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MAPS ON POSITIVE OPERATORS PRESERVING
LEBESGUE DECOMPOSITIONS∗

LAJOS MOLNÁR†

Abstract. Let H be a complex Hilbert space. Denote by B(H)+ the set of all positive bounded

linear operators on H. A bijective map φ : B(H)+ → B(H)+ is said to preserve Lebesgue decom-

positions in both directions if for any quadruple A, B, C, D of positive operators, B = C + D is an

A-Lebesgue decomposition of B if and only if φ(B) = φ(C)+φ(D) is a φ(A)-Lebesgue decomposition

of φ(B). It is proved that every such transformation φ is of the form φ(A) = SAS∗ (A ∈ B(H)+)

for some invertible bounded linear or conjugate-linear operator S on H.
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1. Introduction and statement of the results. In what follows, H denotes
a complex Hilbert space with inner product 〈·, ·〉 and B(H) stands for the algebra of
all bounded linear operators on H . The space of all self-adjoint elements of B(H)
is denoted by Bs(H). An operator A ∈ B(H) is called positive if 〈Ax, x〉 ≥ 0 holds
for every x ∈ H in which case we write A ≥ 0. (Observe that we use the expression
“positive” in the operator algebraic sense. For matrices, this is the same as positive
semi-definiteness.) The set of all positive elements of B(H) is denoted by B(H)+.
The usual order among self-adjoint operators is defined by means of positivity as
follows. For any T, S ∈ Bs(H), we write T ≤ S if S − T ≥ 0.

In analogy with the Lebesgue decomposition of positive measures, in [1], Ando
defined a Lebesgue-type decomposition of positive operators, a concept which has
proved to be very useful in operator theory. To explain that decomposition we need
the following notions (for details, see [1]).

Given a positive operator A ∈ B(H)+, the positive operator C ∈ B(H)+ is said
to be A-absolutely continuous if there is a sequence (Cn) of positive operators and
a sequence (αn) of nonnegative real numbers such that Cn ↑ C and Cn ≤ αnA for
every n. Here, Cn ↑ C means that the sequence (Cn) is monotone increasing with
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respect to the usual order and it strongly converges to C. A positive operator C is
called A-singular if for any D ∈ B(H)+, the inequalities D ≤ A and D ≤ C imply
D = 0. Now, for any pair A,B ∈ B(H)+ of positive operators, by an A-Lebesgue
decomposition of B we mean a decomposition B = C + D where C,D are positive
operators, C is A-absolutely continuous and D is A-singular. Ando proved in [1] that
such decomposition exists for every pair A,B of positive operators.

In this paper, we study the problem of characterizing maps on positive operators
which preserve Lebesgue decompositions. Investigations of this kind, i.e., the study
of maps on different structures preserving important operations, quantities, relations,
etc. corresponding to the underlying structures belong to the gradually enlarging field
of so-called preserver problems. For important surveys on preservers in the classical
sense, we refer to [3, 5, 6, 10]. For recent results concerning preservers in extended
sense and defined on more general domains (especially on operator structures), we
refer to [7] and its bibliography.

We say that the bijective map φ : B(H)+ → B(H)+ preserves Lebesgue de-
compositions in both directions if it has the following property. For any quadruple
A,B,C,D of positive operators, B = C + D is an A-Lebesgue decomposition of B
if and only if φ(B) = φ(C) + φ(D) is a φ(A)-Lebesgue decomposition of φ(B). It is
rather clear from the definitions that any transformation of the form A 
−→ SAS∗

for some invertible bounded linear or conjugate-linear1 operator S on H preserves
Lebesgue decompositions in both directions. The aim of this paper is to show that
the reverse statement is also true: only transformations of this form have the above
preserver property.

Theorem 1.1. Let φ : B(H)+ → B(H)+ be a bijective map preserving Lebesgue
decompositions in both directions. Then there is an invertible bounded linear or
conjugate-linear operator S on H such that φ is of the form

φ(A) = SAS∗ (A ∈ B(H)+).

2. Proof. This section is devoted to the proof of the theorem. First we recall
some of the results in [1] that we shall use in our arguments. In what follows, rng
stands for the range of operators. Let A,B ∈ B(H)+.

(A1) The operator B is A-singular if and only if rngA1/2 ∩ rngB1/2 = {0} (see
[1, p. 256]).

1A transformation S : H → H is called conjugate-linear if it is additive and satisfies S(λx) = λSx

for every x ∈ H and λ ∈ C.
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(A2) The operator B is A-absolutely continuous if and only if the subspace
{x ∈ H : B1/2x ∈ rngA1/2} is dense in H (see [1, Theorem 5]).

(A3) The operator B has an A-Lebesgue decomposition, which can be con-
structed in the following way. Define [A]B = limn(nA) : B. Here : denotes the
operation of parallel sum of positive operators.2 The sequence ((nA) : B)n of positive
operators is monotone increasing and bounded by B from above. Hence, [A]B is a
well-defined positive bounded linear operator on H . Now, according to Theorem 2 in
[1], we have that

B = [A]B + (B − [A]B)

is an A-Lebesgue decomposition of B and, further, [A]B is the maximum of all A-
absolutely continuous positive operators C with C ≤ B.

(A4) A-Lebesgue decomposition is not unique in general. Namely, according to
[1, Corollary 7], for a given A ∈ B(H)+, every positive operator admits a unique
A-Lebesgue decomposition if and only if rngA is closed.

We begin the route leading to the proof of the theorem with the following simple
lemma.

Lemma 2.1. Let A ∈ B(H)+. The range rngA of A is closed if and only if
rngA1/2 is closed, and in this case, we have rngA = rngA1/2.

Proof. It is clear that

rngA ⊂ rngA1/2 ⊂ rngA1/2 = rngA,

where the last equality follows from the easy fact that kerA1/2 = kerA. Therefore,
we see that if rngA is closed, then so is rngA1/2 and they coincide. Conversely, if
rngA1/2 is closed then we have

A(H) = A1/2(A1/2(H)) = A1/2(rngA1/2) = A1/2((kerA1/2)⊥) = rngA1/2.

The proof is complete.

By (A2), we immediately have the following.

Corollary 2.2. Let A,B ∈ B(H)+ be operators with closed ranges. Then B

is A-absolutely continuous if and only if rngB ⊂ rngA. Therefore, we have rngB =
rngA if and only if B is A-absolutely continuous and A is B-absolutely continuous.

In the proof of our theorem, we need the following additional corollary which
gives a characterization of invertibility of positive operators.

2Recall that for any positive operators A and B, their parallel sum A : B is the unique positive

operator satisfying 〈(A : B)z, z〉 = inf{〈Ax, x〉+ 〈By, y〉 : x + y = z} for every z ∈ H.
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Corollary 2.3. Let A ∈ B(H)+. Then A is invertible if and only if rngA is
closed and for every B ∈ B(H)+ with closed range, we have that B is A-absolutely
continuous.

In the next lemma, we compute the Lebesgue decomposition of an arbitrary
positive operator with respect to a rank-one element of B(H)+ (recall that by (A4),
in this case, we have unique Lebesgue decomposition). To do so, we need the concept
of the strength of a positive operator A along a ray represented by a unit vector in H .
This concept was originally introduced by Busch and Gudder in [2] for the so-called
Hilbert space effects in the place of positive operators. Effects play a basic role in the
mathematical foundations of the theory of quantum measurements. Mathematically,
a Hilbert space effect is simply an operator E ∈ B(H) that satisfies 0 ≤ E ≤ I.
Although in [2] the authors considered only effects, it is rather obvious that the
following definition and result work also for arbitrary positive operators (the reason
is simply that any positive operator can be multiplied by a positive scalar to obtain
an effect). So, let A ∈ B(H)+, consider a unit vector ϕ in H and denote by Pϕ the
rank-one projection onto the subspace generated by ϕ. The quantity

λ(A,Pϕ) = sup{λ ∈ R+ : λPϕ ≤ A}

is called the strength of A along the ray represented by ϕ. (R+ stands for the set of
all non-negative real numbers.) According to [2, Theorem 4], we have the following
formula for the strength:

λ(A,Pϕ) =
{ ‖A−1/2ϕ‖−2, if ϕ ∈ rng(A1/2)

0, else
, (2.1)

where A−1/2 denotes the inverse of A1/2 on its range.

Clearly, every positive rank-one operator can be written in the form µP , where
P is a rank-one projection and µ is a positive real number.

Lemma 2.4. Let P be a rank-one projection, µ a positive real number and B an
arbitrary positive operator. Then we have

[µP ]B = λ(B,P )P.

Therefore, the (µP )-Lebesgue decomposition of B is

B = λ(B,P )P + (B − λ(B,P )P ).

In particular, the (µP )-Lebesgue decomposition of I is

I = P + (I − P ).
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Proof. In paper [8], we presented structural results for the automorphisms of
B(H)+ with respect to the operation of the harmonic mean or that of the parallel
sum. We recall that the harmonic mean T !S of the positive operators T, S is the double
of their parallel sum T : S. In [8, Lemma 2] we proved that for any T ∈ B(H)+ and
rank-one projection P , we have

T !P =
2λ(T, P )
λ(T, P ) + 1

P.

Using this, we compute

[µP ]B = lim
n
(nµP ) : B = lim

n

(nµP )!B
2

= lim
n

B!(nµP )
2

= lim
n
nµ

(B/(nµ))!P
2

= lim
n
nµ

λ(B/(nµ), P )
λ(B/(nµ), P ) + 1

P (2.2)

= lim
n
nµ

(1/(nµ))λ(B,P )
(1/(nµ))λ(B,P ) + 1

P = λ(B,P )P.

Here, we use the following properties of the harmonic mean and the strength function:
for any T, S ∈ B(H)+, rank-one projection P , and nonnegative number α, we have
T !S = S!T , (αT )!(αS) = α(T !S), λ(αT, P ) = αλ(T, P ).

In the proof of our theorem, the solution of the following functional equation will
play an important role.

Lemma 2.5. Let f : R+ → R+ be a bijective function with f(0) = 0, and
ϕ : [0, 1] → [0, 1] be a function such that

f

(
1

(1/λ)α+ (1/µ)(1− α)

)
=

1
(1/f(λ))ϕ(α) + (1/f(µ))(1− ϕ(α))

. (2.3)

holds for every 0 < λ, µ ∈ R and α ∈ [0, 1]. If f(1) = 1, then f, ϕ are the identities
on their domains.

Proof. First choose α = 1/2. For α′ = ϕ(1/2) and β′ = 1− α′, we have

f

(
2

(1/λ) + (1/µ)

)
=

1
(1/f(λ))α′ + (1/f(µ))β′ . (2.4)

Define g(λ) = 1/f(1/λ) for every positive λ. Then g is a bijection of the set of all
positive real numbers, and (2.4) turns into

1

g
( (1/λ)+(1/µ)

2

) =
1

g(1/λ)α′ + g(1/µ)β′ .
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Therefore, we have that

g

(
λ+ µ

2

)
= g(λ)α′ + g(µ)β′

holds for all positive numbers λ, µ. Interchanging λ and µ, we get

g(µ)α′ + g(λ)β′ = g(λ)α′ + g(µ)β′

0 < λ, µ. Since g is injective, we infer that α′ = β′ and then it follows that α′ = β′ =
1/2. Thus, we obtain that g satisfies the so-called Jensen equation

g

(
λ+ µ

2

)
=
g(λ) + g(µ)

2

on the set of all positive real numbers. From [4] we learn that every real-valued
function defined on a convex subset of Rn with nonempty interior which satisfies the
Jensen equation can be written as the sum of a real-valued additive function defined
on the whole Rn and a real constant. This gives us that there exist an additive
function a : R → R and a constant d ∈ R such that g(λ) = a(λ) + d holds for every
positive λ. As g takes only positive values, it follows that a is bounded from below
on the set of positive real numbers. It is a classical result of Ostrowski from 1929 [9]
that any additive function of R that is bounded from one side on a set of positive
measure is necessarily a constant multiple of the identity. Hence, we have a constant
c ∈ R such that a(λ) = cλ for every λ ∈ R. As g is a self-bijection of the set of all
positive numbers with g(1) = 1, one can easily verify that c = 1 and d = 0. Clearly,
this implies that f is the identity on R+. Finally, it immediately follows from (2.3)
that ϕ is the identity on [0, 1].

After this preparation, we are now in a position to prove Theorem 1.1.

Proof. Let φ : B(H)+ → B(H)+ be a bijective map which preserves Lebesgue
decompositions in both directions.

First we show that φ sends 0 to 0. Indeed, 0 = 0+0 is a 0-Lebesgue decomposition
of 0. This implies that φ(0) = φ(0) + φ(0) is a φ(0)-Lebesgue decomposition of φ(0).
We have φ(0) = 0.

Next, we assert that φ preserves absolutely continuity in both directions. This
means that for any pair A,B of positive operators, B is A-absolutely continuous if
and only if φ(B) is φ(A)-absolutely continuous. In fact, this follows from the preserver
property of φ and from the easy fact that B is A-absolutely continuous if and only
if B = B + 0 is an A-Lebesgue decomposition of B. In a similar way, one can check
that φ preserves singularity in both directions.

By the criterion (A4) of uniqueness of Lebesgue decompositions, φ preserves the

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 222-232, April 2009



ELA

228 L. Molnár

elements of B(H)+ with closed range in both directions. This means that the operator
A ∈ B(H)+ has closed range if and only if φ(A) has closed range.

Now, by Corollary 2.2, for arbitrary operators A,B ∈ B(H)+ with closed ranges,
we have

rngB ⊂ rngA⇐⇒ rngφ(B) ⊂ rngφ(A),

and hence,

rngB = rngA⇐⇒ rngφ(B) = rngφ(A).

We next prove that φ preserves the rank of finite rank operators. In fact, this
follows from the following characterization of the rank. The positive operator A is
of rank n (1 ≤ n ∈ N) if and only if it has closed range, there exists a sequence
A0, A0, . . . , An−1 of positive operators with closed range of length n such that

rngA0 � rngA1 � . . . � rngAn−1 � rngA

and there is no similar sequence of length n+ 1. The already verified properties of φ
imply that φ preserves the rank.

As φ preserves the positive operators with closed range in both directions, by
Corollary 2.3, we obtain that φ preserves the invertible elements of B(H)+ in both
directions. Therefore, φ(I) is an invertible positive operator. Consider the transfor-
mation

A 
−→ φ(I)−1/2φ(A)φ(I)−1/2. (2.5)

Referring to the already mentioned fact that any transformation of the form A 
−→
SAS∗ with some invertible bounded linear or conjugate-linear operator S on H pre-
serves Lebesgue decompositions in both directions, we see that the transformation
in (2.5) is a bijective map on B(H)+ which has the same preserver property and, in
addition, it sends I to I. Hence, there is no serious loss of generality in assuming that
already φ satisfies φ(I) = I.

We prove that φ preserves the rank-one projections in both directions. Let P
be a rank-one projection. By Lemma 2.4, the P -Lebesgue decomposition of I is
I = P + (I − P ). As φ preserves the rank, φ(P ) is a rank-one operator. Hence, we
have φ(P ) = µQ with some rank-one projection Q and positive number µ. Now, on
one hand, by the original preserver property of φ, the φ(P )-Lebesgue decomposition
of φ(I) is

I = φ(I) = φ(P ) + φ(I − P ).
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But on the other hand, by Lemma 2.4, the (µQ)-Lebesgue decomposition of I is

I = Q+ (I −Q).

Using the uniqueness of the Lebesgue decomposition with respect to positive operators
having closed range, we obtain that φ(P ) = Q and φ(I − P ) = I − Q = I − φ(P ).
Consequently, φ(P ) is a rank-one projection, and we also have φ(I − P ) = I − φ(P ).

We show that φ preserves the orthogonality among rank-one projections. Let
P,Q be orthogonal rank-one projections. It is easy to see that the Q-Lebesgue de-
composition of (I − P ) is I − P = Q+ (I − P −Q). Therefore, we have φ(I − P ) =
φ(Q) +φ(I −P −Q) ≥ φ(Q). But from the previous paragraph of the proof we know
that φ(I − P ) = I − φ(P ). Therefore, we obtain I − φ(P ) ≥ φ(Q), which means that
the projections φ(P ) and φ(Q) are orthogonal to each other.

We assert that for any rank-one projection P , we have a bijective function fP on
R+ such that φ(λP ) = fP (λ)φ(P ). This follows from the fact that for any positive λ,
the ranges of the rank-one operators φ(λP ) and φ(P ) coincide which is a consequence
of rngλP = rngP .

We next prove that the functions fP are all the same. In order to verify this, first
consider an arbitrary rank-one projection P . By Lemma 2.4, for any positive λ, the
P -decomposition of λI is

λI = λP + λ(I − P ).

Therefore, we obtain

φ(λI) = fP (λ)φ(P ) + φ(λ(I − P )). (2.6)

The range of λ(I − P ) is equal to the range of I − P , and hence, we obtain that

rngφ(λ(I − P )) = rng φ(I − P ) = rng(I − φ(P )) = rngφ(P )⊥.

Consequently, the operators on the right hand side of (2.6) act on orthogonal sub-
spaces. This means that the range of the rank-one projection φ(P ) is an eigensubspace
of φ(λI). As P is an arbitrary rank-one projection, and hence, φ(P ) runs through
the set of all rank-one projections, we infer that φ(λI) is a scalar operator. Again by
(2.6), we see that this scalar is fP (λ). So, we have φ(λI) = fP (λ)I. This shows that
the bijection fP of R+ in fact does not depend on P . We conclude that there is a
bijective function f on R+ such that for every rank-one projection P and nonnegative
real number λ, we have φ(λP ) = f(λ)φ(P ).

Let P,Q be orthogonal rank-one projections and λ, µ positive real numbers. Set
B = λP + µQ. The P -Lebesgue decomposition of B is B = λP + µQ. Therefore, we
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have

φ(λP + µQ) = φ(B) = φ(λP ) + φ(µQ) = f(λ)φ(P ) + f(µ)φ(Q).

In particular, we obtain that φ(P +Q) = φ(P ) + φ(Q). Next, let R be an arbitrary
rank-one subprojection of P + Q. Then we infer that φ(R) is a subprojection of
φ(P ) + φ(Q) (φ preserves the inclusion of ranges of operators with closed range).
As we have seen in Lemma 2.4, the absolutely continuous part in the R-Lebesgue
decomposition of B is λ(B,R)R. We compute the quantity λ(B,R) in the following
way. Let r be a unit vector in the range of R. By (2.1), we have

λ(B,R) = ‖B−1/2r‖−2 =
1

〈B−1r, r〉 =
1

〈((1/λ)P + (1/µ)Q)r, r〉

=
1

(1/λ)〈Pr, r〉 + (1/µ)〈Qr, r〉 =
1

(1/λ) trPR+ (1/µ) trQR
.

Therefore, we obtain

λ(B,R)R =
1

(1/λ) trPR+ (1/µ) trQR
R.

Similarly, the absolutely continuous part in the φ(R)-Lebesgue decomposition of
φ(B) = f(λ)φ(P ) + f(µ)φ(Q) is

λ(φ(B), φ(R))φ(R) =
1

(1/f(λ)) trφ(P )φ(R) + (1/f(µ)) trφ(Q)φ(R)
φ(R).

As φ preserves Lebesgue decompositions, it follows that

φ(λ(B,R)R) = λ(φ(B), φ(R))φ(R).

Hence, using φ(λ(B,R)R) = f(λ(B,R))φ(R), we have the following functional equa-
tion:

f

(
1

(1/λ) trPR+ (1/µ) trQR

)
=

1
(1/f(λ)) trφ(P )φ(R) + (1/f(µ)) trφ(Q)φ(R)

,

which can be rewritten as

f

(
1

(1/λ)α+ (1/µ)(1− α)

)
=

1
(1/f(λ))α′ + (1/f(µ))(1− α′)

, (2.7)

where λ, µ are arbitrary positive numbers, α ∈ [0, 1] is also arbitrary and α′ ∈ [0, 1].
It is clear from the discussion above that α′ does not depend on λ, µ, and thus, by
(2.7), it depends only on α. Hence, we can write (2.7) into the following form

f

(
1

(1/λ)α+ (1/µ)(1− α)

)
=

1
(1/f(λ))ϕ(α) + (1/f(µ))(1− ϕ(α))
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(λ, µ > 0, α ∈ [0, 1]). Here, f is a bijective map on R+ sending 0 to 0 and 1 to 1, and
ϕ : [0, 1] → [0, 1] is a function. We apply Lemma 2.5 and conclude that f, ϕ are the
identities on their domains. What concerns ϕ, this gives us that

trPQ = trφ(P )φ(Q).

This means that the transformation φ, when restricted onto the set of all rank-one
projections, is a bijective map preserving the trace of products. This latter quantity
appears in the mathematical foundations of quantum mechanics and is usually called
there transition probability. Transformations on the set of rank-one projections which
preserve the transition probability are holding the name quantum mechanical sym-
metry transformations, and they play a fundamental role in the probabilistic aspects
of quantum mechanics. A famous theorem of Wigner describes the structure of those
transformations.3 It says that every such map is implemented by a unitary or antiu-
nitary operator on the underlying Hilbert space. This means that we have a unitary
or antiunitary operator U on H such that

φ(P ) = UPU∗

holds for every rank-one projection P on H . (For generalizations of Wigner’s the-
orem concerning different structures, we refer to the Sections 2.1-2.3 of [7]; see also
the references therein.) Therefore, considering the transformation A 
→ U∗φ(A)U if
necessary, we can further assume without serious loss of generality that φ(P ) = P

holds for every rank-one projection P .

We complete the proof by showing that φ(B) = B holds for every positive op-
erator B. Indeed, we already know that for an arbitrary rank-one projection P , the
absolutely continuous part in the P -Lebesgue decomposition of B is λ(B,P )P . As
φ preserves Lebesgue decompositions, we obtain that the absolutely continuous part
in the φ(P )-Lebesgue decomposition of φ(B) is φ(λ(B,P )P ). Since f is the identity
on R+ and φ(P ) = P , we have φ(λ(B,P )P ) = λ(B,P )P . On the other hand, the
absolutely continuous part in the P -Lebesgue decomposition of φ(B) is λ(φ(B), P )P .
Therefore, we have

λ(φ(B), P )P = φ(λ(B,P )P ) = λ(B,P )P.

This gives us that

λ(B,P ) = λ(φ(B), P )

holds for every rank-one projection P . Since according to [2, Corollary 1], every
positive operator is uniquely determined by its strength function, we obtain that
φ(B) = B. This completes the proof of the theorem.

3There are in fact several equivalent formulations of Wigner’s theorem; see, e.g., pp. 12-13 in

[7]. The one we use here concerns transformations on rank-one projections.
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