the form A = A; @ iA5. In this section we shall characterize
V3(A), where

(2.1) A=Ay ®idy, A} =Ay, A5=A,.

LEMMA 2.1. Let H be a semi-definite Hermitian matriz and k > 2 be an in-
teger such that X*H*X = (X*HX)* for some unit vector X = (x1,...,x,)". Then
X*HX € o(H).

Proof. Without loss of generality, we assume that H = diag(h1, he, ..., hy,), where
h; > 0,i = 1,...,n. Define P, = (h;,h¥) € R%)i = 1,...,n. Let p = X*HX. By
assumption % = (X*HX)* = X*H*X. Hence |21 (h1, hE)+-- |z 1P (R, h%) =
(1, u*) € R2. Since the graph of the function y = z*, 2 > 0 is convex, we have p = h;
for some ¢ = 1,...,n. Consequently, u € o(A). O

THEOREM 2.2. Let A be of the form (2.1) and Ay be a semi-definite matriz.
Then V3(A) = o(A).

Proof. Without loss of generality, we assume that A, is a positive definite matrix.
By [2, Theorem 2.2], we know that
VE(A) CVZ(A) Co(A) U{iv: 0 <y <7 (4},
where r(Ay) is the spectral radius of As. Then, V3(4A)NR C o(A). Now, let in €
V3(A) NiR. Thus there exists a unit vector z = x1 @ 2 such that
a2 + 1o 2 = 1,
2] A1z +ixi Agxe = ip,
ot A2z — a3 Aley = — 2,
i Awy — iy Adry = —ip®.
The above relations imply that (u, u?) = (23 Asze, 25 A315). Define H = 0 Ao, where
0 is the zero matrix of the same size as A;. Hence H > 0 and X*H3X = (X*HX)3.
By Lemma 2.1, y € o(H). Hence p =0 or u € 0(Az) C 0(A). It is enough to show

that if g = 0, then p € o(A). By[2, Lemma 2.3] we know that 0 € o(A) if and only if
0 € V2(A). Since 0 € V3(A) C V2(A), we obtain =0 € o(A). O

COROLLARY 2.3. Let A = diag(c, —03,0,47), where ., 8 and ~y are positive num-
bers. Then V3(A) = o(A) and therefore num(A) = 3.
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COROLLARY 2.4. Let A = diag(«, —3,i,10) such that a > 0,8 >0 and 0 < v <
0. Then V3(A) = o(A).

THEOREM 2.5. Let A = diag(a, —3,1y,—i0) and «, 8, and 0 be positive num-
bers. Then

(a) o= andy =0 if and only if V3(A) = o(A) U {0}.

(b) Ifa=p and~y #0, then V3 (A) = o (A) U {“2(9’7)}iﬂW(A)).

aZ+0~

(c) Ifa# B3 and~ =0, then V3 (A) = o (A)

C

{wz(ﬁ—a)} ﬂW(A)) )
(d) Ifa+# B andy # 0, then V3 (A) = o (A).

Proof. (a) Let a = 3 and v = 0. Define X = (z,y, 2,t)!, where

e ,Y2+02 2 B ,Y2+92 2
@ prrre)) T k@)

B a2 + 3 P a? 4§ H
Z_<2(042+ﬁ2+72+92)>’ _<2(a2+52+72+02)) '

It is easy to show that X is a unit vector and X*AX = X*A%2X = X*A43X =0
and hence 0 € V3 (A).

Now, let 7 € V3 (A). Then there exists a unit vector X = (z,, z,t)* such that

(2.2) 2| + |yl + 12" + [¢* = 1,

(2.3) X*AX = ala)* = Bly[* +iv|2)* —i0 [t =,
(2.4) XX = o [z + B2 |y = 7 |2 = 0t = n?,
(2.5) X*A3X = o |z — B Jy® — in® |2]? + 0% |t = P

Conversely, let 7 = 0. The relations (2.3) and (2.5) imply that (3 = « or |z|> =
ly]> = 0) and (@ = 5 or |2|* = |¢|* = 0). Since o, §,7,0 are positive numbers and
X #0, by (2.4), we obtain o = § and v = 6.

(b) By [3, Theorem 2.6], we know that V2 (A) C [~a,a]Ui[—0,7]. Let n € V3 (A),
then n € [—a,a] or n € i[—0,7]. If n € R, then the relations (2.3) and (2.5) imply
that |z|> = |t|> = 0. Therefore, |z|> + |y|* = 1 and hence 1 = £a. Thus, V3 (4) NR =
{—a,a} Co(A).
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Let in € V3 (A) NiR. Then n € [—0,4]. By (2.3) and (2.5), we obtain

s n(n* =77

oo~V RPN o (P07 s
ly|” = |2| = et
0(v*—6°)

|l'| = y 20[2 Y - ’7(72 _ 92)

Now, replacing the above equations in (2.2), we can write

[0 + 0|0 — [40(y — O)n* — [726% + 62 — a0 — a®4%Jn

b= a?y0(y - 0)

Define P(n) := [y0 +a?n® — [v0(y — 0)]n* — [v*0% 4+ 6 — @70 — a*+*In — a*40(y —0)
Since {iry, —i0} C V3(A), the polynomial P(n) is divided by (n — v)(n + 6). Hence

(2.6) P(n) = (n—7)(n+0)[(0+a®)n— (0 —y)a’].

Therefore, V3(A) NiR C {i% —10, i%} . We are looking to find 7 € R such that
P(n) =0 and

2
—n? +2 |2|” +0[t)
202

(2.7) >0,

Let n = (iglé‘ff € [—0,7]. Tt is readily seen that the relations in (2.7) hold and

by (2.6), P(n) = 0. Therefore, V3(A) NiR = {i~y, —if} U {iaargi;g) N i[—@,’y]} :

(¢) It is enough to consider iA instead of A.

(d) Let n € V3(A) NR. Then, there exists a unit vector X such that X*AX =
1, X*A%2X = n? and X*A3X = n3. These relations imply that |:1c|2 = %7 \y|2 = g‘—;g,
and |Z|2 = |t|2 = 0. Also, we have 7 + (8 — a)n — a3 = 0. Therefore, n = —3 or
n = a which are in o (A) . Similarly, if n € V3 (A)NiR is pure imaginary, then n = —if
or iy which are in o (A). O
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REMARK 2.6. In the above Figure, we find a geometric interpretations for the
5" point in V3(A), where A is a 4 x 4 normal matrix as in Theorem 2.5(b), see [1,
Theorem 5.1]. The points M and K are the orthocenters of the triangles ABC and
ABD, respectively. Let L be the intersection of the line C'D and the line passing
through A and perpendicular to HJ. It is readily seen that the slope of the lines
HJ and AP are cot(1) — ¢) and —tan(y — ¢), respectively. Also, —tan(y) — ) =

tan(p)—tan(y) _  O/a—v/a o a?(0—7)
TFtan(9) tan(p) =~ T7(/a)(8/a)- Henee L = (0’ AT ) :

For a 3 x 3 normal matrix A, the 4" point in V2(A) (if any) is the orthocenter of
a?(0—v) o2
a2+'yz — i
2
where i~ is the orthocenter of the triangle generated by {c, —a, —if} [2, Theorem
2.4].

the triangle generated by o(A). It is interesting that if v — oo, then i

3. Matrices of the form A= A4; @ s A @ e As. In this section, we study
the polynomial numerical hull of order 3 of matrices of the form

(31) A=A @eTA@eT A, Af = Ay, A=Ay and A = As.

THEOREM 3.1. Let A be a normal matriz such that o(A) C R U R3 U R3. Then
V3(A) C RLURSURS.

Proof. we know that z € R U R3 U R} if and only if 2* € R} (lower half plane),
whereas 0(A3) = {23 : 2 € 0(A)} and 0(A) C R} U R} U R}. Then o(A43) C R} and
hence W (A4*) = conv (o (4*)) C R}. Thus, V*(A) C R§UR3URS. O
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COROLLARY 3.2. Let A be a normal matriz such that o (A) C S = RUe!F R U
¢ R. Then V3 (A) C S.

Proof. Since o(A) C S and S = (RUR3U R3) N (R U R3 U R}), by Theorem
3.1, we obtain V3 (A) C S. O

REMARK 3.3. Let A be as in (3.1). Then V3(4) C RU ¥R U el R. Since
V3(eiF A)NR = V3(A) N el TR, it is enough to find V3 (4) NR.

LEMMA 3.4. Let A be as in (3.1). Then

TiT1 + 5T + T3T3 = 1,
x;AQZQ = .I;Agl’g,
VA NR = n=aiAix) — a3 Aszy : *A%xg = x5 Adxs,
77 = 21 A2z) — 25 A3Ts,
0 = at Adwy + 5 Adwo + x5 Ads

Proof. Suppose that © = 21 @ x2 ® w3 and n = 2*Axr € V3 (A)NR. So

TiT1 + 2530 + RT3 = T = 1,

n=a*Ar = 7 A1x1 + eiQ‘Tﬂ@Ang + €i4‘7ﬂ.’L‘§A3(E3,
n? =a*A%r = 27 A2z + ei%ﬂmﬁA%xQ + ei%Tﬂxz‘;A%xg,
0 = a* Adx = 2t A3y + 25 A3xo + 1 Adxs.

Since n € R,

27 .k

n = xiA1z1 + cos —x 5Asx9 + cos 4& Ty AsTs, N n=aziA1x1 —x5As29,
sin a5 Agxo + sin 5F 3 TosAsrs =0

.%‘3142332 = $§A3$3

2 _ 2 2
{ n? = a3 A2z + cos ”x’Q‘AQxQ + cos ”x§A3x3, { n° =aiAjxr — 25 A5,
4 2
sin x5 Asro + sin ZXxs A2z3 =

5 Adry = a5 Al
and
0 =a* A3 = 2} Axy + b Adwy + aiAdxs. O
THEOREM 3.5. Let A = Ay @ e'5 Ay and AT = Ay, A5 = Ay. Then V3(A) =
a(A).
Proof. By using [2, Lemma 2.3], V2(A4) C R2U R} and by Corollary 3.2, V3(A) C
RUe SR U R. Hence V3(A) C V2(A) N (R Uels R) . Now, we will show that

V2(4)N (R U ei%”R) C o(A).
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First, we show that V2(A)NR C o(A;). Suppose that z = 1 @ x5 and n = 2*Ax €
V2 (A) NR. By the same method as in the proof of Lemma 3.4, we have

VZ(A)NR = {n—x’{Alxl : {

riry +adrg =1,
n° = 27 Al '

Then, (¢} A121)* = 2] A3y = || Az ||

By the Cauchy-Schwarz Inequality, we have (7 A1z1)* < |lz1® ||A121 . Hence
Ayzy = 0or ||z1]| = 1. In both cases n = 2 A1z1 € 0 (A1) C o (A). Since VZ(e!*A) =
e’ *V2(A), similarly, V2 (A)ﬁeiz‘T"R C a(ei%r Ay) C o(A). Therefore, V3 (A) = o (A) O

In the following Theorem, we show that if Ay, A and A3 are positive semi-definite
matrices as in (3.1), then V3(A) = o(A).

THEOREM 3.6. Let A be as in (3.1). If Ay, As, As are positive semi-definite
matrices, then V3(A) = a(A).

Proof. By Lemma 3.4,

r Xy + xhxe + xix3 =1,
V3(A)NRCn: | n=aiA12) — 25 Asms,
03 = wi Adwy + w5 Adwg + 25 Al

= {0 (1) € conv ({(0:6%) ey U L= Yo U L0 Yooy ) -

Assume A; = diag (a1, -+, ap), Az = diag (by,...,by), and Az = diag(c1,...,¢n),
where 0 < a; < - < ap, 0 < by <~ <byp,and 0 < ¢; < -+ < ¢, Let p; =
(ai, af’) Q= (—b]-, b;’) ST = (07 ci) . By the following Figure, V3 (A) NR = o (4;).
Similarly, V3(A)Ne! 5 R C o(A;) and V3(A)Ne' TR C 0(As). Hence, V3(A4) = o(A)
and the proof is complete. O

y=-v’




Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 18, pp. 253-263, May 2009

Polynomial Numerical Hulls of Matrices of Order 3 261
PROPOSITION 3.7. Let A be as in (3.1). Assume Ay, As are positive semidefinite
matrices and Az is a negative semi definite matriz. Then V3(A) C o(A)Ue'5 (0, 00).

Proof. Without loss of generality, we assume that Ag is a negative definite matrix.
By [2, Theorem 1.4.], V2(A) N (]RU eiQTﬂR> C (A). Hence V3(4)N(RUEFR) C
o(A). By Corollary 3.2, V3(A) C (]R U eizTﬂR> UelFR. Also, V3(A) C W(A), there-
fore, V3(A) C o(A) Ue's(0,00). 0

In the following example, we show that Theorem 3.6 may not be true if Ay, Ao
are positive semi definite matrices and Aj is a negative definite matrix.

EXAMPLE 3.8. Let A = diag(0,2v/3, V1265 —ﬂ2ei4‘77). After a rotation and a
translation, by using Theorem 2.5 (a), it is readily seen that V3(A) = o(A)U{v/3¢'5 }.

4. K™ roots of a convex set. In this section we introduce the concept of k"
roots of a convex set and we show that the concepts “inner cross” and “outer cross”
in [2, Section 3] are special cases of this concept.

DEFINITION 4.1. Let S be a convex set and R := S% = {z eC:zFe S}. Then
R is called k" root of the convex set S.

In the following Lemma, we list some properties of the k" roots of a convex set.
LEMMA 4.2. Let P and Q be two convex sets. Then

a) (PNQ)* = Pt NQ*.

b) (P)F = (P%)c.

c) (eiWP)% = ¢ P,

The following is a key Theorem in this section:

THEOREM 4.3. Let A be a normal matriz and S be an arbitrary convex set. If
o (A) C S*, then V¥ (A) C S*.

Proof. If o (A) C S*, then o (A*) c 5. Since W (4*) = conv(c (AF)) C S.
Thus, {z¥ : 2 € V¥ (A4)} C S, and hence V¥ (4) c S*.0

LEMMA 4.4. The 2-roots of a line is a rectangular hyperbola with center at the
origin.

Proof. Suppose that (a,b) # (0,0) and let S = {(z,y) : ax + by + ¢ = 0} . There-
fore

[N

R=257 ={(z,y):a (2’ —y*) + b(2zy) + c =0} .
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It is clear that R is an arbitrary rectangular hyperbola with center at the origin. O

COROLLARY 4.5. [2, Theorem 3.1] Let A € M,, be a normal matriz and o(A) C
R, where R is a rectangular hyperbola. Then V2(A) C R.

Proof. Since VZ(aA + BI) = aV?(A) + 3, we assume that the center of R is
origin. Now, by Theorem 4.3 and Lemma 4.4 the result holds. O

COROLLARY 4.6. [2, Lemma 3.3] Let A € M, (C) be a normal matriz and A be
an inner or outer cross. If o (A) C A, then V2 (A) C A.

Proof. Without loss of generality we assume that A = {x +iay:a?—y? < 1}.
Then, A = {z € C| : R(2?) < 1}. Define S := {z € C| : R(z) < 1}. Thus, A = /2.
This means that A is the 2"¢ root of the convex set S. By Theorem 4.3, the result
holds. O

Let
k—1 k—1
(4.1) r=J R and p= R,
t=0 t=0

where R} be as in (1.1). It is clear that C = R{ UR? and R} = et R¢. The following
is a generalization of Theorem 3.1.

THEOREM 4.7. Let A be a normal matriz and let zo € C andn € R. If o (A) C
2o + €MRS, then V¥ (A) C 2 + €™ RY.

Proof. Let A := e (A — zI), then o (121) C R¢. Define S = RY (upper half
plane), it is easy to show that Sk — Rj,. Since o (/1) C SVk = Rj,, by Theorem 4.3
vk (A) C S'* = Re. Also, VE(A) = e~ (VF(A) — zo), hence

VF(A) C 2 +eMRS. O

COROLLARY 4.8. Let A be a normal matriz of the form

2(k—1)w
— %

A=A @eF A D - Oé Ay, Af=A; i=1,...k

2(k—1)m
L

Then, VF(A) CRUEFRU---Ue R.

2(k—1)m
Lo

Proof. Tt is clear that o(A) CRUeFRU---Ue
and RY be as in (4.1). By Theorem 4.7,

R = R; N R}, where R},

PRICESOL;

VF(A) CRENR, =RUEFRU---Ue R. O



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 18, pp. 253-263, May 2009

Polynomial Numerical Hulls of Matrices of Order 3 263

Acknowledgement. This research has been supported by Mahani Mathematical
Research Center, Kerman, Iran. Research of the first author was supported by Vali-
E-Asr University of Rafsanjan, Rafsanjan, Iran.

REFERENCES

[1] Ch. Davis, C. K. Li, and A. Salemi. Polynomial numerical hulls of matrices. Linear Algebra and
its Applications, 428:137-153, 2008.

[2] Ch. Davis and A. Salemi. On polynomial numerical hulls of normal matrices. Linear Algebra
and its Applications, 383: 151-161, 2004.

[3] V. Faber, W. Joubert, M. Knill, and T. Manteuffel. Minimal residual method stronger than
polynomial preconditioning. SIAM Journal on Matriz Analysis and Applications, 17: T07—
729, 1996.

[4] A. Greenbaum. Generalizations of the field of values useful in the study of polynomial functions
of a matrix. Linear Algebra and Its Applications, 347: 233-249, 2002.

[5] O. Nevanlinna. Convergence of Iterations for Linear Equations. Birkhduser, Basel 1993.

[6] O. Nevanlinna. Hessenberg matrices in Krylov subspaces and the computation of the spectrum.
Numerical Functional Analysis and Optimization, 16:443-473, 1995.



