
ELA

ON THE MAXIMUM POSITIVE SEMI-DEFINITE NULLITY
AND THE CYCLE MATROID OF GRAPHS∗

HEIN VAN DER HOLST†

Abstract. Let G = (V, E) be a graph with V = {1, 2, . . . , n}, in which we allow parallel edges

but no loops, and let S+(G) be the set of all positive semi-definite n × n matrices A = [ai,j ] with

ai,j = 0 if i �= j and i and j are non-adjacent, ai,j �= 0 if i �= j and i and j are connected by

exactly one edge, and ai,j ∈ R if i = j or i and j are connected by parallel edges. The maximum

positive semi-definite nullity of G, denoted by M+(G), is the maximum nullity attained by any matrix

A ∈ S+(G). A k-separation of G is a pair of subgraphs (G1, G2) such that V (G1) ∪ V (G2) = V ,

E(G1) ∪ E(G2) = E, E(G1) ∩ E(G2) = ∅ and |V (G1) ∩ V (G2)| = k. When G has a k-separation

(G1, G2) with k ≤ 2, we give a formula for the maximum positive semi-definite nullity of G in terms

of G1, G2, and in case of k = 2, also two other specified graphs. For a graph G, let cG denote the

number of components in G. As a corollary of the result on k-separations with k ≤ 2, we obtain that

M+(G) − cG = M+(G′) − cG′ for graphs G and G′ that have isomorphic cycle matroids.
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1. Introduction. Let A = [ai,j ] be a symmetric matrix in which some of the
off-diagonal entries are prescribed to be zero and some of the off-diagonal entries are
prescribed to be nonzero. Can we give a reasonable upper bound for the multiplicity of
the smallest eigenvalue of A? Let us formulate this in a different way. Let G = (V,E)
be a graph with vertex-set V = {1, 2, . . . , n}. All graphs in this paper are allowed to
have parallel edges but no loops. Let S(G) be the set of all symmetric n×n matrices
A = [ai,j ] with

(i) ai,j = 0 if i �= j and i and j are non-adjacent,
(ii) ai,j �= 0 if i �= j and i and j are connected by exactly one edge, and
(iii) ai,j ∈ R if i = j or i and j are connected by multiple edges.

Let S+(G) be the set of all positive semi-definite A ∈ S(G). It is clear how to
adjust the definition of S+(G) for the case that the vertex-set of G is not of the form
{1, 2, . . . , n} but a subset thereof. We denote for any matrix A the nullity of A by
nul(A). What is the largest possible nullity attained by any A ∈ S+(G)? In other
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words, what is

max{nul(A) | A ∈ S+(G)}?(1.1)

We call this number the maximum positive semi-definite nullity of G and denote it
by M+(G).

We could also pose the question of finding the smallest possible rank attained by
any matrix A ∈ S+(G). We denote the smallest rank attained by any A ∈ S+(G) by
mr+(G), and call this number the minimum positive semi-definite rank of G. If G has
n vertices, then M+(G) +mr+(G) = n. Hence, the problem of finding the maximum
positive semi-definite nullity of a graph G is the same as the problem of finding the
minimum positive semi-definite rank of G.

Without the requirement that the matrices in (1.1) are positive semi-definite, we
obtain the maximum nullity of a graph G. This, which is denoted byM(G), is defined
as

max{nul(A) | A ∈ S(G)}.

The minimum rank of a graph G, denoted by mr(G), is defined as

min{rank(A) | A ∈ S(G)}.

See Fallat and Hogben [2] for a survey on the minimum rank and the minimum
positive semi-definite rank of a graph.

A separation of G is a pair of subgraphs (G1, G2) such that V (G1)∪ V (G2) = V ,
E(G1)∪E(G2) = E, E(G1)∩E(G2) = ∅; the order of a separation is |V (G1)∩V (G2)|.
A k-separation is a separation of order k, and a (≤ k)-separation is a separation of
order ≤ k. A 1-separation (G1, G2) of a graph G corresponds to a vertex-sum of G1

and G2 at the vertex v of V (G1) ∩ V (G2). Let G be a graph which has a (≤ 2)-
separation (G1, G2). The author gave in [5] a formula for the maximum nullity of G
in terms of G1, G2, and other specified graphs. In this paper, we give a formula for the
maximum positive semi-definite nullity of G in terms of G1, G2, and in case that the
separation has order 2, also two other specified graphs. The positive semi-definiteness
makes the proof of this formula in part different from the formula for the maximum
nullity of graphs with a 2-separation.

If G = (V,E) and G′ = (V ′, E′) are graphs such that the cycle matroid of G
is isomorphic to the cycle matroid of G′, then there is a bijection f : E → E′ such
that for each circuit C of G, the edges in f(E(C)) span a circuit of G′, and for each
circuit C′ of G′, the edges in f−1(E(C′)) span a circuit of G. See Oxley [3] for an
introduction to Matroid Theory. As a corollary of the result on (≤ 2)-separations, we
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obtain that M+(G)− cG =M+(G′)− cG′ for graphs G and G′ that have isomorphic
cycle matroids. Here cG denotes the number of components in G.

Although we state our results for graphs that may have parallel edges, it is easy
to translate them to graphs without parallel edges. One way to do this is as follows:
Let G′ be obtained from a graph G by removing all edges in the parallel class of an
edge e, and let G′′ be obtained from G by removing all edges but e in the parallel
class of e. Then M+(G) = max{M+(G′),M+(G′′)}. Another way to translate results
for graphs that may have parallel edges to graphs without parallel edges is stated in
Lemma 2.11.

The outline of the paper is as follows. In the next section, we give formulas
relatingM+(G) toM+(G1),M+(G2) ifG has a 1-separation (G1, G2), and toM+(G1),
M+(G2), and two other graphs, ifG has a 2-separation (G1, G2). We do this for graphs
in which we allow multiple edges as well as for graphs in which we do not allow multiple
edges. As a corollary, we obtain that the graph G′ obtain from identifying a vertex
in a graph G and a vertex in some tree satisfies M+(G′) = M+(G). In Section 3, we
show that M+(G) − cG is invariant on the class of graphs that have the same cycle
matroid. We also show that suspended trees G have M+(G) ≤ 2, from which we
obtain the corollary that M+(G)− cG ≤ 2 if G has a cycle matroid isomorphic to the
cycle matroid of a suspended tree.

2. 1- and 2-separations of graphs. Let (G1, G2) be a (≤ 2)-separation of a
graph G. In this section, we give formulas for M+(G) in terms of M+(G1), M+(G2),
and, in case that (G1, G2) is a 2-separation, the maximum positive semi-definite nullity
of two other specified graphs.

The proofs of the following lemma and theorem are standard.

Lemma 2.1. Let (G1, G2) be a k-separation of G = (V,E). Then M+(G) ≥
M+(G1) +M+(G2)− k.

Theorem 2.2. Let G be the disjoint union of G1 and G2. Then M+(G) =
M+(G1) +M+(G2).

Let R and C be finite sets. An R × C matrix A = [ai,j ] is one whose set of row
indices is R and set of column indices is C. An ordinary m × n matrix is then a
{1, . . . ,m} × {1, . . . , n} matrix.

Let A be a symmetric V × V matrix, where V is a finite set. If S ⊆ V such that
A[S] is nonsingular, the Schur complement of A[S] is defined as the (V \S)× (V \S)
matrix

A/A[S] = A[V \ S]−A[V \ S, S]A[S]−1A[S, V \ S].
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If A is a positive semi-definite matrix, then A/A[S] is also a positive semi-definite
matrix.

To obtain theorems similar to Theorem 2.2 for 1- and 2-separations, we will use
the following lemma.

Lemma 2.3. Let V be a finite set and let R ⊆ V . Let A be a positive semi-definite
V ×V matrix. Then there exists an S ⊆ V \R such that N = [ni,j ] = A/A[S] satisfies
N [V \ (S ∪R), V \ S] = 0.

Proof. Take S ⊂ V \ R such that A[S] is positive definite and |S| is as large
as possible. Let N = [ni,j ] = A/A[S]. If ni,i �= 0 for some i ∈ V \ (R ∪ S), then
det(A[S∪{i}) = det(A[S]) det(A[S∪{i}]/A[S]) = det(A[S])ni,i �= 0 and |S∪{i}| > |S|,
contradicting that we had chosen S such that |S| is as large as possible. Hence, ni,i = 0
for i ∈ V \ (R ∪ S). Since A is positive semi-definite, ni,j = 0 for i, j ∈ V \ (S ∪ R).
Hence, N [V \ (S ∪R), V \ S] = 0.

Theorem 2.4. Let (G1, G2) be a 1-separation of G = (V,E). Then

M+(G) =M+(G1) +M+(G2)− 1.

Proof. From Lemma 2.1 it follows that M+(G) ≥M+(G1) +M+(G2)− 1.

To see that M+(G) ≤ M+(G1) + M+(G2) − 1, let A = [ai,j ] ∈ S+(G) with
nul(A) = M+(G). Let {v} = V (G1) ∩ V (G2). By Lemma 2.3, there exists an S ⊆ V

with v �∈ S such that N = [ni,j ] = A/A[S] is zero everywhere except possibly for
entry nv,v. If nv,v �= 0, then, by subtracting nv,v from av,v, we obtain a positive
semi-definite matrix A′ with nul(A′) = nul(A) + 1. This contradiction shows that
nv,v = 0, and so M+(G) = |V \ S|.

We claim that M+(G1) ≥ |V (G1) \ S| and M+(G2) ≥ |V (G2) \ S|. From this the
lemma follows. The matrixK = [ki,j ] = A[V (G1)] belongs to S+(G1). By Lemma 2.3,
L = [li,j ] = K/K[V (G1)∩ S] is zero everywhere except possibly lv,v. If lv,v �= 0, then
subtracting lv,v from kv,v yields a matrix that belongs to S+(G1) and whose nullity is
equal to |V (G1)\S|. Hence, M+(G1) ≥ |V (G1)\S|. The case M+(G2) ≥ |V (G2)\S|
can be done similarly.

Corollary 2.5. Let (G1, G2) be a 1-separation of a graph G. Then mr+(G) =
mr+(G1) + mr+(G2).

A different proof of the next theorem can be found in van der Holst [4].

Theorem 2.6. If G is a tree, then M+(G) = 1.

Proof. Use Theorem 2.4, that M+(K1) = 1 and M+(K2) = 1, and induction on
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the number of vertices in G to show that M+(G) = 1.

From Theorems 2.4 and 2.6, we obtain:

Theorem 2.7. Let G1 be a graph and let T be a tree disjoint from G1. If G is
obtained from identifying a vertex in G1 with a vertex in T , then M+(G) =M+(G1).

Let G = (V,E) be a graph, let (G1, G2) be a k-separation of G, and let R =
{r1, r2, . . . , rk} = V (G1) ∩ V (G2). If B = [bi,j ] ∈ S+(G1) and C = [ci,j ] ∈ S+(G2),
then we denote by B ⊕r1,r2,...,rk

C the matrix A = [ai,j ] ∈ S+(G) with

1. ai,j = bi,j if i, j ∈ V (G1) and at least one of i and j does not belong to
{r1, r2, . . . , rk},

2. ai,j = ci,j if i, j ∈ V (G2) and at least one of i and j does not belong to
{r1, r2, . . . , rk}, and

3. ai,j = bi,j + ci,j if i, j ∈ {r1, r2, . . . , rk}.
This matrix operation is also called sub-direct sum of B and C; see [1]. The matrix
A is positive semi-definite and belongs to S+(G).

Let A = [ai,j ] be a positive semi-definite n × n matrix. If we multiply simul-
taneously the vth row and column by a nonzero scalar α, then we obtain a matrix
B = [bi,j ] that is also positive semi-definite. To see this, let UUT be the Cholesky
decomposition of A, and let W be obtained from U by multiplying its vth column by
α. Then B =WWT .

Theorem 2.8. Let (G1, G2) be a 2-separation of a graph G = (V,E), and let H1

and H2 be obtained from G1 = (V1, E1) and G2 = (V2, E2), respectively, by adding an
edge between the vertices of R = {r1, r2} = V1 ∩ V2. Then

M+(G) = max{M+(G1) +M+(G2)− 2,M+(H1) +M+(H2)− 2}.

Proof. From Lemma 2.1 it follows that M+(G) ≥M+(G1) +M+(G2)− 2.

Next we show that M+(G) ≥ M+(H1) +M+(H2) − 2. Let B = [bi,j ] ∈ S+(H1)
and C = [ci,j ] ∈ S+(H2) be matrices with nul(B) =M+(H1) and nul(C) =M+(H2).
If br1,r2 = cr1,r2 = 0, then both G1 and G2 have at least one edge between r1 and r2.
Hence, G has multiple edges between r1 and r2, and so A = B ⊕r1,r2 C ∈ S+(G). If
br1,r2 = 0 and cr1,r2 �= 0, then G1 has at least one edge between r1 and r2. Hence, G
has at least one edge between r1 and r2, and therefore A = B⊕r1,r2 C ∈ S+(G). The
case with br1,r2 �= 0 and cr1,r2 = 0 is similar. If br1,r2 �= 0, cr1,r2 �= 0 and there is no
edge in G between r1 and r2, then, by multiplying simultaneously the r1th row and
column of B by a nonzero scalar if necessary, we may assume that br1,r2 = −cr1,r2 .
Multiplying simultaneously the r1th row and column of a positive semi-definite matrix
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by a nonzero scalar yields a positive semi-definite matrix. Then A = B ⊕r1,r2 C ∈
S+(G). If br1,r2 �= 0, cr1,r2 �= 0 and there is at least one edge in G between r1 and
r2, then, by multiplying simultaneously the r1th row and column of B by a scalar if
necessary, we may assume that br1,r2 �= −cr1,r2 . Then A = B⊕r1,r2C ∈ S+(G). Since
nul(A) ≥ nul(B)+nul(C)− 2, we obtain M+(G) ≥ nul(A) ≥M+(H1)+M+(H2)− 2.

We show now thatM+(G) ≤ max{M+(G1)+M+(G2)−2,M+(H1)+M+(H2)−2}.
For this, we must show that at least one of the following holds:

1. M+(G) ≤M+(G1) +M+(G2)− 2, or
2. M+(G) ≤M+(H1) +M+(H2)− 2.

Let A = [ai,j ] ∈ S+(G) be a matrix with nul(A) = M+(G). By Lemma 2.3,
there exists an S ⊆ V \R such that A[S] is positive definite and L = (li,j) = A/A[S]
satisfies L[V \ (R ∪ S), V \ S] = 0. Then M+(G) = nul(A) ≤ |V \ S|.

We use the following notation. For t = 1, 2, let St = Vt ∩ S, let

pt = A[{r1}, St]A[St]−1A[St, {r2}],

and let ft be the number of edges between r1 and r2 in Gt. To shorten the remainder
of the proof, we set, for t = 1, 2, qt = 0 if pt = 0 and qt = 1 if pt �= 0.

For t = 1, 2, we define the symmetric Vt × Vt matrix B = [bi,j ] by bi,j = ai,j if
i ∈ Vt \ {r1, r2} or j ∈ Vt \ {r1, r2}, br1,r2 = 0 and bu,u = A[{u}, St]A[St]−1A[St, {u}]
for u = r1, r2. Then nul(B) = |Vt \ St|. If qt + ft �= 1, then B ∈ S+(Gt), hence
M+(Gt) ≥ |Vt \ St|. If qt + ft ≥ 1, then B ∈ S+(Ht), hence M+(Ht) ≥ |Vt \ St|.

If q1 + f1 �= 1 and q2 + f2 �= 1, then M+(G1) ≥ |V1 \ S1| and M+(G2) ≥ |V2 \ S2|,
and so

M+(G) ≤ |V \ S|
= |V1 \ S1|+ |V2 \ S2| − 2

≤M+(G1) +M+(G2)− 2.

If q1 + f1 ≥ 1 and q2 + f2 ≥ 1, then M+(H1) ≥ |V1 \S1| and M+(H2) ≥ |V2 \S2|,
and so

M+(G) ≤ |V \ S|
= |V1 \ S1|+ |V2 \ S2| − 2

≤M+(H1) +M+(H2)− 2.

If q1 + f1 = 1 and q2 + f2 = 0, then one of the following holds:
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1. p1 = 0, p2 = 0, there is exactly one edge between r1 and r2 in G1, and there
are no edges between r1 and r2 in G2, or

2. p1 �= 0, p2 = 0, and there are no edges between r1 and r2 in G1 and in G2.

In the first case, p1 + p2 = 0 and there is exactly one edge between r1 and
r2 in G. Hence, M+(G) = nul(A) = nul(A/A[S]) ≤ |V \ S| − 1, as L = [li,j ] =
A/A[S] has nonzero entries only if i, j ∈ {r1, r2}. Define the symmetric V1 × V1

matrix B = [bi,j ] by bi,j = ai,j if i ∈ V1 \ {r1, r2} or j ∈ V1 \ {r1, r2}, br1,r2 = 1,
and bu,u = 1 + A[{u}, S1]A[S1]−1A[S1, {u}] for u = r1, r2. Then B ∈ S+(G1) and
nul(B) = |V1 \ S1| − 1. So M+(G1) ≥ |V1 \ S1| − 1. Define the symmetric V2 × V2

matrix C = [ci,j ] by ci,j = ai,j if i ∈ V2 \ {r1, r2} or j ∈ V2 \ {r1, r2}, cr1,r2 = 0, and
cu,u = A[{u}, S2]A[S2]−1A[S2, {u}] for u = r1, r2. Then C ∈ S+(G2) and nul(C) =
|V2 \ S2|. So M+(G2) ≥ |V2 \ S2|. Hence,

M+(G) ≤ |V \ S| − 1

= |V1 \ S1| − 1 + |V2 \ S2| − 2

≤M+(G1) +M+(G2)− 2.

In the second case, p1 + p2 �= 0 and there are no edges between r1 and r2 in
G. Then M+(G) = nul(A) = |V \ S| − 1. Since A[V1] ∈ S+(G1) and nul(A[V1]) =
|V1 \S1|−1,M+(G1) ≥ |V1 \S1|−1. Since A[V2] ∈ S+(G2) and nul(A[V2]) = |V2 \S2|,
M+(G2) ≥ |V2 \ S2|. Hence, M+(G) ≤M+(G1) +M+(G2)− 2.

The case with q1 + f1 = 0 and q2 + f2 = 1 is similar.

Corollary 2.9. Let (G1, G2) be a 2-separation of a graph G, and let H1 and H2

be obtained from G1 and G2, respectively, by adding an edge between the vertices of
S = {s1, s2} = V (G1)∩V (G2). Then mr+(G) = min{mr+(G1)+mr+(G2),mr+(H1)+
mr+(H2)}.

We will use the following lemma in the proof of Lemma 2.11.

Lemma 2.10. Let G = (V,E) be a graph with V = {1, 2, . . . , n} and let r1, r2 be
distinct vertices of G. Let H be obtained from G adding an edge between r1 and r2.
Then M+(G) ≤M+(H) + 1.

Lemma 2.11. Let G = (V,E) be a graph and let v be a vertex with exactly two
neighbors r1, r2. If v is connected to both neighbors by single edges, then M+(G) =
M+(H), where H is the graph obtained from G − v by connecting r1 and r2 by an
additional edge.

Proof. Let G1 = G− v and let G2 be a path of length two connecting r1 and r2.
Then (G1, G2) is a 2-separation of G. Let H1 and H2 be the graphs obtained from
G1 and G2, respectively, by adding an edge between r1 and r2. From Theorem 2.8, it
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follows that M+(G) = max{M+(G1) +M+(G2)− 2,M+(H1) +M+(H2) − 2}. Since
G2 is a path and H2 is a triangle, M+(G) = max{M+(G1) − 1,M+(H1)}. From
Lemma 2.10, it follows that M+(G1)− 1 ≤M+(H1). Hence, M+(G) =M+(H1).

Lemma 2.11 shows us that if G is a graph and G′ is obtained from G by subdi-
viding some of its edges, then M+(G) =M+(G′).

We state now the formula for 2-separations for simple graphs.

Corollary 2.12. Let (G1, G2) be a 2-separation of a simple graph G, and let
H1 and H2 be obtained from G1 and G2, respectively, by adding a path of length two
between the vertices of R = {r1, r2} = V (G1) ∩ V (G2). Then

M+(G) = max{M+(G1) +M+(G2)− 2,M+(H1) +M+(H2)− 2}.

In case v is a vertex in G with two neighbors and v is connected to exactly one
of its neighbors by a single edge, we have the following proposition.

Proposition 2.13. Let G be a graph and let v be a vertex with exactly two
neighbors r1, r2. If v is connected to exactly one of its neighbors by a single edge, then
M+(G) = M+(H), where H is the graph obtained from G − v by connecting r1 and
r2 by two edges in parallel.

Proof. Let G1 = G − v and let G2 be the induced subgraph of G spanned by
{v, r1, r2}. Then (G1, G2) is a 2-separation of G. Let Hi for i = 1, 2 be obtained from
Gi by adding an edge between r1 and r2. Since M+(G2) = 2 and M+(H2) = 2, it
follows from Theorem 2.8 that M+(G) = max{M+(G1),M+(H1)}. Hence, M+(G) =
M+(H).

3. Cycle matroid of graphs. In this section, we show that graphs G and G′

that have isomorphic cycle matroids satisfy M+(G) − cG = M+(G′) − cG′ . For the
proof we will use a result of Whitney, which shows that the cycle matroid of a graph
G′ is isomorphic to the cycle matroid of G if G′ can be obtained from G by a sequence
of the following three operations:

1. Let G be obtained from G1 and G2 by identifying the vertices u1 of G1 and
u2 of G2. We say that G is obtained from G1 and G2 by vertex identification.

2. The converse operation of vertex identification is vertex cleaving.
3. Let G be obtained from disjoint graphs G1 and G2 by identifying the vertices
u1 of G1 and u2 of G2, and identifying the vertices v1 of G1 and v2 of G2.
A twisting of G about {u, v} is the graph G′ obtained from G1 and G2 by
identifying u1 and v2, and u2 and v1.
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Theorem 3.1 (Whitney’s 2-Isomorphism Theorem [6]). Let G and H be graphs.
Then G and H have isomorphic cycle matroids if and only if H can be transformed
into a graph isomorphic to G by a sequence of vertex identifications, vertex cleavings,
and twistings.

See also [3] for a proof of Theorem 3.1.

Theorem 3.2. Let G be a graph. If G′ is a graph that has the same cycle matroid
as G, then M+(G′)− cG′ =M+(G)− cG.

Proof. By Whitney’s 2-Isomorphism Theorem, G′ can be obtained from G by
a sequence of vertex identifications, vertex cleavings, and twistings. To prove the
theorem, it suffices to show the theorem for the case where G′ is obtained from G by
one of these operations.

We assume first that the operation is vertex identification. Let G1 and G2 be
vertex-disjoint graphs such that G′ is obtained from identifying u1 of G1 and u2 of
G2. By Theorem 2.4,M+(G′) =M+(G1)+M+(G2)−1. Since G is the disjoint union
of G1 and G2, M+(G) = M+(G1) +M+(G2). Hence, M+(G) − 1 = M+(G′). Since
G has one component more than G′, M+(G) − cG = M+(G′) − cG′ . The proof for
vertex cleaving is similar.

We assume now that the operation is twisting. Let G1 and G2 be graphs such that
G is obtained by identifying u1 ofG1 and u2 ofG2, and identifying the vertices v1 ofG1

and v2 of G2, and G′ is obtained by identifying u1 and v2, and u2 and v1. For i = 1, 2,
let Hi be the graph obtained from Gi by adding an additional edge between ui and vi.
By Theorem 2.8,M+(G) = max{M+(G1)+M+(G2)−2,M+(H1)+M+(H2)−2} and
M+(G′) = max{M+(G1) +M+(G2)− 2,M+(H1) +M+(H2)− 2}. Hence, M+(G′) =
M+(G).

A suspended tree is a graph obtained from a tree T by adding a new vertex v
and connecting this vertex to some of the vertices in T by edges, possibly by parallel
edges. We call v a suspended vertex.

Lemma 3.3. If G is a suspended tree, then M+(G) ≤ 2.

Proof. We prove the lemma by induction on the number of vertices in G. By
Theorem 2.7, we may assume that G is 2-connected. If G has at most three vertices,
then clearly M+(G) ≤ 2. If G has more than three vertices, let (G1, G2) be a 2-
separation such that the suspended vertex belongs to V (G1) ∩ V (G2), and V (G1) \
(V (G1) ∩ V (G2)) �= ∅, and V (G2) \ (V (G1) ∩ V (G2)) �= ∅. Then G1 and G2 are
suspended trees with fewer vertices, and so M+(G1) ≤ 2 and M+(G2) ≤ 2. Let
H1 and H2 be obtained from G1 and G2, respectively, by adding an additional edge
between the vertices in V (G1) ∩ V (G2). Then H1 and H2 are suspended trees with
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fewer vertices, and so M+(H1) ≤ 2 and M+(H2) ≤ 2. As

M+(G) = max{M+(G1) +M+(G2)− 2,M+(H1) +M+(H2)− 2},

by Theorem 2.8, we obtain M+(G) ≤ 2.

A different proof of the next corollary for the case that G is connected can be
found in [4].

Corollary 3.4. If the cycle matroid of G is isomorphic to the cycle matroid of
a suspended tree, then M+(G)− cG ≤ 1.
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