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POLYNOMIAL NUMERICAL HULLS OF ORDER 3∗
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Abstract. In this note, analytic description of V 3(A) is given for normal matrices of the form

A = A1 ⊕ iA2 or A = A1 ⊕ ei
2π

3 A2 ⊕ ei
4π

3 A3, where A1, A2, A3 are Hermitian matrices. The new

concept “kth roots of a convex set” is used to study the polynomial numerical hulls of order k for

normal matrices.
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1. Introduction. Let A ∈ Mn(C), where Mn(C) denotes the set of all n × n

complex matrices. The numerical range of A is denoted by

W (A) := {x∗Ax : ‖x‖ = 1}.
Let p(λ) be any complex polynomial. Define

Vp(A) := {λ : |p(λ)| ≤ ‖p(A)‖}.
If p is not constant, Vp(A) is a compact convex set which contains σ(A) (for more

details see [5]). The polynomial numerical hull of A of order k, denoted by V k(A) is

defined by

V k (A) :=
⋂

Vp (A),

where the intersection is taken over all polynomials p of degree at most k.

The intersection over all polynomials is called the polynomial numerical hull of

A and is denoted by

V (A) :=

∞
⋂

k=1

V k (A).
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The following proposition due to O. Nevanlinna states the relationship between poly-

nomial numerical hull of order one and the numerical range of a bounded operator.

Proposition 1.1. Let A be a bounded linear operator on a Hilbert space H, then

V 1(A) = W (A) (see [5, 4]).

In the finite dimensional case V 1(A) = W (A). If A ∈ Mn(C) and the degree of the

minimal polynomial of A is k, then V i(A) = σ(A) for all i ≥ k. The integer m is called

the numerical order of A and is denoted by num(A) provided that V m(A) = V (A)

and V m−1(A) 6= V (A). So the numerical order of A is less than or equal to the degree

of the minimal polynomial of A. Nevanlinna in [6] proved the following result and

Greenbaum later in [4] showed this proposition with a shorter proof.

Proposition 1.2. Let A ∈ Mn(C) be Hermitian. Then num(A) ≤ 2 and

V 2(A) = σ(A).

The joint numerical range of (A1, . . . , Am) ∈ Mn × · · · × Mn is denoted by

W (A1, . . . , Am) = {(x∗A1x, x∗A2x, . . . , x∗Amx) : x ∈ C
n, x∗x = 1} .

By the result in [3] (see also [1]),

V k (A) =
{

ξ ∈ C : (0, . . . , 0) ∈ conv
(

W
(

(A − ξI) , (A − ξI)
2
, . . . , (A − ξI)

k
))}

where conv(X) denotes the convex hull of X ⊆ C
k.

Throughout this paper all direct sums are assumed to be orthogonal and we fix

the following notations. Define i[a, b] = {it : a ≤ t ≤ b} and i(a, b) = {it : a < t < b},
where a and b are real numbers. Also |AB| means the length of the line segment AB,

and S
1
n = {z ∈ C : zn ∈ S} . Let k ∈ N. Define

R
j
k :=

{

reiθ : r ≥ 0,
jπ

k
≤ θ ≤ (j + 1)π

k

}

, 0 ≤ j ≤ 2k − 1.(1.1)

k = 1 k = 2 k = 3
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In Section 2, we give an analytic description of V 3(A) for any matrix A ∈ Mn of

the form A = A1 ⊕ iA2, where A∗

1 = A1, A
∗

2 = A2. Section 3 concerns matrices of the

form A = A1⊕ei 2π

3 A2⊕ei 4π

3 A3, where A∗

1 = A1, A
∗

2 = A2, A
∗

3 = A3. Additional results

and remarks about the polynomial numerical hulls of order k of normal matrices are

given by a new concept “kth roots of a convex set” in section 4.

2. Matrices of the form A = A1 ⊕ iA2. In this section we shall characterize

V 3(A), where

A = A1 ⊕ iA2, A∗

1 = A1, A∗

2 = A2.(2.1)

Lemma 2.1. Let H be a semi-definite Hermitian matrix and k ≥ 2 be an in-

teger such that X∗HkX = (X∗HX)k for some unit vector X = (x1, ..., xn)t. Then

X∗HX ∈ σ(H).

Proof. Without loss of generality, we assume that H = diag(h1, h2, . . . , hn), where

hi ≥ 0, i = 1, . . . , n. Define Pi = (hi, h
k
i ) ∈ R

2, i = 1, . . . , n. Let µ = X∗HX. By

assumption µk = (X∗HX)k = X∗HkX. Hence ‖x1‖2 (

h1, h
k
1

)

+· · ·+‖xn‖2 (

hn, hk
n

)

=
(

µ, µk
)

∈ R
2. Since the graph of the function y = xk, x ≥ 0 is convex, we have µ = hi

for some i = 1, . . . , n. Consequently, µ ∈ σ(A).

Theorem 2.2. Let A be of the form (2.1) and A2 be a semi-definite matrix.

Then V 3(A) = σ(A).

Proof. Without loss of generality, we assume that A2 is a positive definite matrix.

By [2, Theorem 2.2], we know that

V 3(A) ⊆ V 2 (A) ⊆ σ (A1) ∪ {iγ : 0 ≤ γ ≤ r (A2)} ,

where r(A2) is the spectral radius of A2. Then, V 3(A) ∩ R ⊆ σ(A). Now, let iη ∈
V 3(A) ∩ iR. Thus there exists a unit vector x = x1 ⊕ x2 such that

‖x1‖2
+ ‖x2‖2

= 1,

x∗

1A1x1 + ix∗

2A2x2 = iµ,

x∗

1A
2
1x1 − x∗

2A
2
2x2 = −µ2,

x∗

1A
3
1x1 − ix∗

2A
3
2x2 = −iµ3.

The above relations imply that (µ, µ3) = (x∗

2A2x2, x
∗

2A
3
2x2). Define H = 0⊕A2, where

0 is the zero matrix of the same size as A1. Hence H ≥ 0 and X∗H3X = (X∗HX)3.

By Lemma 2.1, µ ∈ σ(H). Hence µ = 0 or µ ∈ σ(A2) ⊆ σ(A). It is enough to show

that if µ = 0, then µ ∈ σ(A). By[2, Lemma 2.3] we know that 0 ∈ σ(A) if and only if

0 ∈ V 2(A). Since 0 ∈ V 3(A) ⊆ V 2(A), we obtain µ = 0 ∈ σ(A).

Corollary 2.3. Let A = diag(α,−β, 0, iγ), where α, β and γ are positive num-

bers. Then V 3(A) = σ(A) and therefore num(A) = 3.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 253-263, May 2009



ELA

256 H.R. Afshin, M.A. Mehrjoofard, and A. Salemi

Corollary 2.4. Let A = diag(α,−β, iγ, iθ) such that α > 0, β > 0 and 0 ≤ γ <

θ. Then V 3(A) = σ(A).

Theorem 2.5. Let A = diag(α,−β, iγ,−iθ) and α, β, γ and θ be positive num-

bers. Then

(a) α = β and γ = θ if and only if V 3(A) = σ(A) ∪ {0}.

(b) If α = β and γ 6= θ, then V 3 (A) = σ (A) ∪
({

α2(θ−γ)
α2+θγ

}

i ∩ W (A)
)

.

(c) If α 6= β and γ = θ, then V 3 (A) = σ (A) ∪
({

γ2(β−α)
γ2+βα

}

∩ W (A)
)

.

(d) If α 6= β and γ 6= θ, then V 3 (A) = σ (A) .

Proof. (a) Let α = β and γ = θ. Define X = (x, y, z, t)t, where

x =

(

γ2 + θ2

2 (α2 + β2 + γ2 + θ2)

)

1
2

, y =

(

γ2 + θ2

2 (α2 + β2 + γ2 + θ2)

)

1
2

,

z =

(

α2 + β2

2 (α2 + β2 + γ2 + θ2)

)

1
2

, t =

(

α2 + β2

2 (α2 + β2 + γ2 + θ2)

)

1
2

.

It is easy to show that X is a unit vector and X∗AX = X∗A2X = X∗A3X = 0

and hence 0 ∈ V 3 (A).

Now, let η ∈ V 3 (A). Then there exists a unit vector X = (x, y, z, t)t such that

|x|2 + |y|2 + |z|2 + |t|2 = 1,(2.2)

X∗AX = α |x|2 − β |y|2 + iγ |z|2 − iθ |t|2 = η,(2.3)

X∗A2X = α2 |x|2 + β2 |y|2 − γ2 |z|2 − θ2 |t|2 = η2,(2.4)

X∗A3X = α3 |x|2 − β3 |y|2 − iγ3 |z|2 + iθ3 |t|2 = η3.(2.5)

Conversely, let η = 0. The relations (2.3) and (2.5) imply that (β = α or |x|2 =

|y|2 = 0) and (θ = γ or |z|2 = |t|2 = 0). Since α, β, γ, θ are positive numbers and

X 6= 0, by (2.4), we obtain α = β and γ = θ.

(b) By [3, Theorem 2.6], we know that V 2 (A) ⊆ [−α, α] ∪ i [−θ, γ] . Let η ∈ V 3 (A) ,

then η ∈ [−α, α] or η ∈ i [−θ, γ] . If η ∈ R, then the relations (2.3) and (2.5) imply

that |z|2 = |t|2 = 0. Therefore, |x|2 + |y|2 = 1 and hence η = ±α. Thus, V 3 (A)∩R =

{−α, α} ⊆ σ(A).
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Let iη ∈ V 3 (A) ∩ iR. Then η ∈ [−θ, γ]. By (2.3) and (2.5), we obtain

|x|2 = |y|2 =
−η2 + γ2 |z|2 + θ2|t|2

2α2
, |z|2 =

η
(

η2 − θ2
)

γ (γ2 − θ2)
, |t|2 =

η
(

η2 − γ2
)

θ (γ2 − θ2)
.

Now, replacing the above equations in (2.2), we can write

1 =
[γθ + α2]η3 − [γθ(γ − θ)]η2 − [γ2θ2 + θ2 − α2γθ − α2γ2]η

α2γθ(γ − θ)
.

Define P (η) := [γθ +α2]η3 − [γθ(γ − θ)]η2 − [γ2θ2 + θ2 −α2γθ−α2γ2]η−α2γθ(γ − θ)

Since {iγ,−iθ} ⊆ V 3(A), the polynomial P (η) is divided by (η − γ)(η + θ). Hence

P (η) = (η − γ)(η + θ)[(γθ + α2)η − (θ − γ)α2].(2.6)

Therefore, V 3(A)∩ iR ⊆
{

iγ,−iθ, i
(θ−γ)α2

α2+θγ

}

. We are looking to find η ∈ R such that

P (η) = 0 and

−η2 + γ2 |z|2 + θ|t|2
2α2

≥ 0,
η

(

η2 − θ2
)

γ (γ2 − θ2)
≥ 0,

η
(

η2 − γ2
)

θ (γ2 − θ2)
≥ 0.(2.7)

Let η = (θ−γ)α2

α2+θγ ∈ [−θ, γ]. It is readily seen that the relations in (2.7) hold and

by (2.6), P (η) = 0. Therefore, V 3(A) ∩ iR = {iγ,−iθ} ∪
{

i
α2(θ−γ)
α2+γθ ∩ i[−θ, γ]

}

.

(c) It is enough to consider iA instead of A.

(d) Let η ∈ V 3 (A) ∩ R. Then, there exists a unit vector X such that X∗AX =

η,X∗A2X = η2 and X∗A3X = η3. These relations imply that |x|2 = η+β
α+β , |y|2 = α−η

α+β ,

and |z|2 = |t|2 = 0. Also, we have η2 + (β − α) η − αβ = 0. Therefore, η = −β or

η = α which are in σ (A) . Similarly, if η ∈ V 3 (A)∩iR is pure imaginary, then η = −iθ

or iγ which are in σ (A) .
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Remark 2.6. In the above Figure, we find a geometric interpretations for the

5th point in V 3(A), where A is a 4 × 4 normal matrix as in Theorem 2.5(b), see [1,

Theorem 5.1]. The points M and K are the orthocenters of the triangles ABC and

ABD, respectively. Let L be the intersection of the line CD and the line passing

through A and perpendicular to HJ . It is readily seen that the slope of the lines

HJ and AP are cot(ψ − ϕ) and − tan(ψ − ϕ), respectively. Also, − tan(ψ − ϕ) =
tan(ϕ)−tan(ψ)
1+tan(ψ) tan(ϕ) = θ/α−γ/α

1+(γ/α)(θ/α) . Hence L =
(

0,
α2(θ−γ)
α2+γθ

)

.

For a 3×3 normal matrix A, the 4th point in V 2(A) (if any) is the orthocenter of

the triangle generated by σ(A). It is interesting that if γ → ∞, then i
α2(θ−γ)
α2+γθ → i−α2

θ ,

where i−α2

θ is the orthocenter of the triangle generated by {α,−α,−iθ} [2, Theorem

2.4].

3. Matrices of the form A = A1 ⊕ ei 2π

3 A2 ⊕ ei 4π

3 A3. In this section, we study

the polynomial numerical hull of order 3 of matrices of the form

A = A1 ⊕ ei 2π

3 A2 ⊕ ei 4π

3 A3, A∗

1 = A1, A∗

2 = A2 and A∗

3 = A3.(3.1)

Theorem 3.1. Let A be a normal matrix such that σ(A) ⊆ R1
3 ∪ R3

3 ∪ R5
3. Then

V 3(A) ⊆ R1
3 ∪ R3

3 ∪ R5
3.

Proof. we know that z ∈ R1
3 ∪ R3

3 ∪ R5
3 if and only if z3 ∈ R1

1 (lower half plane),

whereas σ(A3) = {z3 : z ∈ σ(A)} and σ(A) ⊆ R1
3 ∪ R3

3 ∪ R5
3. Then σ(A3) ⊆ R1

1 and

hence W
(

A3
)

= conv
(

σ
(

A3
))

⊆ R1
1. Thus, V 3 (A) ⊆ R1

3 ∪ R3
3 ∪ R5

3.
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Corollary 3.2. Let A be a normal matrix such that σ (A) ⊂ S = R ∪ ei 2π

3 R ∪
ei 4π

3 R. Then V 3 (A) ⊂ S.

Proof. Since σ(A) ⊆ S and S =
(

R0
3 ∪ R2

3 ∪ R4
3

)

∩
(

R1
3 ∪ R3

3 ∪ R5
3

)

, by Theorem

3.1, we obtain V 3 (A) ⊂ S.

Remark 3.3. Let A be as in (3.1). Then V 3(A) ⊆ R ∪ ei 2π

3 R ∪ ei 4π

3 R. Since

V 3(ei 2π

3 A) ∩ R = V 3(A) ∩ ei 4π

3 R, it is enough to find V 3 (A) ∩ R.

Lemma 3.4. Let A be as in (3.1). Then

V 3 (A) ∩ R =



























η = x∗

1A1x1 − x∗

2A2x2 :















x∗

1x1 + x∗

2x2 + x∗

3x3 = 1,

x∗

2A2x2 = x∗

3A3x3,

x∗

2A
2
2x2 = x∗

3A
2
3x3,

η2 = x∗

1A
2
1x1 − x∗

2A
2
2x2,

η3 = x∗

1A
3
1x1 + x∗

2A
3
2x2 + x∗

3A
3
3x3



























.

Proof. Suppose that x = x1 ⊕ x2 ⊕ x3 and η = x∗Ax ∈ V 3 (A) ∩ R. So



















x∗

1x1 + x∗

2x2 + x∗

3x3 = x∗x = 1,

η = x∗Ax = x∗

1A1x1 + ei 2π

3 x∗

2A2x2 + ei 4π

3 x∗

3A3x3,

η2 = x∗A2x = x∗

1A
2
1x1 + ei 4π

3 x∗

2A
2
2x2 + ei 2π

3 x∗

3A
2
3x3,

η3 = x∗A3x = x∗

1A
3
1x1 + x∗

2A
3
2x2 + x∗

3A
3
3x3.

Since η ∈ R,

{

η = x∗

1A1x1 + cos 2π
3 x∗

2A2x2 + cos 4π
3 x∗

3A3x3,

sin 2π
3 x∗

2A2x2 + sin 4π
3 x∗

3A3x3 = 0
⇒

{

η = x∗

1A1x1 − x∗

2A2x2,

x∗

2A2x2 = x∗

3A3x3

{

η2 = x∗

1A
2
1x1 + cos 4π

3 x∗

2A
2
2x2 + cos 2π

3 x∗

3A
2
3x3,

sin 4π
3 x∗

2A
2
2x2 + sin 2π

3 x∗

3A
2
3x3 = 0

⇒
{

η2 = x∗

1A
2
1x1 − x∗

2A
2
2x2,

x∗

2A
2
2x2 = x∗

3A
2
3x3

and

η3 = x∗A3x = x∗

1A
3
1x1 + x∗

2A
3
2x2 + x∗

3A
3
3x3.

Theorem 3.5. Let A = A1 ⊕ ei 2π

3 A2 and A∗

1 = A1, A∗

2 = A2. Then V 3(A) =

σ(A).

Proof. By using [2, Lemma 2.3], V 2(A) ⊆ R2
3∪R5

3 and by Corollary 3.2, V 3(A) ⊆
R ∪ ei 2π

3 R ∪ ei 4π

3 R. Hence V 3(A) ⊆ V 2(A) ∩
(

R ∪ ei 2π

3 R

)

. Now, we will show that

V 2(A) ∩
(

R ∪ ei 2π

3 R

)

⊆ σ(A).
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First, we show that V 2(A) ∩ R ⊆ σ(A1). Suppose that x = x1 ⊕ x2 and η = x∗Ax ∈
V 2 (A) ∩ R. By the same method as in the proof of Lemma 3.4, we have

V 2 (A) ∩ R =

{

η = x∗

1A1x1 :

[

x∗

1x1 + x∗

2x2 = 1,

η2 = x∗

1A
2
1x1

}

.

Then, (x∗

1A1x1)
2

= x∗

1A
2
1x1 = ‖A1x1‖2

.

By the Cauchy-Schwarz Inequality, we have (x∗

1A1x1)
2 ≤ ‖x1‖2 ‖A1x1‖2

. Hence

A1x1 = 0 or ‖x1‖ = 1. In both cases η = x∗

1A1x1 ∈ σ (A1) ⊆ σ (A) . Since V 2(eiαA) =

eiαV 2(A), similarly, V 2(A)∩ei 2π

3 R ⊆ σ(ei 2π

3 A2) ⊆ σ(A). Therefore, V 3 (A) = σ (A) .

In the following Theorem, we show that if A1, A2 and A3 are positive semi-definite

matrices as in (3.1), then V 3(A) = σ(A).

Theorem 3.6. Let A be as in (3.1). If A1, A2, A3 are positive semi-definite

matrices, then V 3(A) = σ(A).

Proof. By Lemma 3.4,

V 3 (A) ∩ R ⊂







η :





x∗

1x1 + x∗

2x2 + x∗

3x3 = 1,

η = x∗

1A1x1 − x∗

2A2x2,

η3 = x∗

1A
3
1x1 + x∗

2A
3
2x2 + x∗

3A
3
3x3







=
{

η :
(

η, η3
)

∈ conv
(

{(

a, a3
)}

a∈σ(A1)
∪

{(

−b, b3
)}

b∈σ(A2)
∪

{(

0, c3
)}

c∈σ(A3)

)}

.

Assume A1 = diag (a1, · · · , aℓ) , A2 = diag (b1, . . . , bm) , and A3 = diag (c1, . . . , cn) ,

where 0 ≤ a1 ≤ · · · ≤ aℓ, 0 ≤ b1 ≤ · · · ≤ bm, and 0 ≤ c1 ≤ · · · ≤ cn Let pi =
(

ai, a
3
i

)

, qj =
(

−bj , b
3
j

)

, rk =
(

0, c3
k

)

. By the following Figure, V 3 (A) ∩ R = σ (A1) .

Similarly, V 3(A)∩ei 2π

3 R ⊆ σ(A2) and V 3(A)∩ei 4π

3 R ⊆ σ(A3). Hence, V 3(A) = σ(A)

and the proof is complete.
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Proposition 3.7. Let A be as in (3.1). Assume A1, A2 are positive semidefinite

matrices and A3 is a negative semi definite matrix. Then V 3(A) ⊆ σ(A)∪ei π

3 (0,∞).

Proof. Without loss of generality, we assume that A3 is a negative definite matrix.

By [2, Theorem 1.4.], V 2(A) ∩
(

R ∪ ei 2π

3 R

)

⊆ σ(A). Hence V 3(A) ∩ (R ∪ ei 2π

3 R) ⊆

σ(A). By Corollary 3.2, V 3(A) ⊆
(

R ∪ ei 2π

3 R

)

∪ ei 4π

3 R. Also, V 3(A) ⊆ W (A), there-

fore, V 3(A) ⊆ σ(A) ∪ ei π

3 (0,∞).

In the following example, we show that Theorem 3.6 may not be true if A1, A2

are positive semi definite matrices and A3 is a negative definite matrix.

Example 3.8. Let A = diag(0, 2
√

3,
√

12ei 2π

3 ,−
√

12ei 4π

3 ). After a rotation and a

translation, by using Theorem 2.5 (a), it is readily seen that V 3(A) = σ(A)∪{
√

3ei π

3 }.

4. Kth roots of a convex set. In this section we introduce the concept of kth

roots of a convex set and we show that the concepts “inner cross” and “outer cross”

in [2, Section 3] are special cases of this concept.

Definition 4.1. Let S be a convex set and R := S
1
k =

{

z ∈ C : zk ∈ S
}

. Then

R is called kth root of the convex set S.

In the following Lemma, we list some properties of the kth roots of a convex set.

Lemma 4.2. Let P and Q be two convex sets. Then

a) (P ∩ Q)
1
k = P

1
k ∩ Q

1
k .

b) (P c)
1
k =

(

P
1
k

)c

.

c)
(

eikθP
)

1
k = eiθP

1
k .

The following is a key Theorem in this section:

Theorem 4.3. Let A be a normal matrix and S be an arbitrary convex set. If

σ (A) ⊂ S
1
k , then V k (A) ⊂ S

1
k .

Proof. If σ (A) ⊂ S
1
k , then σ

(

Ak
)

⊂ S. Since W
(

Ak
)

= conv(σ
(

Ak
)

) ⊂ S.

Thus, {zk : z ∈ V k (A)} ⊂ S, and hence V k (A) ⊂ S
1
k .

Lemma 4.4. The 2-roots of a line is a rectangular hyperbola with center at the

origin.

Proof. Suppose that (a, b) 6= (0, 0) and let S = {(x, y) : ax + by + c = 0} . There-

fore

R = S
1
2 =

{

(x, y) : a
(

x2 − y2
)

+ b (2xy) + c = 0
}

.
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It is clear that R is an arbitrary rectangular hyperbola with center at the origin.

Corollary 4.5. [2, Theorem 3.1] Let A ∈ Mn be a normal matrix and σ(A) ⊆
R, where R is a rectangular hyperbola. Then V 2(A) ⊂ R.

Proof. Since V 2(αA + βI) = αV 2(A) + β, we assume that the center of R is

origin. Now, by Theorem 4.3 and Lemma 4.4 the result holds.

Corollary 4.6. [2, Lemma 3.3] Let A ∈ Mn(C) be a normal matrix and ∆ be

an inner or outer cross. If σ (A) ⊆ ∆, then V 2 (A) ⊆ ∆.

Proof. Without loss of generality we assume that ∆ =
{

x + iy : x2 − y2 ≤ 1
}

.

Then, ∆ = {z ∈ C| : ℜ(z2) ≤ 1}. Define S := {z ∈ C| : ℜ (z) ≤ 1}. Thus, ∆ = S1/2.

This means that ∆ is the 2nd root of the convex set S. By Theorem 4.3, the result

holds.

Let

Re
k =

k−1
⋃

t=0

R2t
k and Ro

k =

k−1
⋃

t=0

R2t+1
k ,(4.1)

where Rt
k be as in (1.1). It is clear that C = Re

k ∪Ro
k and Ro

k = e
iπ

k Re
k. The following

is a generalization of Theorem 3.1.

Theorem 4.7. Let A be a normal matrix and let z0 ∈ C and η ∈ R. If σ (A) ⊆
z0 + eiηRe

k, then V k (A) ⊆ z0 + eiηRe
k.

Proof. Let Â := e−iη(A − z0I), then σ
(

Â
)

⊆ Re
k. Define S = R0

1 (upper half

plane), it is easy to show that S1/k = Re
k. Since σ

(

Â
)

⊆ S1/k = Re
k, by Theorem 4.3

V k
(

Â
)

⊆ S1/k = Re
k. Also, V k(Â) = e−iη(V k(A) − z0), hence

V k (A) ⊆ z0 + eiηRe
k.

Corollary 4.8. Let A be a normal matrix of the form

A = A1 ⊕ ei 2π

k A2 ⊕ · · · ⊕ ei
2(k−1)π

k Ak, A∗

i = Ai, i = 1, . . . , k.

Then, V k(A) ⊆ R ∪ ei 2π

k R ∪ · · · ∪ ei
2(k−1)π

k R.

Proof. It is clear that σ(A) ⊆ R ∪ ei 2π

k R ∪ · · · ∪ ei
2(k−1)π

k R = Re
k ∩ Ro

k, where Re
k

and Ro
k be as in (4.1). By Theorem 4.7,

V k(A) ⊆ Re
k ∩ Ro

k = R ∪ ei 2π

k R ∪ · · · ∪ ei
2(k−1)π

k R.
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