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GENERATING POTENTIALLY NILPOTENT FULL SIGN
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Abstract. A sign pattern is a matrix with entries in {+,−, 0}. A full sign pattern has no

zero entries. The refined inertia of a matrix pattern is defined and techniques are developed for

constructing potentially nilpotent full sign patterns. Such patterns are spectrally arbitrary. These

techniques can also be used to construct potentially nilpotent sign patterns that are not full, as well

as potentially stable sign patterns.
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1. Introduction. An m-by-n matrix A = [αij ] with entries αij ∈ {+,−, 0} is
called a sign pattern (matrix), and defines an associated sign pattern class of real
matrices Q(A) = {A = [aij ] ∈ R

m×n : sign aij = αij ∀i, j}. A matrix A ∈ Q(A) is
a realization of pattern A. If no entry of A is zero, then A is a full sign pattern. If
sign pattern B = [βij ] has βij = αij whenever αij �= 0, then B is a superpattern of
A. Given a real matrix A = [aij ], its associated sign pattern, denoted by S(A), has
(i, j)-entry equal to sign aij for all i, j.

Associated with an n-by-n sign pattern A is a signed directed graph with vertices
1, . . . , n and a positive (negative) arc from i to j if and only if αij > 0 (αij < 0).
For q ≥ 2, if i1, . . . , iq are distinct and αi1,i2 · · ·αiq−1,iqαiq ,i1 > 0 (< 0), then the
signed directed graph has a positive (negative) q-cycle on vertices i1, . . . , iq. If αii >

0 (αii < 0), then the signed directed graph has a positive (negative) 1-cycle or loop
at vertex i.

A sign pattern A is potentially nilpotent (PN) if there exists a nilpotent matrix
A ∈ Q(A), i.e., At = 0 for some positive integer t. If t is the smallest integer such
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that At = 0, then t is the nilpotent index of A. A allows nilpotence of index t if there
is some matrix A ∈ Q(A) with nilpotent index t. In this paper, we focus on full sign
patterns that are potentially nilpotent. To put these in context, we introduce a few
more definitions.

If a real n-by-n matrix A has n+, n−, and n0 eigenvalues having positive, negative,
and zero real parts, respectively, with n+ + n− + n0 = n, then the ordered triple of
nonnegative integers (n+, n−, n0) is the inertia of A, denoted by i(A). The inertia of a
sign pattern A is {i(A) : A ∈ Q(A)}. Letting σ(A) denote the spectrum of a matrix A,
the spectrum of a sign pattern A is {σ(A) : A ∈ Q(A)}. If A has inertia (0, n, 0), then
A is a stable matrix, and a pattern A is potentially stable if A allows inertia (0, n, 0),
i.e., there exists a stable matrix A ∈ Q(A). If A allows all possible inertias, then A
is an inertially arbitrary (sign) pattern (A is an IAP), and if A allows all possible
spectra for a real matrix, then A is a spectrally arbitrary (sign) pattern (A is a SAP);
see [8] where these definitions were introduced. The Nilpotent-Jacobian method was
developed in [8] to show that a pattern A is a SAP by first finding a nilpotent matrix
A ∈ Q(A) and then verifying that a certain Jacobian matrix is nonsingular so that
the Implicit Function Theorem can be used. For a precise statement of the Nilpotent-
Jacobian method, see [1, Lemma 2.1]. In [8] it was also observed that if A is proved to
be a SAP by the Nilpotent-Jacobian method, then every superpattern of A is also a
SAP. Thus much of the literature on SAPs has focused on sparse spectrally arbitrary
patterns, although the first published n-by-n spectrally arbitrary sign patterns were
full sign patterns (see [15]).

If D is an n-by-n diagonal matrix with each diagonal entry +1 or −1, then
A �→ DAD−1 is a signature similarity transformation, which we denote by a vector
of the signs of the diagonal entries of D. If P is an n-by-n permutation matrix, then
A �→ PAPT is a permutation similarity transformation. We use, for example, the no-
tation (23) to refer to the permutation P that interchanges rows two and three. The
properties of being PN, an IAP and a SAP are invariant under negation, transposi-
tion, signature similarity transformations and permutation similarity transformations.
Patterns A and B are equivalent if A can be obtained from B by any combinations of
these four operations.

A sign pattern A is PN+ if A is potentially nilpotent and the signed directed
graph of A has at least one negative loop, one positive loop, and one negative 2-cycle.
The following result, which is contained in [4], gives two necessary conditions for a
sign pattern to be an IAP, and motivates the above definition of the class PN+; see
also [7, Lemma 3.2].

Theorem 1.1. If a sign pattern A = [αij ] is inertially arbitrary, then it has
at least one positive and one negative entry on the main diagonal and at least one
product αjkαkj negative with j �= k.
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If a sign pattern is spectrally arbitrary then it is PN. The converse is not true, but
the following result of Pereira shows that the condition of being potentially nilpotent
is a sufficient condition for a full sign pattern to be spectrally arbitrary.

Theorem 1.2. [17, Theorem 2.1] Any potentially nilpotent full sign pattern is
spectrally arbitrary.

Both Pereira’s theorem and the Nilpotent-Jacobian method emphasize the importance
of finding nilpotent matrices and potentially nilpotent sign patterns in the study of
spectrally arbitrary patterns. However, determining nilpotent matrices and PN sign
patterns is not an easy task.

Our main aim is to construct potentially nilpotent full sign patterns so that, by
Theorem 1.2, we can identify full sign patterns that are spectrally arbitrary. In Sec-
tion 3, we give a construction that is also useful for other applications. For example,
given a (not necessarily full) nilpotent matrix, our method can be used to generate
a PN sign pattern (not necessarily full) of higher order. Similarly, the construction
can be used to determine higher order potentially stable patterns from a given stable
matrix.

2. Full sign patterns of orders 2, 3 and 4. For sign patterns of order 2, it is
well known (see, for example, [8]) that up to equivalence, the only (full) sign pattern
that is potentially nilpotent is

T2 =
[

+ +
− −

]

and this pattern is also PN+, an IAP and a SAP. Thus these properties are equivalent
for n = 2.

For sign patterns of order 3, it was demonstrated in [1] and [4] that, up to equiv-
alence, if a sign pattern is spectrally arbitrary, then it is a superpattern of one of the
following four patterns:

D3,3 =


 − + 0

− 0 +
− 0 +


 T3 =


 − + 0

− 0 +
0 − +




U3 =


 − + 0

− + +
0 + −


 V3 =


 − 0 +

− 0 +
− + +




Since each of these patterns can be proved to be spectrally arbitrary by using the
Nilpotent-Jacobian method [8], it follows that every superpattern, and in particular

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 162-175, March 2009



ELA

Potentially Nilpotent Full Sign Patterns 165

every full superpattern, of each of these patterns is also spectrally arbitrary. However,
not every full 3-by-3 pattern satisfying the necessary conditions in Theorem 1.1 is such
a superpattern. This is demonstrated by the pattern

R =


 − + +

− + −
− − +


 ,

which is equivalent to the 3-by-3 pattern given in [13, Theorem 5.1] that requires a
positive eigenvalue, and hence is neither potentially nilpotent nor spectrally arbitrary.

Theorem 2.1. Up to equivalence, R is the only full pattern of order 3 that
satisfies the necessary conditions of Theorem 1.1 and is not spectrally arbitrary.

Proof. Suppose A = [αij ] is a full sign pattern that satisfies the necessary condi-
tions and suppose A is not spectrally arbitrary. We can assume that up to permutation
equivalence, α11 < 0, and α33 > 0. We consider the following three cases.

1. Suppose α12α21 < 0. Then, without loss of generality,

A =


 − + ∗

− ∗ ∗
∗ ∗ +


(2.1)

where ∗ ∈ {+,−}. Up to the signature similarity transformation (+,+,−),
it can be assumed that α32 < 0. If α13 < 0, then A is equivalent to a super-
pattern of D3,3, via transposition and the signature similarity transformation
(+,−,+). Thus α13 > 0. If α23 > 0, then A is a superpattern of T3; thus
α23 < 0. If α31 > 0, then A is equivalent to a superpattern of D3,3 via the
signature similarity transformation (+,+,−). Thus α31 < 0. If α22 < 0
then A is equivalent to a superpattern of U3, via the permutation similarity
transformation (23) and the signature similarity transformation (+,+,−).
Therefore α22 > 0, and A is equivalent to R.

2. Suppose α23α32 < 0. Then A is equivalent to the sign pattern considered in
Case 1 via negation and the permutation similarity transformation (13).

3. Suppose α13α31 < 0. Then, without loss of generality,

A =


 − ∗ +

∗ ∗ ∗
− ∗ +


 .

If α22 > 0, then via the permutation similarity transformation (23) a sign
pattern in the form (2.1) is obtained. If α22 < 0, then via the permutation
similarity transformation (23) followed by (12) and negation, a sign pattern
in the form (2.1) is obtained. Thus A is equivalent to R.
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A bordering technique is described in Section 3 that will enable us to easily construct
most full spectrally arbitrary sign patterns of order 3.

For sign patterns of order 4, using a computer search, we determined that every
full sign pattern that satisfies the two necessary conditions of Theorem 1.1 is a SAP.
In particular, we determined that every full sign pattern of order 4 that satisfies the
two necessary conditions is a superpattern of one of the following four sign patterns:

C1 =




0 + 0 0
0 − + +
+ 0 0 +
+ − 0 +


 , C2 =




− + 0 0
− 0 + +
0 0 + +
− 0 0 0


 ,

C3 =




+ − 0 0
+ 0 − 0
+ 0 0 −
0 0 + −


 , C4 =




− + 0 0
− 0 + 0
0 0 + +
0 − + 0


 .

These four sign patterns (and all their superpatterns) were shown to be spectrally
arbitrary in the following referenced papers: sign pattern C1 is the first sign pattern
on page 272 in [6, Appendix B], C2 is the first sign pattern in [6, Appendix A], C4 is
the third sign pattern on page 271 in [6, Appendix A], and C3 is from [3]. To test
these sign patterns, we first created a complete list of nonequivalent full sign patterns
of order 4 that satisfy the two necessary conditions. Then we checked that each sign
pattern in the list is equivalent to a superpattern of one of Ci for i = 1, . . . , 4.

3. Constructing potentially nilpotent full sign patterns. We now present
a method for generating full potentially nilpotent sign patterns of higher order by
bordering known potentially nilpotent sign patterns. We first introduce a new def-
inition. The refined inertia ri(A) of a real n-by-n matrix A is the ordered 4-tuple
(n+, n−, nz, 2np) such that n+ (resp. n−) is the number of eigenvalues with positive
(resp. negative) real part, and nz (resp. 2np) is the number of zero eigenvalues (resp.
pure imaginary eigenvalues) of A. A pattern A allows refined inertia (n+, n−, nz, 2np)
if there exists A ∈ Q(A) with ri(A) = (n+, n−, nz, 2np).

Theorem 3.1. Let A be an n-by-n matrix, U be an n-by-k matrix, X be a k-by-n
matrix and K be a k-by-k matrix. If B is the (n + k)-by-(n + k) matrix

B =

[
A− UX U

XA−XUX −KX XU + K

]
,(3.1)

then σ(B) = σ(A) ∪ σ(K). In particular, ri(B) = ri(A) + ri(K).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 162-175, March 2009



ELA

Potentially Nilpotent Full Sign Patterns 167

Proof. Setting

L =

[
In O

X Ik

]
gives L

[
A U

O K

]
L−1 = B.

Hence B is similar to the reducible matrix

[
A U

O K

]
.

In using the above theorem, if ri(K) = (�1, �2,m, 2j), then it is often convenient
to take

K = a1I�1 ⊕ (−a2)I�2 ⊕Om ⊕
[

0 b1
−b1 0

]
⊕ · · · ⊕

[
0 bj

−bj 0

]
,(3.2)

where a1, a2, b1, . . . , bj are positive integers. (Note that if m = 0, then the zero block
is vacuous; similarly if �1 = 0 or �2 = 0, then an identity block is vacuous; and if
j = 0, then the 2-by-2 blocks giving pure imaginary eigenvalues are vacuous.)

Corollary 3.2. If the matrix A in Theorem 3.1 is nilpotent of index t and
K = Ok, then B given by (3.1) is nilpotent of index t or t + 1.

Proof. The fact that B is nilpotent follows directly from Theorem 3.1, since
ri(A) = (0, 0, n, 0), ri(K) = (0, 0, k, 0) and ri(B) = ri(A) + ri(K). Moreover,

Bt = L

[
At At−1U

O O

]
L−1.(3.3)

Given that A is nilpotent of index t, it follows that if At−1U = O, then B is nilpotent
of index t; whereas if At−1U �= O, then B is nilpotent of index t + 1.

Theorem 3.3. Let A be an n-by-n sign pattern with A ∈ Q(A), and U be an
n-by-k sign pattern with U ∈ Q(U). Suppose X is a k-by-n real matrix with no zero
entries in the products XA and XU . Then the (n + k)-by-(n + k) sign pattern

B =

[
A U

S(XA) S(XU)

]
(3.4)

allows refined inertia ri(A) + (�1, �2,m, 2j) for any nonnegative vector (�1, �2,m, 2j)
with �1 + �2 + m + 2j = k.

Proof. Let K be as in (3.2). Then, by Theorem 3.1, the matrix B in (3.1) has
refined inertia ri(B) = ri(A) + (�1, �2,m, 2j). If the entries of U are sufficiently small
and the entries of K are sufficiently smaller than those of XU , then S(B) = B.

Corollary 3.4. If A and U in Theorem 3.3 are full sign patterns, then B in (3.4)
is a full sign pattern. Moreover, if A ∈ Q(A) is nilpotent and K in (3.2) is Ok, then
B is a full potentially nilpotent sign pattern.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 162-175, March 2009



ELA

168 I.-J. Kim et.al.

To illustrate the above construction, we now give some examples.

Example 3.5. Matrix

A =
[

1 1
−1 −1

]
∈ Q(T2)

is nilpotent of index 2. Take X = [1 0], U =
[

1
2

1
2

]T , and K = 0. Then, by
Corollary 3.4, the 3-by-3 full sign pattern

B =


 + + +

− − +
+ + +




is potentially nilpotent. Hence, Theorem 1.2 implies that B is spectrally arbitrary. In
fact, B is equivalent to a superpattern of U3. Moreover, the sign pattern B allows
nilpotence of index 3 but not index 2 since (B2)33 �= 0 for every B ∈ Q(B).

Example 3.6. Take A,X,K as in Example 3.5, but U =
[

1
2 ,−

1
2

]T so that
AU = O. The matrix from (3.1) is

B =


 1

2 1 1
2

− 1
2 −1 − 1

2
1
2 1 1

2


 and S(B) =


 + + +

− − −
+ + +


 .

Since B is nilpotent of index 2, S(B) allows nilpotence of index 2. Here B =
[1,−1, 1]T

[
1
2 , 1,

1
2

]
has rank 1, illustrating a result in [9, Corollary 3.7]. Note that

S(B) is equivalent to a superpattern of V3.

We now demonstrate that our construction as in Example 3.6 can be viewed as
an extension of the method for sign patterns that allow nilpotence of index 2 given
in [9, Theorem 3.9], and for sign patterns that allow nilpotence of index 3 given in [10,
Construction Method 3].

Theorem 3.7. If a sign pattern A =
[

A1 A2

A3 A4

]
allows nilpotence of index t

where A1 and A4 are square, then

Â =


 A1 A2 A2

A3 A4 A4

A3 A4 A4


 and Ă =


 A1 A2 A2

A3 A4 A4

−A3 −A4 −A4




allow nilpotence of index t.

Proof. Suppose A ∈ Q(A) is nilpotent of index t. Take U = [A2 A4]T , X =
[O, 1

2I] and K = O where the dimensions are compatible, and apply Corollary 3.2.
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Since A is nilpotent of index t and U is composed of columns of A, it follows that Â
allows nilpotence of index t. In particular, refering to (3.3), we need only demonstrate
that At−1U = O. If A is partitioned into block columns as A = [W U ], then it follows
that At−1U = O since

O = At = At−1[W U ] = [At−1W At−1U ].

Replacing X by −X in the above shows that Ă also allows nilpotence of index t.

The constructions in Theorem 3.7 can be repeated to build sign patterns of higher
order of the form




A1 A2 · · · A2

A3 A4 · · · A4

...
...

. . .
...

A3 A4 · · · A4


 ,

in which each row of block submatrices has a ± sign (subject to A being potentially
nilpotent). Note that this can give p-striped sign patterns (i.e., n-by-n sign patterns
with p columns having all entries positive and n−p columns having all entries negative
with 1 ≤ p ≤ n− 1), the first family of sign patterns shown to be spectrally arbitrary
[15].

The next result follows by taking k = n,X = In (or X = −In), K = On and U

sufficiently small in Theorem 3.1; see also Corollary 3.4.

Theorem 3.8. If A is an n-by-n potentially nilpotent sign pattern, then

B1 =
[

A U
A U

]
and B2 =

[
A U

−A −U

]

are 2n-by-2n potentially nilpotent sign patterns for any n-by-n sign pattern U . More-
over, if A and U are full patterns, then both B1 and B2 are full 2n-by-2n potentially
nilpotent sign patterns.

Example 3.9. Let A =


 + + +

− − −
− − −


 and U =


 + + +

+ + +
+ + +


. If

A =


 2 2 2

−1 −1 −1
−1 −1 −1


 , U =


 1 1 1

1 1 1
1 1 1


 , X = I3 and K = O3,
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then the matrix of the form in (3.1)

[
(A− U) U

(A− U) U

]
=




1 1 1 1 1 1
−2 −2 −2 1 1 1
−2 −2 −2 1 1 1

1 1 1 1 1 1
−2 −2 −2 1 1 1
−2 −2 −2 1 1 1




is nilpotent. Hence, the 6-by-6 full sign pattern

B1 =
[

A U
A U

]
=




+ + + + + +
− − − + + +
− − − + + +
+ + + + + +
− − − + + +
− − − + + +




is potentially nilpotent and so by Theorem 1.2, is spectrally arbitrary.

The methods above can also be applied to generate non-full nilpotent matrices and
potentially nilpotent sign patterns from those of lower order. We illustrate this in the
following example. The construction could be useful in implementing the Nilpotent
Jacobian method to show that a non-full sign pattern is spectrally arbitrary.

Example 3.10. Let Ci for i = 1, . . . , 4 be a nilpotent realization of Ci, a 4-
by-4 SAP as defined in Section 2, and U be any 4-by-4 matrix. Then by (3.1) with
A = Ci, X = I4 and K = O4, the 8-by-8 matrix given by[

(Ci − U) U

(Ci − U) U

]

is nilpotent, and specifies a (not necessarily full) potentially nilpotent sign pattern of
order 8.

Returning to sign patterns of order 3, there are, up to equivalence, exactly two
full potentially nilpotent sign patterns that cannot be obtained by the bordering
technique described in Theorem 3.1 with K = O. One of them is

G =

[
G11 G12

G21 G22

]
=


 + + +

− − +
+ − −


 .

Any nilpotent realization G11 ∈ G11 has G11 =
[

a a

−a −a

]
for a > 0. Thus for any

realization G21 (resp. G12) of G21 (resp. G12), G21 (resp. G12) is not in the row (resp.
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column) space of G11. Hence, the constructions described above cannot be used to
prove that G is potentially nilpotent. However, G is equivalent to a superpattern of
T3. Hence, the full sign pattern G is spectrally arbitrary. The other example is

H =


 − + −

− − +
− + +


 .

The full sign pattern H has no 2-by-2 potentially nilpotent principal submatrix, but
is a spectrally arbitrary pattern since H is a superpattern of D3,3.

4. Refined inertia. A sign pattern A of order n is a refined IAP (or an rIAP
for short) if for every ordered 4-tuple (n+, n−, nz, 2np), of nonnegative integers with
n++n−+nz+2np = n, there is some matrix A ∈ Q(A) such that A has n+ eigenvalues
with positive real parts, n− eigenvalues with negative real parts, nz zero eigenvalues
and 2np nonzero pure imaginary eigenvalues. The presence of nonzero pure imaginary
eigenvalues is often of importance in the analysis of dynamical systems, because they
can signal the onset of periodic solutions by Hopf bifurcation; see, for example [18,
Appendix A.7].

The result of Theorem 3.1 can also be used to construct a matrix with a pair
of pure imaginary eigenvalues, and thus identify other refined inertias for a pattern.
In particular, we now show that the sign pattern B1 in Example 3.9 allows refined
inertia (0, 0, 4, 2).

Example 4.1. Let A,U and X be as in Example 3.9, but K =


 0 1

2 0
− 1

2 0 0
0 0 0


.

Then the matrix

B =




1 1 1 1 1 1
−2 −2 −2 1 1 1
−2 −2 −2 1 1 1

1 1
2 1 1 3

2 1
− 3

2 −2 −2 1
2 1 1

−2 −2 −2 1 1 1



∈ Q(B1)

has eigenvalues 0, 0, 0, 0, and ± 1
2 i.

By taking A and K to have nonzero pure imaginary eigenvalues, it is also possible
to use the construction in Theorem 3.1 to identify matrices of even order n ≥ 4 that
have all nonzero pure imaginary eigenvalues. In a similar way, by taking A and
K to be stable matrices, a stable matrix of higher order can be generated, thus
giving a sign pattern that is potentially stable. In general, it is an open problem to
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characterize potentially stable sign patterns. Such sign patterns of orders 2, 3, 4
with signed directed graphs that have only r-cycles with r = 1 and r = 2 (called tree
sign patterns) are listed in [11], [14] and [16]. The following example uses a stable
matrix of order 4 with signed directed graph having r-cycles with r = 1, 2 and 3 [16,
Figure A2] to construct a potentially stable sign pattern of order 5 with these r-cycles.

Example 4.2. Take the stable matrix A given by

A =




0 1 0 1
0 0 1 0

−1 0 0 0
−3 0 0 −1


 , X =

[
0, 0, 0,

1
2

]
, U = [0, 0, 0, 1]T

and K = − 1
2 . Then using Theorem 3.1, the matrix

B =




0 1 0 1 0
0 0 1 0 0

−1 0 0 0 0
−3 0 0 − 3

2 1
− 3

2 0 0 − 1
2 0


 with S(B) =




0 + 0 + 0
0 0 + 0 0
− 0 0 0 0
− 0 0 − +
− 0 0 − 0




is stable, and specifies a potentially stable sign pattern of order 5. By continuity, every
superpattern (including full patterns) of S(B) is also potentially stable.

We conclude with some results that relate refined inertia to the other classes that
we are considering. First note that if A is an rIAP, then A is an IAP and PN+. If
A is a sign pattern of order 2 or an irreducible pattern of order 3, then the following
are equivalent (see [1] and [4]): A is a SAP, A is an IAP, A is PN+, A is an rIAP.
We show by some examples that this equivalence does not hold in general for sign
patterns of order 4.

Example 4.3. Consider

N =




+ + 0 0
0 0 + +
− − 0 0
0 0 − −


 .

From [4] we note that N is an IAP and PN+ but not a SAP. In fact, N does not
allow a characteristic polynomial x4 + r1x

3 + r2x
2 + r4 with r4 > 0. Further, N is

not an rIAP since N does not allow refined inertia (0, 0, 0, 4) as it does not allow a
characteristic polynomial x4 + cx2 + d with c, d > 0.
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Example 4.4. Consider

N2,1 =




+ + + 0
− − − 0
0 0 0 +
− − 0 0


 and N2,2 =




+ + + 0
− − − 0
0 0 0 −
− − 0 0


 .

It was determined in [5] that N2,1, and N2,2 are inertially arbitrary and potentially
nilpotent, but not spectrally arbitrary. We now show that these patterns are not in
the class of rIAPs. Note that M4 from [7] is signature similar to N2,2.

Suppose j ∈ {1, 2} and A ∈ Q(N2,j). By positive diagonal similarity, we may assume

A =




a 1 b 0
−c −d −1 0

0 0 0 v

−1 −t 0 0




with a, b, c, d, t > 0 and (−1)j+1v > 0. Then

pA(x) = x4 + (d− a)x3 + (c− ad)x2 + v(b− t)x + v(bd + at− ctb− 1).

Suppose r1 = 0 and r3 = 0, where ri is the coefficient of x4−i. Then a = d and b = t

and

pA(x) = x4 + (c− d2)x2 + (−v)(cb2 − 2bd + 1).

Thus if r2 ≥ 0 then c = d2 + ε for some ε ≥ 0. Hence r4 = (−v)[d2(b − 1
d )2 + b2ε],

so that r4 = 0 or sign(r4) = −sign(v). It follows that N2,1 will not realize poly-
nomials with sign(r1, r2, r3, r4) ∈ {(0, 0, 0,+), (0,+, 0,+), (0,+, 0, 0)} and N2,2 will
not realize polynomials with sign(r1, r2, r3, r4) ∈ {(0, 0, 0,−), (0,+, 0,−), (0,+, 0, 0)}.
Since N2,j cannot obtain sign(r1, r2, r3, r4) = (0,+, 0, 0), N2,j cannot realize polyno-
mials of the form x4 + r2x

2 with r2 > 0. Thus N2,j cannot realize the refined inertia
(n+, n−, nz, np) = (0, 0, 2, 2), and so N2,j is not an rIAP.

The following diagram illustrates the relationship among the sign patterns dis-
cussed.

PN+ −→ PN
↗

SAP ↑
↘

rIAP −→ IAP

For a full sign pattern A, it follows from Theorem 1.2 that the following statements
are equivalent: A is a SAP, A is PN+, A is PN, and A is an rIAP. However we do not
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know whether these statements are equivalent to “A is an IAP” when A is a full sign
pattern. Except possibly for the statement “A is an rIAP implies that A is a SAP”,
the converse of each implication in the diagram above is, in general, false. A family
of sign patterns of odd order n ≥ 5 that is inertially arbitrary but not potentially
nilpotent is presented in [12].

5. Open questions. The above results lead to the following open questions.

(a) Is an inertially arbitrary full sign pattern necessarily PN, and hence a SAP?
(b) If a sign pattern is an rIAP, is it necessarily a SAP?
(c) Is any full n-by-n, n �= 3, sign pattern that satisfies the two necessary condi-

tions of Theorem 1.1 potentially nilpotent (and hence a SAP)? See Section 3
for some results for n = 2 and 4.

(d) Our construction can be used to show that certain superpatterns of direct
sums of potentially nilpotent sign patterns allow nilpotence. Does every such
superpattern allow nilpotence? For example, is every superpattern of T2 ⊕T2

potentially nilpotent?
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