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THE DISTANCE MATRIX OF A BIDIRECTED TREE∗

R. B. BAPAT† , A. K. LAL‡ , AND SUKANTA PATI§

Abstract. A bidirected tree is a tree in which each edge is replaced by two arcs in either

direction. Formulas are obtained for the determinant and the inverse of a bidirected tree, generalizing

well-known formulas in the literature.
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1. Introduction. We refer to [4], [8] for basic definitions and terminology in

graph theory. A tree is a simple connected graph without any circuit. We consider

trees in which each edge is replaced by two arcs in either direction. In this paper,

such trees are called bidirected trees.

We now introduce some notation. Let e,0 be the column vectors consisting of all

ones and all zeros, respectively, of the appropriate order. Let J = eet be the matrix

of all ones. For a tree T on n vertices, let di be the degree of the i-th vertex and let

d = (d1, d2, . . . , dn)t, δ = 2e − d and z = d − e. Note that δ + z = e.

Let T be a tree on n vertices. The distance matrix of a tree T is a n×n matrix D

with Dij = k, if the path from the vertex i to the vertex j is of length k; and Dii = 0.

The Laplacian matrix, L, of a tree T is defined by L = diag(d) − A, where A is the

adjacency matrix of T.

The distance matrix of a tree is extensively investigated in the literature. The

classical result concerns the determinant of the matrix D (see Graham and Pollak [7]),

which asserts that if T is any tree on n vertices then det(D) = (−1)n−1(n − 1)2n−2.

Thus, det(D) is a function dependent only on n, the number of vertices of the tree.

The formula for the inverse of the matrix D was obtained in a subsequent article by

Graham and Lovász [6] who showed that D−1 =
(e − z)(e − z)t

2(n − 1)
−

L

2
. This result was
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extended to a weighted tree in [1]. A q-analogue of the distance matrix was considered

in [2]. In this paper, we extend the result of Graham and Lovász by considering the

distance matrix for a bidirected tree, denoted D = (Dij).

2. Preliminaries. Let T be a tree on n vertices. Replace each undirected edge

fi = {u, v} of T with two arcs (oppositely oriented edges) ei = (u, v) and e′i = (v, u).

Let ui > 0 and vi > 0 be the weights of the arcs ei and e′i, respectively. We call the

resulting graph a bidirected tree T with the underlying tree structure T . The distance

Dij from i to j is defined as the sum of the weights of the arcs in the unique directed

path from i to j. Thus if Dij =
∑

i∈A

ui +
∑

j∈B

vj , then Dji =
∑

i∈A

vi +
∑

j∈B

uj . Note

that the diagonal entries of the matrix D are zero and in general the matrix D is not

a symmetric matrix. We are interested in extending the definition of a Laplacian to

the bidirected trees. The Laplacian matrix L = (Lkl) of a bidirected tree T with the

underlying tree structure T is defined by

Lk,l =















0 if {k, l} 6∈ T

− 1
ui+vi

if fi = {k, l} ∈ T
∑

fi∼k

1
ui+vi

if k = l,

where ei ∼ k means that k is an endvertex of ei. Notice that, in view of the Gers-

gorin disc theorem, the matrix L is a positive semidefinite matrix. For the sake of

convenience, we write wt = ut + vt. Then, the distance matrix D and the Laplacian

matrix L of the bidirected tree T (shown in Figure 2.1) are given by

1 2

5 6

4

3

u1

v1

u3

v3

u5

v5

u2 v2

u4 v4

Fig. 2.1. A bidirected Tree on 6 vertices
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D =

















0 u1 u1 + u2 u1 + u3 + v4 u1 + u3 u1 + u3 + u5

v1 0 u2 u3 + v4 u3 u3 + u5

v1 + v2 v2 0 v2 + u3 + v4 v2 + u3 v2 + u3 + u5

v1 + v3 + u4 v3 + u4 u2 + v3 + u4 0 u4 u4 + u5

v1 + v3 v3 u2 + v3 v4 0 u5

v1 + v3 + v5 v3 + v5 u2 + v3 + v5 v4 + v5 v5 0

















,

and

L =



















1
w1

− 1
w1

0 0 0 0

− 1
w1

1
w1

+ 1
w2

+ 1
w3

− 1
w2

− 1
w3

0 0

0 − 1
w2

1
w2

0 0 0

0 − 1
w3

0 1
w4

− 1
w4

0

0 0 0 − 1
w4

1
w3

+ 1
w4

+ 1
w5

− 1
w5

0 0 0 0 − 1
w5

1
w5



















.

Observe that if ui = vi = 1 for all i, then the matrices D and L reduce to the

matrices D and 1
2L, respectively.

We now introduce some further notation. Let T be a bidirected tree on n vertices.

Let T̃ be a spanning tree of T . Thus, T̃ is obtained from T by choosing one arc and

hence T has 2n−1 spanning trees. Let us denote the indegree and the outdegree of the

vertex v in T̃ by InT̃ (v) and OutT̃ (v), respectively. Consider the vectors z1 and z2

defined by

z1(i) = (−1)n
∑

T̃

[

InT̃ (i) − 1
]

w(T̃ ) (2.1)

z2(i) = (−1)n
∑

T̃

[

OutT̃ (i) − 1
]

w(T̃ ), (2.2)

where w(T̃ ) is the product of the arc weights of T̃ . For example, the vectors z1 and

z2 for the bidirected tree T given in Figure 2.1 are

z1 =



















−u1w2w3w4w5

[−u2u3v1 + u1u3v2 + u1u2v3 + 2u1v2v3 + v1v2v3]w4w5

−v2w1w3w4w5

−u4w1w2w3w5

w1w2 [u3u4u5 − u5v3v4 + 2u3u4v5 + u4v3v5 + u3v4v5]

−v5w1w2w3w4


















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and

z2 =



















−v1w2w3w4w5

[u1u2u3 + 2u2u3v1 + u3v1v2 + u2v1v3 − u1v2v3]w4w5

−u2w1w3w4w5

−v4w1w2w3w5

w1w2 [u4u5v3 + u3u5v4 + 2u5v3v4 − u3u4v5 + v3v4v5]

−u5w1w2w3w4



















.

Note that taking ui = vi = 1 for all i, and putting k = InT (i), we see that

(−1)nz1(i) =
∑

T̃

[

InT̃ (i) − 1
]

=
k

∑

r=0

2n−k−1
∑

T̃

In
T̃

(i)=r

[

InT̃ (i) − 1
]

=
[

k
∑

r=0

(

k

r

)

(r − 1)
]

2n−1−k =
(

k2k−1 − 2k
)

2n−1−k = 2n−2(k − 2),

so that z1 = z2 = (−1)n−12n−2(e − z).

Let T be a bidirected graph. Since each arc of a spanning tree T̃ contributes 1

to exactly one entry in InT̃ , we have
n
∑

i=1

InT̃ (i) = n − 1. Hence,

zt
1e =

n
∑

i=1

z1(i) =

n
∑

i=1

(−1)n
∑

T̃

[

InT̃ (i) − 1
]

w(T̃ )

= (−1)n
∑

T̃

w(T̃ )
n

∑

i=1

[

InT̃ (i) − 1
]

= (−1)n−1
∑

T̃

w(T̃ )

= (−1)n−1
n−1
∏

i=1

wi. (2.3)

A similar reasoning implies that

zt
2e = (−1)n−1

n−1
∏

i=1

wi. (2.4)

For a bidirected tree T on n vertices we define w(T ) as

w(T ) =
∑

T̃

w(T̃ ) =

n−1
∏

i=1

wi = (−1)n−1zt
1e = (−1)n−1zt

2e.
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We use the convention that if T is a tree on a single vertex then z1 = e = z2 and

w(T ) = 1. With this convention, for a bidirected forest F with the bidirected trees

T1, T2, . . . , Tk as components, the weight of F is defined as w(F) =
k
∏

i=1

w(Ti).

In the next section, we relate the matrices D−1 and L and also obtain some

properties of the matrix D−1 with respect to minors. As corollaries, we obtain the

results of Graham and Pollak [7]) on det(D) and that of Graham and Lovasz [6] on

D−1.

3. The main result. In this section, we extend certain results on distance

matrices of trees to distance matrices of bidirected trees. Recall that a pendant vertex

is a vertex of degree one. Denote by G−v the graph obtained by deleting the vertex v

and all arcs incident on it from G. By ek we denote the vector with only one nonzero

entry 1 which appears at the kth place.

Given any tree T on vertices {1, 2, . . . , n} we may view it as a rooted tree and

hence there is a relabeling of the vertices so that for each i > 1 the vertex i is adjacent

to only one vertex from {1, . . . , i − 1}. With such a labeling the vertex n is always

a pendant vertex. Henceforth, unless stated otherwise, each bidirected tree will be

assumed to have an underlying tree with such a labeling. Furthermore, for i < j, the

weight of an arc ej−1 = (i, j) will be assumed to be uj−1 and the weight of the arc

e′j−1 = (j, i) will be assumed to be vj−1. If T is a bidirected tree by T − ej−1 − e′j−1

we denote the bidirected graph obtained by deleting the arcs (i, j) and (j, i) from T .

We use the method of mathematical induction to prove our results. In the in-

duction step, we start with a bidirected tree T ′ on k + 1 vertices, where the pendant

vertex k + 1 is adjacent to the vertex r. We use the definition of the distance matrix

of the bidirected tree T = T ′ − {k + 1} to get the distance matrix of T ′. Putting

D′ = D(T ′), D = D(T ), L′ = L(T ′), L = L(T ), we see that

D′ =

[

D uke + Der

vke
t + et

rD 0

]

, L′ =

[

L + 1
wk

ere
t
r − 1

wk

er

− 1
wk

et
r

1
wk

]

. (3.1)

Furthermore,

(−1)k+1z′1(k + 1) =
∑

T̃

[

InT̃ (k + 1) − 1
]

w(T̃ )

=
∑

(k+1,r)∈T̃

[−1]w(T̃ )

= w(T ) (−vk).
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Also

(−1)k+1z′1(r) =
∑

T̃

[

InT̃ (r) − 1
]

w(T̃ )

=
∑

(r,k+1)∈T̃

[

InT̃ (r) − 1
]

w(T̃ ) +
∑

(k+1,r)∈T̃

[

InT̃ (r) − 1
]

w(T̃ )

= (−1)kz1(r)uk +
[

(−1)kz1(r)vk + w(T )vk

]

,

and for i 6= k + 1, r, we have,

z′1(i) = (−1)k+1
∑

T̃

[

InT̃ (i) − 1
]

w(T̃ )

= (−1)k+1
∑

(r,k+1)∈T̃

[

InT̃ (i) − 1
]

w(T̃ ) + (−1)k+1
∑

(k+1,r)∈T̃

[

InT̃ (i) − 1
]

w(T̃ )

= −z1(i)uk − z1(i)vk

= −z1(i)wk.

Thus we have

z′1 =

[

−wkz1 + (−1)k+1w(T ) vker

(−1)k+1w(T ) (−vk)

]

. (3.2)

Similarly we have

z′2 =

[

−wkz2 + (−1)k+1w(T ) uker

(−1)k+1w(T ) (−uk)

]

. (3.3)

Note that these two equations provide an efficient way of computing the vectors z1

and z2 for a bidirected tree. Combined with the next theorem they give an efficient

way to compute D−1. We shall use our previous observations are in the proof of the

next theorem.

Theorem 3.1. Let D be the distance matrix of a bidirected tree on n vertices

where the pendant vertex n is adjacent to r. Then

det(D) = (−1)n−1
n−1
∑

i=1

uiviw(T − ei − e′i) (3.4)

Dz1 = det(D)e, zt
2D = det(D)et, and (3.5)

D−1 = −L− (−1)n z1z
t
2

det(D)w(T )
. (3.6)
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Proof. We prove the theorem by induction on the number of vertices of any

bidirected tree. So, as the first step, let n = 2. In this case, the matrices D,L, z1 and

zt
2 are respectively,

D =

[

0 u1

v1 0

]

, L =

[

1
w1

− 1
w1

− 1
w1

1
w1

]

, z1 = −

[

u1

v1

]

, and z2 = −

[

v1

u1

]

.

As w(T − e1 − e′1) = 1, det(D) = −u1v1 = (−1)2−1u1v1w(T − e1 − e′1), D z1 =

det(D) e and zt
2 D = det(D) et. Thus (3.5) is true for n = 2. Also, for n = 2, the

right hand side of (3.6) reduces to

−L−
z1z

t
2

det(D)w(T )
= −

[

1
w1

− 1
w1

− 1
w1

1
w1

]

−
1

−w1u1v1

[

u1v1 u2
1

v2
1 u1v1

]

= −

[

1
w1

− 1
w1

− 1
w1

1
w1

]

+

[

1
w1

u1

v1w1
v1

u1w1

1
w1

]

=

[

0 1
v1

1
u1

0

]

= D−1

Hence (3.6) holds for n = 2. We now assume that the equalities in (3.4), (3.5) and

(3.6) are true for n = k. Let n = k + 1 and T ′ be a bidirected tree on k + 1 vertices.

Put T = T ′ − {k + 1}. To establish the first equality (3.5) we need to show that

det(D′) = (−1)k

k
∑

i=1

uiviw(T ′ − ei − e′i).

As D is invertible, using (3.1), the induction hypothesis and (2.3), we have

det(D′) = det(D)
[

0 − (vke
t + et

rD)D−1(uke + Der)
]

(3.7)

= −det(D)
[

ukvke
tD−1e + vke

ter + uke
t
re + et

rDer

]

= −det(D)
[

ukvk

etz1

det(D)
+ vk + uk

]

= (−1)kukvkw(T ) − wk det(D) (3.8)

= (−1)kukvkw(T ) + (−1)kwk

k−1
∑

i=1

uiviw(T − ei − e′i)

= (−1)k
[

ukvkw(T ′ − ek − e′k) +

k−1
∑

i=1

uiviw(T ′ − ei − e′i)
]

= (−1)k

k
∑

i=1

uiviw(T ′ − ei − e′i).

Hence the first equality holds for n = k + 1.
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To prove the second equality we need to show that

D′z′1 = det(D′)e, z′t2D
′ = det(D′)et.

Using the expressions given in (3.1) and (3.2) we have

D′z′1 =

[

D uke + Der

vke
t + et

rD 0

] [

−wkz1 + (−1)k+1w(T ) vker

(−1)kw(T ) vk

]

.

The first block of the vector D′z′1 reduces to

−wkDz1 + (−1)kukvkw(T )e.

Substituting det(D)e for Dz1 and using (3.8),

the first block of D′z′1 = det(D′)e. (3.9)

The second block of the vector D′z′1 reduces to

−vkwke
tz1 − wke

t
rDz1 + (−1)k+1vkw(T )

(

vke
ter + et

rDer).

Now using the equality et
rDer = 0, the equations (2.3), (3.4) and (3.8), we have

the second block of D′z′1 = det(D′). (3.10)

A similar reasoning gives that z′t2D
′ = det(D′)et. Hence the second equality is estab-

lished for n = k + 1.

We now prove that the matrix D′−1
is indeed given by (3.6). As det(D′) 6= 0, put

W = 0 − (vke
t + et

rD)D−1(uke + Der). From (3.7), it follows that

W−1 =
detD

det(D′)
. (3.11)

Let D′−1
=

[

A11 A12

A21 A22

]

. Since D′ =

[

D uke + Der

vke
t + et

rD 0

]

, it is straight-

forward to see that

A11 = D−1 + D−1(uke + Der)W
−1(vke

t + et
rD)D−1, (3.12)

A12 = −D−1(uke + Der)W
−1, (3.13)

A21 = −W−1(vke
t + et

rD)D−1, (3.14)

A22 = W−1. (3.15)

Using (3.11) and the induction hypothesis, we have

A11 = D−1 +
detD

det(D′)

(

ukD
−1e + er

)(

vke
tD−1 + et

r

)

= D−1 +
detD

det(D′)

(

uk

z1

det(D)
+ er

)(

vk

zt
2

det(D)
+ et

r

)

= D−1 +
1

det(D′)

[

ukvk

det(D)
z1z

t
2 +

(

ukz1e
t
r + vkerz

t
2

)

+ det(D)ere
t
r

]

(3.16)
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and

A12 = −D−1(uke + Der)W
−1 = −

detD

det(D′)

[

ukD
−1e + er

]

= −
ukz1 + det(D)er

det(D′)
.

(3.17)

Similarly

A21 = −
vkz

t
2 + det(D)et

r

det(D′)
. (3.18)

We now determine the first and second blocks of the matrix

−L′ − (−1)k+1 z′1z
′
2
t

det(D′)w(T ′)
. (3.19)

Using Equations (3.1), (3.2), (3.3), (3.7), (3.11) and the induction hypothesis, the
first block of (3.19) equals

−

„

L +
ere

t

r

wk

«

+
(−1)k

“

w
2

kz1z
t

2 + ukvkw(T )2ere
t

r

”

+ ukwkw(T )z1e
t

r + vkwkw(T )erz
t

2

det(D′)wkw(T )

= −L +
(−1)kwkz1z

t
2

det(D′)w(T )
−

ere
t
r

wk

+
(−1)kukvkw(T )ere

t
r

wk det(D′)
+

ukz1e
t
r + vkerz

t
2

det(D′)

= D−1 +
(−1)kz1z

t
2

det(D′)w(T )

[

wk +
det(D′)

det(D)

]

−
ere

t
r

wk

+
det(D′) + wk det(D)

wk det(D′)
ere

t
r

+
ukz1e

t
r + vkerz

t
2

det(D′)

= D−1 +
ukvkz1z

t
2

det(D′) det(D)
+

det(D)

det(D′)
ere

t
r +

ukz1e
t
r + vkerz

t
2

det(D′)
(3.20)

and the second block of (3.19) equals

er

wk

−
ukwkw(T )z1 − (−1)kukvkw(T )2er

det(D′)wkw(T )

=
er

wk

−
ukz1

det(D′)
−

er

wk det(D′)
[det(D′) + wk det(D)]

= −
ukz1 + det(D)er

det(D′)
= −(ukD−1e + er)W

−1. (3.21)

Showing that A21 is the (2,1)-block of (3.19) is similar. The (2,2)-block of (3.19) is

−
1

wk

+
(−1)kukvkw(T )2

det(D′)wkw(T )
= −

1

wk

+
det(D′) + wk det(D)

det(D′)wk

= W−1.

Hence the third equality is established for n = k + 1 and the proof is complete using

induction.
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4. Bidirected trees with two types of weights. Suppose T is a rooted tree

with root r. Let u and v be two vertices of T . As we traverse the u-v path from u to

v there exists a vertex, say w (which may be u itself), such that the path from u to v

moves in the direction of r until it meets vertex w and then moves away from r. Let

the lengths of the two paths u-w and w-v be ℓ1 and ℓ2, respectively. Also, let x and

y be two constants. We define the distance between u and v as

D̄(u, v) = ℓ1y + ℓ2x. (4.1)

Clearly, when x = y = 1, this reduces to the usual distance between u and v. We

illustrate this with the following example.

1

2 3

4 5 6

7 8
Fig. 4.1. A rooted tree

Consider the tree given in Figure 4.1. The distance matrix of the tree is as follows:

D̄ =



























0 x x 2x 2x 2x 3x 3x

y 0 x + y x x 2x + y 2x 2x

y x + y 0 2x + y 2x + y x 3x + y 3x + y

2y y x + 2y 0 x + y 2x + 2y 2x + y 2x + y

2y y x + 2y x + y 0 2x + 2y x x

2y x + 2y y 2x + 2y 2x + 2y 0 3x + 2y 3x + 2y

3y 2y x + 3y x + 2y y 2x + 3y 0 x + y

3y 2y x + 3y x + 2y y 2x + 3y x + y 0



























.

Observe that if we apply a similar labeling to T as in the previous section and

consider the bidirected tree T with the underlying tree structure T , and use the

weights ui = x ∀i, vi = y ∀i, then the distance matrix D of the bidirected tree is

nothing but the distance matrix D̄.

Henceforth a rooted tree is assumed to have the root 1 and the labeling as de-

scribed earlier. Let u be a vertex of a rooted tree T . A vertex v is called a child of u if

u and v are adjacent and u is on the v-1 path. Let us denote the number of children

of u by ch(u). With the notations defined above, we have the following result.

Corollary 4.1. Let T be a rooted tree on n vertices and consider the distance
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matrix D̄. Also, let z1 and z2 be vectors of order n given by

(z1)i =







(−1)n
(

(ch(i) − 1)y − x
)

(x + y)n−2, if i = 1,

(−1)n−1y(x + y)n−2, if i is a pendant vertex,

(−1)n(ch(i) − 1)y(x + y)n−2, otherwise

(4.2)

and

(z2)i =







(−1)n
(

(ch(i) − 1)x − y
)

(x + y)n−2, if i = r,

(−1)n−1x(x + y)n−2, if i is a pendant vertex,

(−1)n(ch(i) − 1)x(x + y)n−2, otherwise.

(4.3)

Then

det(D) = (−1)n−1(n − 1)xy(x + y)n−2,

and

D−1 = −
L

x + y
+

z1z
t
2

(n − 1)xy(x + y)2n−3
,

where L is the usual Laplacian matrix.

Proof. Let T be the bidirected tree associated with T . As D̄ is the same as D

with ui = x and vi = y, the assertion about the determinant follows easily from (3.4).

The vectors z1, z2 defined here are nothing but the vectors defined in (2.1) and

(2.2). In order to see this note that let T̃ be a spanning tree of T and put k = ch(1).

(−1)nz1(1) =
∑

T̃

[

InT̃ (1) − 1
]

w(T̃ ) =

k
∑

r=0

(x + y)n−1−k
∑

T̃

In
T̃

(1)=r

[

InT̃ (1) − 1
]

yrxk−r

= (x + y)n−1−k

k
∑

r=0

(

k

r

)

(r − 1)yrxk−r = (x + y)n−1−k
[

ky(x + y)k−1 − (x + y)k
]

= (x + y)n−2
[

(ch(1) − 1)y − x
]

.

If i is a pendant vertex, put k = ch(i) and observe that

(−1)nz1(i) =
∑

T̃

[

InT̃ (i) − 1
]

w(T̃ ) = −x(x + y)n−2.

If i is any other vertex, then put k = ch(i), and let p be the parent of i. We have

(−1)nz1(i) =
∑

T̃

[

InT̃ (i)−1
]

w(T̃ ) =
∑

(i,p)∈T̃

[

InT̃ (i)−1
]

w(T̃ )+
∑

(p,i)∈T̃

[

InT̃ (i)−1
]

w(T̃ )
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= (x + y)n−3y
[

(k − 1)y − x
]

+ kxy(x + y)n−3 =
[

ch(i) − 1
]

y(x + y)n−2.

The vector z2 may be verified similarly. Now the assertion about inverse of D̄

follows from (3.6).

As a corollary, we obtain the result of Graham and Pollak [7] on det(D).

Corollary 4.2. Let T be a tree on n vertices and let D be its distance matrix.

Then det(D) = (−1)n−1(n − 1)2n−2.

Proof. Let us denote by T the bidirected tree obtained from the given tree T .
As observed earlier, the substitution of ui = vi = 1 for 1 ≤ i ≤ n − 1, reduces the
matrix D to the distance matrix D. Under this condition, we have wi = ui + vi = 2
and w(T − ei − e′i) = 2n−2 for 1 ≤ i ≤ n − 1. Therefore

det(D) = det(D)
˛

˛

ui=vi=1
= (−1)n−1

n−1
X

i=1

uiviw(T − ei)
˛

˛

ui=vi=1
= (−1)n−1(n − 1)2n−2

.

We now give a corollary to our result that gives a formula for D−1. This result

was also obtained by Graham and Lovasz (see [6]).

Corollary 4.3. Let T be a tree on n vertices and let D be its distance matrix,

L be its Laplacian matrix and let z and e be the vectors defined earlier. Then

D−1 =
(e − z)(e − z)t

2(n − 1)
−

L

2
.

Proof. Let us denote by T the bidirected tree obtained from the given tree T .

Observe that under the condition, ui = vi = 1, the matrix D reduces to D, the matrix

L reduces to
L

2
and z1 = z2 = (−1)n−22n−2(z − e). So, we have

D−1 = D−1
∣

∣

ui=vi=1
= −L + (−1)n−1 z1z

t
2

det(D)w(T )

∣

∣

ui=vi=1

= −
L

2
+

22n−4(e − z)(e − z)t

(n − 1)2n−22n−1

= −
L

2
+

(e − z)(e − z)t

2(n − 1)
.

Hence the required result follows.
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