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ON THE EIGENVALUES OF MATRICES WITH COMMON GERSHGORIN REGIONS∗

ANNA A. DAVIS† AND PAUL F. ZACHLIN‡

Abstract. This paper is a study of the eigenvalues of a complex square matrix with one variable nondiagonal entry
expressed in polar form. Changing the angle of the variable entry while leaving the radius fixed generates an algebraic curve;
as does the process of fixing an angle and varying the radius. The authors refer to these two curves as eigenvalue orbits and
eigenvalue trajectories, respectively. Eigenvalue orbits and trajectories are orthogonal families of curves, and eigenvalue orbits
are sets of eigenvalues from matrices with identical Gershgorin regions. Algebraic and geometric properties of both types of
curves are examined. Features such as poles, singularities, and foci are discussed.
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1. Introduction.

1.1. Matrices with common Gershgorin regions. Let A = [ajk] be an n× n complex matrix. Let

rj(A) :=
∑
k 6=j

|ajk|,

denote the sum of the absolute values of the nondiagonal entries in row j. Recall that

Γj(A) := {z ∈ C : |z − ajj | ≤ rj(A)},

is the jth Gershgorin disk of A. The Gershgorin region of A is defined to be the union of the Gershgorin
disks, i.e.,

Γ(A) :=
⋃

1≤j≤n

Γj(A).

It is well known that the Gershgorin region is an eigenvalue inclusion region: since each eigenvalue λ is an
element of at least one disk, we have λ ∈ Γ(A). For a thorough treatment of Gershgorin’s theorem and many
related results, see Richard Varga’s book [12].

There are many matrices which have the same Gershgorin region, and a natural question is to identify
the set of all eigenvalues for n × n matrices with the same Gershgorin region as a given complex square
matrix A. The equimodular set for A, denoted Ω(A) is defined as

Ω(A) = {B = [bjk] : bjj = ajj and |bjk| = |ajk| for j 6= k}.

It is clear that any matrix in Ω(A) will have the same Gershgorin region as A. We use σ(Ω(A)) to denote
the set of all eigenvalues of matrices in Ω(A). Clearly σ(Ω(A)) is contained in the Gershgorin region of A
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and is a tighter containment region for eigenvalues of A. Varga makes use of the Perron–Frobenius theory of
nonnegative matrices to show that σ(Ω(A)) is the intersection of a number of minimal Gershgorin sets (see
[12, Theorem 4.11]).

In this paper, we work with subsets of Ω(A) by rewriting one of the nondiagonal entries of A in its
polar form. By allowing the angle to vary, we change the eigenvalues of the matrix without changing the
Gershgorin region. In addition, we study the consequences of varying the modulus of one nondiagonal entry.

1.2. Definition of eigenvalue orbits and trajectories. Consider a complex square matrix A with
one variable entry of the form reti (r ≥ 0, t ∈ [0, 2π)) located off of the main diagonal.

(1.1) A = Aj,k(r, t) =



a11 . . . . . . a1k . . . a1n

...
...

...
aj1 . . . . . . reti . . . ajn
...

...
...

...
...

...
an1 . . . . . . ank . . . ann


.

By fixing r and varying t, we obtain a set of eigenvalues which can be plotted in the complex plane. We call
the curve that is formed an eigenvalue orbit of A. We use the following notation:

r0-orbit: Or0 = {λ ∈ C : λ is an eigenvalue of Aj,k(r0, t), t ∈ [0, 2π)}.

Since the diagonal entries ajj of A are constants, the centers of the Gershgorin disks stay fixed, and since
the modulus of the only variable entry is fixed, the radii of all disks (and, therefore, the Gershgorin region)
will also be unchanged.

On the other hand, instead of fixing r and varying t, we can fix t and vary r. When we do this, we obtain
a different set of eigenvalues which we call an eigenvalue trajectory of A. We use the following notation:

t0-trajectory: Tt0 = {λ ∈ C : λ is an eigenvalue of Aj,k(r, t0), r ≥ 0}.

If we choose to fix t and vary r, then we will vary the radius of one of the Gershgorin disks, but all other
Gershgorin disks remain unchanged.

Figure 1 shows a trajectory overlaid on top of several orbits for

(1.2) C =

1 2i 1

i −1 1

0 reti 2

 .
The remainder of this paper is organized as follows. In Section 2, we show that eigenvalue orbits are

algebraic curves. We show that the same is true in the case of trajectories if we ignore finitely many removable
discontinuities (later shown to be poles of a rational function). In Section 3, we study points in the complex
plane which are significant for these curves. In particular, we study zeros, poles, and singularities. In
Section 4, we show that orbits and trajectories are circular curves and state results concerning their foci.
We conclude the paper by suggesting some possible directions for future study in Section 5.
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Figure 1: Orbits and a trajectory of matrix C. One orbit, such as O1, may consist of multiple components.

2. Equations of orbits and trajectories. Let A = Aj,k(r, t) be an n× n matrix where the entry in
row j, column k, is the variable entry reti written in polar form, as in (1.1). We compute the characteristic
equation for A by expanding det(A− λI) along the row (or column) containing reti. This gives us

(2.3) p(λ) + retiD(λ) = 0,

where p(λ) is some polynomial in λ, and D(λ) is given by

D(λ) = (−1)j+k det

a11 − λ . . . . . . a1k . . . a1n

...
...

...
aj1 . . . . . . reti . . . ajn

...
...

...
...

...
...

an1 . . . . . . ank . . . ann − λ




For an n×n matrix, the degree of p(λ) is n. The degree of D(λ) plays an important role in this narrative.

Let
m = deg [D(λ)] .

Observe that 0 ≤ m ≤ n− 2.

Suppose p(λ) and D(λ) have no common factors. If λ0 ∈ C is not a zero of D(λ), then substituting
λ0 into (2.3) and solving for reti gives us reti = −p(λ0)

D(λ0) . On the other hand, if λ0 is a zero of D(λ), then
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substituting λ0 into (2.3) yields no solutions. So, with the exception of zeros of D(λ), every point λ0 in the
plane is an eigenvalue of some matrix Aj,k(r0, t0).

Zeros of p(λ) also play an important role. If p(λ1) = 0, then λ1 is an eigenvalue of A when r = 0. We
refer to such eigenvalues as zero-eigenvalues.

It is easy to see that when p(λ) and D(λ) of (2.3) have no common factors, eigenvalue orbits defined by
different values of r will be disjoint. Throughout this paper, we will continue to assume that p(λ) and D(λ)

have no common factors. Matrix G2 of Example 3.3 illustrates what happens when instead p(λ) and D(λ)

have common factors. In addition, results that hold when common factors are present will be proved in a
way that allows for this possibility in order to maintain the greatest possible generality.

2.1. Equation of an orbit.

Theorem 2.1. Let r0 ≥ 0. An r0-orbit (Or0) of an n × n matrix A = Aj,k(r, t) is an algebraic curve
given by F (x, y) = 0 where

(2.4) F (x, y) = |p(x+ yi)|2 − r2
0|D(x+ yi)|2,

is a polynomial of degree 2n with real coefficients.

Proof. To find F (x, y), we replace λ with x+ yi in the characteristic equation (2.3) to obtain

(2.5) p(x+ yi) + r0e
tiD(x+ yi) = 0.

Any x+ yi that satisfies (2.5) also satisfies

|p(x+ yi)| = r0 |D(x+ yi)| ,

and

(2.6) |p(x+ yi)|2 − r2
0 |D(x+ yi)|2︸ ︷︷ ︸

F (x,y)

= 0.

Therefore, the curve F (x, y) = 0 contains the r0-orbit.

To see that the r0-orbit is equal to the curve F (x, y) = 0, suppose that a + bi satisfies (2.6). If
D(a + bi) = 0, then p(a + bi) = 0. Then a + bi satisfies the characteristic equation (2.3) for all values of r,
including r = r0, and we have a+ bi ∈ Or0 . On the other hand, if D(a+ bi) 6= 0, then a+ bi is an eigenvalue
of Aj,k(R0, t0) for some R0 ≥ 0, t0 ∈ [0, 2π) determined by R0e

t0i = −p(a+bi)
D(a+bi) . But then a+ bi is an element

of the R0-orbit. As such, a+ bi satisfies R2
0 |D(x+ yi)|2 = |p(x+ yi)|2. We have

R2
0 =

|p(a+ bi)|2

|D(a+ bi)|2
= r2

0.

Therefore, R0 = r0. We conclude that a+ bi ∈ Or0 .

Corollary 2.2 (Alternative Equation of an Orbit). Let λ` (1 ≤ ` ≤ n) be the zero-eigenvalues of an
n× n matrix A = Aj,k(r, t) and let α` (1 ≤ ` ≤ m) be the zeros of D(λ) in the characteristic equation (2.3).
Then an r0-orbit of A is given by

0 = |p(x+ yi)|2 − r2
0 |D(x+ yi)|2 = p(x+ yi)p(x+ yi)− r2

0D(x+ yi)D(x+ yi)(2.7)

=

n∏
((x+ yi)− λj)((x− yi)− λ̄j)− r2

0

m∏
((x+ yi)− αj)((x− yi)− ᾱj)︸ ︷︷ ︸

F (x,y)

.
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Figure 2: Orbits for the matrix
[

1 1

reti −1

]
are Cassini ovals.

For a simple illustration, consider the matrix
[

1 1

reti −1

]
. The characteristic equation for this matrix is

(1− λ)(−1− λ)− reti = 0. Using (2.6), we obtain the following equation for the orbits:

(2.8) |1− x− yi|2| − 1− x− yi|2 − r2 = 0,

or

(x2 − y2 − 1)2 + 4x2y2 − r2 = 0.

Considering (2.8) from a geometric standpoint, we can interpret each orbit as a collection of points x+yi

such that the product of distances d(x+ yi, 1) and d(x+ yi,−1) is constant:

(2.9) d(x+ yi, 1) · d(x+ yi,−1) = r.

Figures satisfying this definition are known as Cassini ovals. Figure 2 shows orbits for several values of r.
If 0 < r < 1, our orbit consists of two components, while we have a single closed curve for r ≥ 1. The case
r = 1 is special, as it contains a singularity (a node) at the origin. This famous curve is the lemniscate
of Bernoulli (see [9] for interesting facts about this curve). We will explore the importance of orbits with
singularities such as this one in Section 3.2.

2.2. Equation of a trajectory.

Theorem 2.3. Let t0 ∈ [0, 2π). A t0-trajectory (Tt0) of an n × n matrix A = Aj,k(r, t) is contained in
an algebraic curve given by G(x, y) = 0 where

(2.10) G(x, y) =
[
Re
(
p(x+ yi)D(x+ yi)

)]
sin t0 −

[
Im
(
p(x+ yi)D(x+ yi)

)]
cos t0,

is a polynomial of degree n+m with real coefficients.
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Proof. We begin by replacing λ with x+ yi in the characteristic equation (2.3), and proceed under the
assumption that D(x+ yi) 6= 0 (which implies that D(x+ yi) 6= 0).

p(x+ yi) + ret0iD(x+ yi) = 0.

Subtracting p(x+ yi) from both sides and multiplying both sides by D(x+ yi) gives us

(2.11)
(
rD(x+ yi)D(x+ yi)

)
et0i = −p(x+ yi)D(x+ yi),

This gives us

(2.12)


(
rD(x+ yi)D(x+ yi)

)
cos t0 = Re

(
−p(x+ yi)D(x+ yi)

)
(
rD(x+ yi)D(x+ yi)

)
sin t0 = Im

(
−p(x+ yi)D(x+ yi)

) .

Solving each equation in (2.12) for rD(x+ yi)D(x+ yi) and setting the two right sides equal to each other,
we obtain

(2.13)
[
Re
(
p(x+ yi)D(x+ yi)

)]
sin t0 −

[
Im
(
p(x+ yi)D(x+ yi)

)]
cos t0︸ ︷︷ ︸

G(x,y)

= 0.

The curve G(x, y) = 0 is algebraic, and it contains Tt0 . The degree of G(x, y) is n+m. If the degree, m, of
D(λ) is maximal (i.e. m = n− 2), then the degree of G is 2n− 2.

Zeros of D(λ) satisfy (2.13), but as discussed earlier, they are not eigenvalues of Aj,k(r, t) for any
combination of r and t. We will find it convenient to extend our definition of a trajectory to include these
(at most) n− 2 discontinuities. Let

T t0 = Tt0 ∪ {λ0 |D(λ0) = 0}.

The algebraic curve G(x, y) = 0 is equal to T t0 . We will use the term trajectory to refer to both T t0 and
Tt0 , and use notation to avoid ambiguity. Zeros of D have important geometric and algebraic properties.
These will be discussed in Sections 3.1 and 4.6.

Corollary 2.4 (Alternative Equation for a Trajectory). Let λ` (1 ≤ ` ≤ n) be the zero-eigenvalues of
an n × n matrix A = Aj,k(r, t) and let α` (1 ≤ ` ≤ m) be the zeros of D(λ) in the characteristic equation
(2.3). Then a t0-trajectory (T t0) of A is given by

0 = p(x+ yi)D(x+ yi)− p(x+ yi)D(x+ yi)e2t0i(2.14)

=

n∏
((x+ yi)− λj)

m∏
((x− yi)− ᾱj) + e2t0i

n∏
((x− yi)− λ̄j)

m∏
((x+ yi)− αj)︸ ︷︷ ︸

G(x,y)

.

Proof. Using the identities Re(z) = z+z̄
2 and Im(z) = z−z̄

2i , we can show that (2.13) is equivalent to

(2.15) K̄p(x+ yi)D(x+ yi)−Kp(x+ yi)D(x+ yi) = 0,

where K = cos t0 + i sin t0. To simplify further, observe that

K

K̄
= K2 = cos2 t0 + 2i sin t0 cos t0 − sin2 t0

= cos(2t0) + i sin(2t0)

= e2t0i.
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Figure 3: Trajectories for the matrix
[

1 1

reti −1

]
are hyperbolas.

The result follows from the properties of complex conjugates.

Returning to the the matrix
[

1 1

reti −1

]
of Figure 2, we find that trajectories are hyperbolas given by

(x2 − y2 − 1) sin t0 − (2xy) cos t0 = 0.

See Figure 3.

We now give an example using a 3× 3 matrix.

Example 2.5. Let

C =

1 2i 1

i −1 1

0 reti 2

 .
The characteristic equation for C is

(2.16) − λ3 + 2λ2 − λ+ 2 + (λ− 1 + i)reti = 0.

Thus, p(λ) = −λ3 + 2λ2 − λ+ 2 and D(λ) = λ− 1 + i. Replacing λ with x+ yi and using (2.13), we obtain
the following equation for T t0[

x4 − 3x3 + 3x2y + 3x2 − y4 − y3 + xy2 − y2 − 4xy − 3x+ y + 2
]

sin t0

=
[
2x3y − x3 − 5x2y + 2x2 + 2xy3 − y3 + 3xy2 − 2y2 + 4xy − x+ y + 2

]
cos t0.

Note that λ = 1− i is a zero of D(λ) = λ− 1 + i but is not a zero of p(λ) = −λ3 + 2λ2 − λ+ 2. Thus,
λ = 1−i is the only complex number that is never an eigenvalue of C. We will later see that every eigenvalue
trajectory T t0 of matrix C passes through 1− i. Figure 4 shows several orbits and trajectories for C.
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Figure 4: Orbits and trajectories for matrix C. Sample orbits O5 (red) and O1.6 (purple) are shown. The
complex number 1− i is not an eigenvalue of C for any combination of r and t.

3. Special points to consider. In this section, we examine points in the complex plane that are not
eigenvalues of Aj,k(r, t), such as 1 − i in Example 2.5. We also study singularities such as the node of the
lemniscate of Bernoulli mentioned in Section 2.1. To do this, we will need an alternative way of looking at
the characteristic equation (2.3). Solving equation (2.3) for reti gives us the rational function

(3.17) reti = f(λ) =
−p(λ)

D(λ)
.

Observe that f : C \ {λ0 : D(λ0) = 0} → C maps every Or0 to a circle of radius r0 centered at the origin,
and every trajectory Tt0 to a line through the origin determined by the angle t0.

3.1. Zeros and poles. Under the assumption that p(λ) and D(λ) in 3.17 have no common factors, we
immediately make the following observations:

1. Zeros of f(λ) are the zero-eigenvalues of Ajk(r, t).
2. Zeros of D(λ) are the poles of f(λ).

For every matrix Ajk(r, t), there will be at most n distinct zero-eigenvalues and at most n− 2 distinct poles.
Because zeros of p(λ) and D(λ) satisfy (2.13), we have the following result.

Theorem 3.1. Every trajectory T t0 contains every zero-eigenvalue and every pole.
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Figure 5: Orbits and trajectories for a 5× 5 matrix H. Sample orbits O5 (red) and O3 (purple) are shown.
There are five zero-eigenvalues and three poles.

As an illustration, consider the 5× 5 matrix

(3.18) H =


1 −1 1− i 2 + i 1

1 −i i reti 1 + 2i

0 −1 2 −2 1− i
1 −2 1 i 1

i i− 1 1 1 + i 1

 .

Figure 5 shows orbits and trajectories forH. Zero-eigenvalues appear as blue dots, where multiple trajectories
intersect, while poles appear as black dots.

3.2. Singularities. Singularities will play an important role in determining the location of the foci
of orbits. For our purposes, singularities fall into two broad categories: cusps and self-intersections. We
have already encountered a singularity in the orbit of a two-by-two matrix: the node of the lemniscate of
Bernoulli.

Recall that f : C \ {λ0 : D(λ0) = 0} → C of (3.17) maps every Or0 to a circle of radius r0 centered
at the origin. Function f is analytic on its domain. Therefore, f is locally invertible at every point in its
domain where f ′(λ) 6= 0. Locally, f and f−1 are holomorphic bijections between parts of circles and parts of
orbits. Because both maps are locally conformal [15, Theorem 1, p. 494], we can rule out the possibility of
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Figure 6: Singularities of orbits of H.

orbits having cusps. Therefore, the only possible type of singularity an orbit can have is a self-intersection
at a point where f locally fails to be one to one [15, Theorem 2, p. 505]. We can find the location of such
singularities by solving

f ′(λ) =
p(λ)D′(λ)− p′(λ)D(λ)

D(λ)2
= 0,

or equivalently,

(3.19) p′(λ)D(λ)− p(λ)D′(λ) = 0.

If the degree of p(λ) is n and the degree of D(λ) is m, then the degree of the polynomial in (3.19) is n+m−1.
If m is maximal, then orbits of A have 2n − 3 singularities (including multiplicity). Figure 6 shows seven
orbit singularities for the 5× 5 matrix H from (3.18).

As Theorem 3.2 below shows, orbit singularities correspond to eigenvalues of multiplicity greater than
one.

Theorem 3.2. Let λ0 be an eigenvalue of Ajk(r0, t0). Orbit Or0 has a singularity at λ0 if and only if
the multiplicity of λ0 is greater than 1.

Proof. Suppose the multiplicity of λ0 is greater than 1. Then the characteristic polynomial

Q(λ) = p(λ) +D(λ)r0e
t0i,
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has a repeated factor (λ− λ0). It is easy to see that (λ− λ0) is also a factor of Q′(λ) = p′(λ) +D′(λ)r0e
t0i.

Therefore
Q(λ0) = p(λ0) +D(λ0)r0e

t0i = 0 and Q′(λ0) = p′(λ) +D′(λ0)r0e
t0i = 0.

Solving both equations for r0e
t0i and equating the results gives us

p(λ0)

D(λ0)
=

p′(λ0)

D′(λ0)
.

But this is equivalent to (3.19). We conclude that λ0 is an orbit singularity.

Conversely, suppose that λ0 satisfies (3.19). Then

p(λ0)

D(λ0)
=

p′(λ0)

D′(λ0)
= −r0e

t0i.

But then
Q(λ) = p(λ) +D(λ)r0e

t0i = 0 and Q′(λ) = p′(λ) +D′(λ)r0e
t0i = 0.

Therefore, Q(λ) = (λ − λ0)q(λ) and Q′(λ) = q(λ) + (λ − λ0)q′(λ) for some polynomial q(λ). But
Q′(λ0) = 0, so Q′(λ0) = q(λ0) = 0. We conclude that (λ − λ0) is a factor of q(λ). Therefore, (λ − λ0) is a
factor of Q(λ) of multiplicity greater than 1.

3.3. Orthogonality. Figures 1, 3, 4, and 5 suggest that orbits and trajectories form orthogonal families
of curves. This is indeed the case. As noted earlier, function f of (3.17) maps orbits to circles centered at
the origin, and trajectories to lines through the origin. Function f is conformal at every point in its domain
where f ′(λ) 6= 0 [15]. Combining these observations with the fact that radii are orthogonal to circles allows
us to conclude that, with the exception of singularities, orbits, and trajectories are orthogonal.

3.4. Typical and not-so-typical behavior of eigenvalues. At the beginning of Section 3.1, we
assumed that p(λ) and D(λ) have no common factors. When this is the case, and when deg [D(λ)] = m =

n− 2, and neither p(λ) nor D(λ) have repeated factors, orbits, and eigenvalues exhibit typical behavior. In
this section, we describe typical behavior, and then give examples of what happens when one of the above
conditions is not satisfied.

Consider the eigenvalues of Ajk(r, t). When r = 0, the orbit consists of n zero-eigenvalues. By making r
a very small positive number, we obtain n small, disjoint components of an orbit. As r increases, components
grow and merge. As r continues to increase, we will observe smaller components breaking off and remaining
inside one large, outer component. For a fixed, large r0 we observe the following behavior:

1. As t varies, two eigenvalues travel around the outer component of the r0-orbit.
2. The interior of the outer component contains n − 2 eigenvalues belonging to n − 2 disjoint orbit

components.
3. Each of the n−2 eigenvalues located inside the outer component is orbiting a pole, getting arbitrarily

close to it as r increases.

This behavior is illustrated in Figure 7 using the matrix

G =


−1 −1 2 + i 2

2 −2 reti i− 1

2− i 3 2 −1

0 −1− i −1 1

 .
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Figure 7: Typical behavior of eigenvalues is illustrated using matrix G. O8 is shown in red along with four
eigenvalues corresponding to t = π/3. In general, for a sufficiently large value of r, two eigenvalues are
located on the outer component of the orbit, while the remaining eigenvalues orbit the poles.

Now we turn our attention to some less typical behaviors.

Example 3.3. Consider three matrices:

G1 =


1 −1 2 + i 0

0 −2 reti i− 1

−i 0 2 −1

i+ 1 −1 0 2

 G2 =

1 reti −i
1 3 + 2i 2

i 0 3 + 4i

 G3 =


1 0 2 + i 0

0 −2 reti i− 1

−i 1 2 0

i+ 1 −1 0 1

 .

Each of these matrices illustrates what happens when a matrix is not typical.

1. In the characteristic polynomial (2.3) of G1 the degree of D(λ) is 1, which is less than its maximum
possible degree of 2. Figure 8(a) shows an eigenvalue orbiting a single pole, while three eigenvalues
are located along the outer orbit.

2. In the characteristic polynomial of G2, p(λ) and D(λ) have a common factor. As a result, the orbits
for G2 reduce to orbits for a 2 × 2 matrix, with a single fixed eigenvalue located at the zero of the
common factor.

3. G3 shows what happens when D(λ) has repeated factors. A factor of D(λ) of multiplicity two
produces a pole that has two eigenvalues circling it. See Figure 8(b).

4. Shifting our focus to foci. Gershgorin regions are one of many well-studied eigenvalue inclusion
regions. Another eigenvalue inclusion region is the numerical range (also known as the field of values) of a
matrix (see Chapter 1 of [4] for a nice introduction), which is easily approximated using Johnson’s method
[5]. The boundary of the numerical range is the convex hull of a certain algebraic curve, as proved by
Kippenhahn in [7] (see also [16] for a translation into English). Kippenhahn called this algebraic curve the
randerzeugende, and he proved that the eigenvalues of the matrix are, in fact, the foci of the randerzeugende.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 227-253, March 2022.

239 On the eigenvalues of matrices with common Gershgorin regions

Figure 8: Orbits of G1 and G3.

From this perspective, the Gershgorin region, the numerical range, and other eigenvalue inclusion regions
are regions that contain foci of the randerzeugende. Eigenvalue orbits and trajectories are the paths followed
by these foci as we vary an entry of the matrix. We have seen that each of these paths is an algebraic curve.
These curves also have foci, so it is natural to ask what we can say about the foci of orbits and trajectories.
We will see that the answer has to do with the orbits containing singularities we studied in Section 3.2.

In this section, we study the foci of eigenvalue orbits and eigenvalue trajectories. If we take Kippenhahn’s
perspective that eigenvalues are simply the foci of the randerzeugende of a matrix, then we can say that we
are studying the foci of the foci.

4.1. Foci of algebraic curves. Here we review some well-known facts about the foci of algebraic
curves. An excellent introduction to foci can be found in [10]. For a more thorough treatment of what is
known about foci, see [8].

Up to this point, we have considered orbits and trajectories as algebraic curves in the plane (either R2

or C). Now we need to expand the setting in order to talk about the foci of an algebraic curve. If x and
y are allowed to be complex, then (x, y) is a point in C2. Furthermore, there is a natural embedding of C2

into complex projective space, P 2(C), where we think of (x, y) as a point with homogeneous coordinates
[X,Y,W ], W 6= 0, by identifying (x, y) with (X/W,Y/W ). Complex projective space is the setting we desire
in order to understand the foci of an algebraic curve.

Complex projective space, P 2(C), contains a line at infinity with equation W = 0. Two points on this
line, I = [1,−i, 0] and J = [1, i, 0], are called circular points at infinity. To understand the origin of this
name, consider any circle (x − a)2 + (y − b)2 − r2 = 0. Homogenization yields the equation (X − aW )2 +

(Y − bW )2 − r2W 2 = 0. Points I and J satisfy this equation.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 227-253, March 2022.

A.A. Davis and P.F. Zachlin 240

Definition 4.1. Given an algebraic curve C in the plane, the point of intersection of a tangent line to
C through point I with a tangent line to C through point J is called an ordinary focus.

Definition 4.2. If an algebraic plane curve C passes through points I and J , then the point of inter-
section of lines tangent to C at I and J is called a singular focus.

To find the points of intersection of tangents to our algebraic curves (orbits and trajectories), we will use
the method described by Wampler in [13]. This method makes use of isotropic coordinates.

4.2. Isotropic coordinates. Let z = x + yi and z = x − yi. If x, y ∈ R, then z and z are complex
conjugates. Since we are now considering points (x, y) ∈ C2, z and z cannot be assumed to be complex
conjugates.

A point in C2 can be described using isotropic coordinates (z, z) = (x+ yi, x− yi). The transformation
of h(x, y) to isotropic coordinates is accomplished by

ĥ(z, z) = h

(
z + z

2
,
z − z

2i

)
.

In the case of orbits and trajectories, the transformation of F (x, y) and G(x, y) to isotropic coordinates is
easily done by replacing x+ yi and x− yi in (2.7) and (2.14) with z and z.

(4.20) F̂ (z, z̄) =

n∏
(z − λj)(z̄ − λ̄j)− r2

0

m∏
(z − αj)(z̄ − ᾱj),

(4.21) Ĝ(z, z̄) =

n∏
(z − λj)

m∏
(z̄ − ᾱj) + e2t0i

n∏
(z̄ − λ̄j)

m∏
(z − αj).

Where λl, 1 ≤ l ≤ n, are the zero-eigenvalues of A and αl, 1 ≤ l ≤ m, are the zeros of D(x+ yi).

One-homogenization of the plane in isotropic coordinates results in points of the form [Z,Z,W ] ∈ P 2(C)

where (z, z) is identified with (Z/W,Z/W ), W 6= 0. It is worth noting that in isotropic coordinates I =

[1, 0, 0] and J = [0, 1, 0].

4.3. Finding ordinary foci. Consider an algebraic curve C given by ĥ(z, z̄) = 0. If a line through the
circular point I is tangent to C at (zI , z̄I), then

(4.22) ĥ(zI , z̄I) = 0.

The equation of the tangent line has the form:

(4.23) ĥz(zI , z̄I)(z − zI) + ĥz̄(zI , z̄I)(z̄ − z̄I) = 0.

Homogenizing the equation of the tangent line gives us

(4.24) ĥz(zI , z̄I)(Z − zIW ) + ĥz̄(zI , z̄I)(Z̄ − z̄IW ) = 0.

Circular point I has isotropic coordinates [1, 0, 0]. Substituting I into (4.24) gives us

(4.25) ĥz(zI , z̄I) = 0.
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Figure 9: Point (zJ , z̄I) is a focus of the curve ĥ(z, z̄) = 0.

Taking (4.22) and (4.25) together, we know that (zI , z̄I) must satisfy the system
ĥz(z, z̄) = 0

ĥ(z, z̄) = 0

.

Combining (4.23) and (4.25) yields the equation of the tangent line to C through I:

z̄ = z̄I .

A similar argument can be used to show that a line through J tangent to C at (zJ , z̄J) has the equation

z = zJ .

The two tangent lines intersect at (zJ , z̄I). Figure 9 summarizes this information.

Since we are only interested in finding foci with real coordinates, we will look for (zJ , z̄I) such that

(4.26) zJ = (z̄I)
∗
,

where ∗ denotes the complex conjugate. Therefore, for our purposes, it will be sufficient to find z̄I only.

4.4. Ordinary foci of orbits and trajectories. The main result of this section gives the location of
ordinary foci of a nonsingular orbit Or0 of A = Aj,k(r, t), and establishes a connection between orbit foci and
singular orbits of A. Recall that an n× n matrix A has n+m− 1 orbit singularities, where m = degD(λ).
We will use rsetsi (1 ≤ s ≤ n+m− 1), to denote the location of each singularity (not all singularities may
be distinct). The following theorem shows that a nonsingular orbit Or0 has (n + m − 1)n foci located at
intersections of Tts and Or20/rs .

Theorem 4.3. Let A = Aj,k(r, t) be an n × n matrix. Let Or0 be a nonsingular orbit of A. Then for
every orbit singularity rsets (1 ≤ s ≤ n+m− 1), there are n ordinary foci of Or0 given by the solutions of

p(z) +
r2
0

rs
etsiD(z) = 0.
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Proof. We will use (2.7) and (4.20) to represent orbits. To find ordinary foci of Or0 , we need to solve
the system 

F̂z(z, z̄) = 0

F̂ (z, z̄) = 0

.

In the definition of F̂ ,

p(z) =

n∏
(z − λj) and D(z) =

m∏
(z − αj),

are functions of z, while

p(z) =

n∏
(z̄ − λ̄j) and D(z) =

m∏
(z̄ − ᾱj),

are functions of z̄. So, our system can be written as

(4.27)


p′(z)p(z)− r2

0D
′(z)D(z) = 0

p(z)p(z)− r2
0D(z)D(z) = 0

,

Solving both equations for r2
0 and setting the two expressions equal to each other we obtain:

(4.28) p′(z)D(z) = p(z)D′(z).

A point z satisfies this relationship if and only if it is an orbit singularity (see (3.19)). Suppose zs = rse
tsi

satisfies (4.28). We will find z̄s such that (zs, z̄s) satisfies (4.27).

Substituting zs into the second equation, we obtain

p(zs)p(z)− r2
0D(zs)D(z) = 0

p(z)− r2
0

(
D(zs)

p(zs)

)
D(z) = 0.

By rearranging (2.3), we have D(zs)
p(zs) = − 1

rsetsi . Therefore, we are looking for z̄s that satisfies

(4.29) p(z) +
r2
0

rs
e−tsiD(z) = 0.

By (4.26), the complex conjugate of z̄s, denoted by z̄∗s , is an ordinary focus of Or0 . But z̄s satisfies (4.29) if
and only if z̄∗s satisfies

(4.30) p(z) +
r2
0

rs
etsiD(z) = 0.

This proves that the ordinary foci of Or0 are the solutions to (4.30).

Consequences of Theorem 4.3:

1. Observe that (4.30) has the form (2.3) of a characteristic equation of Ajk(r, t) where r =
r20
rs

and
t = ts. Therefore, ordinary foci are located along trajectories containing orbit singularities. The
radii of the orbits containing ordinary foci of Or0 are r20

rs
, where each rs is the radius of an orbit with

a singularity.
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2. Since (4.30) is a polynomial equation of degree n and orbits of A have n + m − 1 singularities, it
follows that Or0 has (n+m− 1)n ordinary foci.

3. When m = degD(λ) is maximal, the number of ordinary foci is (2n− 3)n.

Theorem 4.4. Let A = Aj,k(r, t) be an n × n matrix. Let T t0 be a nonsingular trajectory of A. Then
for every orbit singularity rsets (1 ≤ s ≤ n+m− 1), there are n ordinary foci of T t0 given by the solutions
of

(4.31) p(z) + rse
(2t0−ts)iD(z) = 0.

Proof. We apply the method used to prove Theorem 4.3 to equation (4.21).

Consequences of Theorem 4.4:

1. Observe that (4.31) has the form (2.3) of a characteristic equation of Ajk(r, t) where r = rs and
t = 2t0 − ts. We conclude that the foci of T t0 are located on Ors .

2. Since (4.31) is a polynomial equation of degree n and orbits of A have n+m− 1 singularities, T t0
has (n+m− 1)n ordinary foci – same as the number of ordinary foci for an orbit.

3. When m = degD(λ) is maximal, the number of ordinary foci is (2n− 3)n.

4.5. Circularity of orbits and trajectories. Points J = [1, i, 0] and I = [1,−i, 0] are called circular
because every homogenized circle passes through them. Algebraic curves that contain the circular points
are called circular. A singularity is said to have order n if all partial derivatives through order n− 1 vanish
at that point. If an algebraic curve has a singularity of order n at a circular point then the curve is called
n-circular.

Consider an algebraic curve of degree 2n given by h(x, y) = 0. We can express h as a sum h =

h2n + h2n−1 + · · · + h1 + h0, where each hj is a homogeneous polynomial of degree j. Homogenization
yields h(x, y, w) = h2n(x, y) +wh2n−1(x, y) +w2h2n−2(x, y) + · · ·+w2n−1h1(x, y) +w2nh0. To examine the
circularity of h(x, y) = 0, we will take advantage of the fact that (x2 +y2) vanishes at I and J . Therefore, to
prove that h(x, y) = 0 is n-circular, it suffices to show that each h2n−k is divisible by (x2 +y2)n−k, 0 ≤ k < n.

Theorem 4.5. Orbits generated by an n× n matrix A = Aj,k(r, t) are n-circular.

Proof. Every orbit is defined by F (x, y) = 0, as in (2.4). We can express F (x, y) as the sum F =

F2n + F2n−1 + · · ·+ F1 + F0, where each Fj is a homogeneous polynomial of degree j. Our goal is to show
that each F2n−k is divisible by (x2 + y2)n−k, 0 ≤ k < n. We will do this by using F̂ (z, z̄) of (4.20). Up to
coefficients, each F2n−k is given by

k∑
j=0

zn−j z̄n−k+j = zn−kz̄n−k
k∑
j=0

zk−j z̄j .

Since zz̄ = x2 + y2, we get the desired divisibility.

Theorem 4.6. Trajectories generated by an n×n matrix with a characteristic equation p(λ)+retiD(λ) =

0, have circularity equal to the degree of D(λ).

Proof. Let m be the degree of D(λ). Every trajectory is defined by G(x, y) = 0, as in (2.14), where
G(x, y) is a polynomial of degree n + m. We can write G as a sum of homogeneous polynomials G =

Gn+m + Gn+m−1 + · · · + G1 + G0, where each Gj is a homogeneous polynomial of degree j. We will show
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that every Gn+m−k is divisible by (x2 + y2)m−k, 0 ≤ k < m. To do this, we will use Ĝ(z, z̄) of (4.21). Up
to coefficients, each Gn+m−k is given by

k∑
j=0

zn−j z̄m−(k−j) +

k∑
j=0

zm−j z̄n−(k−j)

= zm−kz̄m−k

 k∑
j=0

zn−j−m+kz̄j +

k∑
j=0

zk−j z̄n+j−m

 .
Therefore, each Gn+m−k is divisible by (zz̄)m−k = (x2 + y2)m−k.

Recall that the maximal degree of D(λ) for an n × n matrix is n − 2. So, Theorem 4.6 implies that the
circularity of a trajectory is at most n− 2.

4.6. Singular foci of orbits and trajectories. Singular foci are the points of intersection of lines
tangent to the curve at the circular points I and J . A curve must pass through the circular points in order
to have a singular focus. Orbits for an n× n matrix are n-circular, while trajectories are m-circular, where
m is the degree of D(λ), m ≤ n − 2. This means that, with the exception of trajectories of matrices for
which m = 0 (e.g. 2× 2 matrices), all orbits and trajectories have singular foci.

To find singular foci, we will perform two homogenization of the plane, as described by Wampler in
[13]. In the new coordinate system points have the form ([Z,W ], [Z̄, W̄ ]) ∈ P 1(C) × P 1(C). The two
homogenization of ĥ(z, z̄), denoted by H(Z,W, Z̄, W̄ ), is done by making the substitution (z, z̄) =

(
Z
W , Z̄

W̄

)
and clearing denominators.

As in Section 4.4, we use the notation (zJ , z̄I) to denote singular foci. By Theorem 1 of [13], we can
find (zJ , z̄I) by using the fact that ([zJ , 1], [1, 0]) and ([1, 0], [z̄I , 1]) are roots of H(Z,W, Z̄, W̄ ) . As before,
because we are only interested in real singular foci, it will be sufficient to find only one of zJ and z̄I .

Theorem 4.7. Zero-eigenvalues of Aj,k(r, t) are the singular foci of every orbit of A = Aj,k(r, t).

Proof. We proceed with the two homogenization of (4.20):

n∏
(z − λj)(z̄ − λ̄j)− r2

m∏
(z − αj)(z̄ − ᾱj) = 0.

Making the substitution (z, z̄) =
(
Z
W , Z̄

W̄

)
, we obtain

n∏
(Z/W − λj)(Z̄/W̄ − λ̄j)− r2

m∏
(Z/W − αj)(Z̄/W̄ − ᾱj) = 0.

Clearing the denominators by multiplying both sides of the equation by WnW̄n gives us

n∏
(Z −Wλj)(Z̄ − W̄ λ̄j)−Wn−mW̄n−mr2

m∏
(Z −Wαj)(Z̄ − W̄ ᾱj) = 0.

Letting Z̄ = 1,W = 1, W̄ = 0, and solving for Z, we obtain solutions Z = λ1, . . . , λn. But these are the
zero-eigenvalues of A.

Theorem 4.8. Poles of A = Aj,k(r, t) are the singular foci of every trajectory of A.
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Proof. Two homogenization (4.21) yields

W̄n−m
n∏

(Z −Wλj)

m∏
(Z̄ − W̄ ᾱj) +Wn−me2t0i

n∏
(Z̄ − W̄ λ̄j)

m∏
(Z −Wαj) = 0.

Letting Z̄ = 1,W = 1, W̄ = 0, and solving for Z, we find that the solutions, Z = α1, . . . , αm, are the poles
of A.

Example 4.9. To illustrate Theorems 4.3 and 4.7, consider the matrix

B =

1 + i i 1

1 + i −1 2

2 reti −2i

 .
According to Theorem 4.7, singular foci of every orbit of B are located at the zero-eigenvalues. Three

distinct singular foci are shown in black in Figure 10.

According to Theorem 4.3, ordinary foci lie along trajectories that contain orbit singularities. In this
case, degD(λ) = 1 is maximal, so there are three orbit singularities whose locations can be found by solving
(3.19). Let r1e

t1i, r2e
t2i, r3e

t3i be the three singularities of orbits of B.

Consider the orbit Or=2, shown in red in Figure 10. The foci of Or=2 can be found by solving

p(z) +
22

rs
etsiD(z) = 0,

where
p(z) = −z3 − iz2 + 2iz − (2− 4i) and D(z) = 2z − (1 + i),

for z (s = 1, 2, 3). This is a cubic equation. Three sets of three solutions produce nine ordinary foci of Or=2.

Parts (a)–(c) of Figure 10 show each of the three sets of ordinary foci. Each focus lies on Tts and Or=4/rs .
Figure 10(d) shows all 12 distinct foci of Or=2.

4.7. Counting foci. The number of foci (ordinary and singular) of an algebraic curve is the same as
the class of the curve, d∗. The class of an algebraic curve is the degree of the dual curve. According to
Plucker’s formula

(4.32) d∗ = d(d− 1)− 2δ − 3κ,

where d is the degree of the algebraic curve, δ is the number of ordinary double points and κ is the number
of cusps. Higher-order singularities are counted as combinations of double points. For example, a singularity
of order K will be counted as (K−1)K

2 double points. Singular points at infinity are included in this count.

When counting foci, we need to account for multiplicity. Multiplicity of singular foci arises from a
tangent line through a circular point having multiple points of contact with the tangent branch of the curve
at the circular point. An arbitrary line crossing an n-circular curve at a circular point has n points of contact
with the curve at the circular point. If the line in question is tangent to one of the branches, it has n + 1

points of contact with the curve at the circular point: one with each non-tangential branch and two with the
tangent branch. An intersection of two such tangent lines produces a double singular focus. For example, a
circle is a 1-circular curve. Its center is a double singular focus. If the point of tangency is also an inflection
point for the tangent branch, then it is counted as a triple point of contact with the tangent branch, and
produces a triple focus. Higher contact counts are also possible.
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Figure 10: (a)–(c) O2 (red) shown together with its three singular foci (black) and three sets of ordinary
foci (red). Each set of ordinary foci is located on a trajectory Ts containing an orbit singularity rsetsi and
belongs to the orbit whose radius is 4/rs. (d) O2 together with its twelve distinct foci.

Theorem 4.10. Let A = Ajk(r, t) be an n × n matrix. Let D(λ) be defined as in (2.3), and let m =

deg (D(λ)). Then each singular focus of the orbits of A has multiplicity

n−m+ 1.

Proof. Suppose the orbits of A each have n distinct singular foci at the n zero-eigenvalues λ1, . . . , λn.
Consider the tangent line to an orbit at the circular point [1, i, 0] passing through the singular focus λ`. The
equation of such a tangent line in homogeneous coordinates is

X + Y i = λ`W.
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(The equation of its counterpart through [1,−i, 0] is X − Y i = λ`W ). The degree of an orbit is 2n, so,
by Bezout’s theorem, each tangent line has 2n points of contact with the orbit. We will find the points of
contact for a tangent line at [1, i, 0]; computations for a tangent line at [1,−i, 0] are identical.

Based on (4.20), we can write an equation for the orbit using homogeneous coordinates as follows:

n∏
j=1

(X + Y i− λjW )(X − Y i− λ̄jW )−W 2n−2mr2
0

m∏
j=1

(X + Y i− αjW )(X − Y i− ᾱjW ) = 0.

Substituting X = λ`W − Y i, we obtain a polynomial equation in Y and W .

n∏
j=1

(λ`W − λjW )(λ`W − 2Y i− λ̄jW )︸ ︷︷ ︸
0

−W 2n−2mr2
0

m∏
j=1

(X + Y i− αjW )(X − Y i− ᾱjW ) = 0

−W 2n−2mr2
0

m∏
j=1

(λ`W − αjW )(λ`W − 2Y i− ᾱjW ) = 0

W 2n−m
m∏
j=1

(λ`W − 2Y i− ᾱjW ) = 0.

This gives us m finite points of contact and 2n−m points of contact at [1, i, 0]. For an n-circular curve,
this means that the tangent has a single point of contact at [1, i, 0] with each of the nontangent branches,
and n−m+ 1 points of contact with the tangent branch.

As an immediate consequence of Theorem 4.10, we see that when the degree of D(λ) is maximal (i.e.
m = n−2), every singular focus is a triple focus. A similar argument shows that singular foci of trajectories,
when m is maximal, are also triple foci. Example 4.11 illustrates what can happen when m is not maximal.

Suppose an n×n matrix A is such that degD(λ) is maximal. Then for orbits and trajectories of A that
have no singularities (other than those at circular points), we have the following counts:

Degree of Curve Circularity Double Points at I and J
Orbits 2n n 2 · (n−1)n

2

Trajectories 2n− 2 n− 2 2 · (n−3)(n−2)
2

Plucker’s formulas give us the following number of foci for orbits and trajectories, respectively:

d∗O = 2n(2n− 1)− 2 · 2 · (n− 1)n

2
= 2n2,(4.33)

d∗T = (2n− 2)(2n− 3)− 2 · 2 · (n− 3)(n− 2)

2
= 2n2 − 6.(4.34)

By Theorems 4.3 and 4.4, both orbits and trajectories have (2n−3)n ordinary foci. Orbits have n triple
singular foci at zero-eigenvalues, and trajectories have n − 2 triple singular foci at the poles. This gives us
a total of (2n − 3)n + 3n = 2n2 foci for nonsingular orbits and (2n − 3)n + 3(n − 2) = 2n2 − 6 foci for
nonsingular trajectories. These results are in agreement with (4.33) and (4.34).

The following example illustrates what can happen when m is not maximal.
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Figure 11: Singular orbit O1 (red) and a nonsingular orbit O1.3 (orange), together with several trajectories.
All orbits have quintuple singular foci at ±1 and ±i.

Example 4.11. Consider the matrix1

M =


1 1 0 0

0 i 1 0

0 0 −1 1

reti 0 0 −i

 .
The characteristic equation for M is

(1− λ)(i− λ)(−1− λ)(−i− λ)− reti = 0.

Note that degD(λ) = 0. Therefore, trajectories for M are not circular and have no singular foci.

Orbits of M have four singular foci located at ±1 and ±i. By Theorem 4.10, the multiplicity of each
singular focus is 4− 0 + 1 = 5. This means that each orbit of M has 20 singular foci. Figure 11 shows the
singular foci of orbits of M , together with two orbits and some trajectories.

It is interesting to note that orbits of M are closely related to Cassini ovals. Recall that Cassini ovals
have two defining points (one at each singular focus), and the oval consists of all points for which the product
of distances to the singular foci is a given constant. Orbits of M have four defining points, also located at
the singular foci. In the complex plane, an orbit of M consists of all points z that satisfy the equation

d(z, 1) · d(z, i) · d(z,−1) · d(z,−i) = r,

for a fixed r. Indeed, a generalized version of ovals of Cassini can be made using orbits of n× n matrices by
letting the diagonal entries be the nth roots of unity, (i, i+ 1)-entries be 1, the (n, 1)-entry be reti, and the
remaining entries be 0. The 2× 2 matrix that generated Cassini ovals in Figure 2 has the aforesaid form. In
general, the multiplicity of each singular focus for such matrices is n+ 1.

1The structure of this matrix was borrowed from Varga [12, p. 106].
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Figure 12: Using eigenvalues versus using orbits to estimate the shape of σ(Ω(A)).

5. Connections and possible directions for future study2.

5.1. An application to eigenvalues of equimodular sets. In Section 1, we mentioned that Varga
characterized σ(Ω(A)) – the set of all eigenvalues of matrices in the equimodular set Ω(A) – as the intersection
of a family of minimal Gershgorin sets.[12] Approximating σ(Ω(A)) is a computationally difficult problem
(see [2] and [3]). It is customary to estimate the shape of σ(Ω(A)) by plotting eigenvalues of thousands of
elements of Ω(A) to produce images such as the one in Figure 12(a), which shows elements of σ(Ω(A)) for

A =

−1 1 0

0 2 + i 1

1 1 0.5

 .
Eigenvalue orbits offer an alternative way of visualizing σ(Ω(A)), at least for small matrices. To generate

orbit visualizations for σ(Ω(A)), consider elements of Ω(A) of the form−1 eθ1i 0

0 2 + i eti

eθ2i eθ3i 0.5

 ,
where entry (2, 3) is the orbit-generating variable entry with radius r = a23 = 1. Every random triplet
(θ1, θ2, θ3) gives rise to an eigenvalue orbit. A plot of 50 such orbits is shown in Figure 12(b). Any nondiagonal
entry of A can be used as an orbit-generating entry with radius r = ajk. For example, if entry (3, 1) is used
as an orbit generator, we get the image in Figure 12(c). If each of the four nonzero, nondiagonal entries of
A is used as an orbit generator and the results are combined, we obtain an approximation of σ(Ω(A)) shown
in Figure 13(a).

The orbit-generating algorithm used to create graphs for this paper was written in WolframMathematica,
and is a direct implementation of the process for finding orbits described in this paper. As such, the algorithm
involves symbolic computations, making it prohibitive for large matrices. Mathematica’s Timing[] function

2The authors thank the anonymous referees for their suggestions which improved the paper, including a number of the ideas
in this final section.
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Figure 13: A visual exploration of relationships between σ(Ω(A)) and individual orbits.

was used to compare the efficiency of the orbit generating algorithm with that of estimating equimodular
regions by direct computation of eigenvalues. In one of the test runs, CPU time for generating orbits in
Figure 13(a) was 11.73 s, while CPU time for generating eigenvalues in Figure 12a was 21.98 s.

The orbit-generating algorithm has been tested on matrices of size up through n = 6. The comparative
advantage of the algorithm seen for n = 3 disappears as n increases. So, while it performs well for small
values of n, the current implementation of the orbit-generating algorithm is not recommended for large
matrices. The method’s advantage lies not in its efficiency, but in the greater amount of detail it provides,
allowing for better visual exploration. For instance, Figure 13(b), in which individual orbits appear to be
tangent to the boundary of σ(Ω(A)), suggests possible relationships between the boundary of an equimodular
region and individual orbits and offers a direction for future study.

5.2. A note on varying a diagonal entry. Due to the definition of equimodular regions, the focus
of this paper has been on matrices with a variable non-diagonal entry. In this section, we consider an
alternative. If in Definition 1.1 we allow the variable entry reti to be located along the diagonal, we obtain
a matrix Ajj(r, t) whose characteristic equation is

(5.35) p̃(λ) + retiD̃(λ) = 0,

This equation is derived by expanding along the row (or column) containing the variable entry. The new
characteristic equation is identical in form to (2.3), but while deg (D(λ)) ≤ n−2, we now have deg

(
D̃(λ)

)
≤

n− 1 for an n× n matrix A.

Definitions of orbits and trajectories are still appropriate in this setting, and the corresponding results
regarding equations ((2.1), (2.3)), singularities (3.19), poles, and the orthogonality property (3.3) still hold
in this setting. It is interesting to note that due to D̃(λ) having a higher degree than D(λ), even a 2 × 2

matrix Ajj(r, t) will generally have a pole. The following example illustrates all of the above properties.
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Figure 14: Orbits and trajectories of Ã of Example 5.1.

Example 5.1. Consider the matrix

Ã =

[
reti 1

1 −1

]
.

The characteristic equation of Ã is p̃(λ) + retiD̃(λ) = 0 where

p̃(λ) = λ2 + λ− 1, and D̃(λ) = −1− λ.

Using (2.1) and (2.3), we find that the equations of orbits and trajectories are given, respectively, by

(x2 + x− y2 − 1)2 + (2xy + y)2 − r0(1 + 2x+ x2 + y2) = 0,

and

(−x3 − 2x2 − xy2 + 1) sin t0 + y(x2 + 2x+ y2 + 2) cos t0 = 0.

Zero eigenvalues are −0.5±
√

5/2. Singularities are located at −1± i. There is a pole at −1. See Figure 14.

5.3. Connections with pseudospectra. Let A be a nonsingular n × n matrix and let ε > 0. The
ε-pseudospectrum is a bounded set in the complex plane defined by one of the following equivalent charac-
terizations:

Λε(A) = { z : ‖(A− zI)−1‖ > ε−1 }

= { z : σmin(A− zI) < ε }
(5.36)

= { z : ∃E, ‖E‖ < ε, A+ E − zI singular }

= { z : ∃E, v , ‖E‖ < ε, ‖v‖ = 1, (A+ E) v = z v }.

Here ‖ · ‖ denotes the matrix 2-norm, with the convention that ‖(A− zI)−1‖ =∞ when z is an eigenvalue
of A, and σmin(A) denotes the minimal singular value of A. Pseudospectra give useful information on the
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Figure 15: Pseudospectra of matrix C (with r = 0) from Example 2.5.

sensitivity of matrix eigenvalues. Research on pseudospectra has been extensive over the last 30 years; see
[11] for a good survey of results and applications.

By varying ε in the same way that we have varied r in our approach, we see similar behaviors between
eigenvalue orbits and the boundaries of pseudospectra. As an example, one can compare the discussion in
[1], page 275, to our analysis of eigenvalue orbits in Section 3.2. The authors note that for sufficiently small
values of ε, the boundary of Λε(A) consists of disjoint curves around each eigenvalue. As ε grows, so do
the boundaries, and eventually they will begin to coalesce with each other. Analogously, for r sufficiently
small, an eigenvalue orbit consists of disjoint curves around each eigenvalue. We can increase r until two
components of an orbit intersect at a singularity.

Figure 15 shows some pseudospectra of matrix C (with r = 0) from Example 2.5. We can see the
pseudospectral boundaries coalescing for certain values of ε. The figure was created using Eigtool, the
Matlab software by Tom Wright which is freely available at the Pseudospectra Gateway [14]

Using the fact that the boundaries of Λε(A) are algebraic curves, the authors in [1] prove that if two
components of Λε(A) coalesce at z0, then z0 is a multiple eigenvalue of a matrix A′ such that ‖A−A′‖ = ε.
This result is reminiscent of Theorem 3.2 which states that orbit singularities correspond to multiple eigen-
values. Are there other connections between these two families of algebraic curves, namely the boundaries
of Λε(A) and eigenvalue orbits?

REFERENCES

[1] R. Alam and S. Bora. On sensitivity of eigenvalues and eigendecompositions of matrices. Linear Algebra Appl., 396:273–301,
2005.

[2] L. Cvetkovic and V. Kostic. Between Geršgorin and minimal Geršgorin sets. J. Computat. Appl. Math., 196:452–458, 2006.
[3] L. Cvetkovic, V. Kostic, and R.S. Varga. A New Geršgorin-type eigenvalue inclusion set. Electron. Trans. Numer. Anal.,

18:73–80, 2004.

https://www.cs.ox.ac.uk/pseudospectra/


Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 227-253, March 2022.

253 On the eigenvalues of matrices with common Gershgorin regions

[4] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.
[5] C.R. Johnson. Numerical determination of the field of values of a general complex matrix. SIAM J. Numer. Anal., 15:595–

602, 1978.
[6] K. Kendig. A Guide to Plane Algebraic Curves, MAA Dolciani Mathematical Expositions 46(7). The Mathematical Asso-

ciation of America, Washington DC, 2011.
[7] R. Kippenhahn. Über den Wertevorrat einer Matrix. Math. Nachr., 6:193–228, 1951.
[8] J.C. Langer and D.A. Singer. Foci and foliations of real algebraic curves. Milan J. Math., 75:225–271, 2007.
[9] J.C. Langer and D.A. Singer. Reflections on the lemniscate of Bernoulli: The forty eight faces of a mathematical gem.

Milan J. Math., 78:643–682, 2010.
[10] E.A. Rice. On the foci of plane algebraic curves with applications to symmetric cubic curves. Amer. Math. Monthly, 43:10,

618–630, 1936.
[11] L.N. Trefethen and M. Embree. Spectra and Pseudospectra, Princeton University Press, Princeton, NJ, 2005.
[12] R.S. Varga. Geršgorin and His Circles. Springer Series in Computational Mathematics 36. Springer-Verlag, Berlin, 2004.
[13] C.W. Wampler. The geometry of singular foci of planar linkages. Mech. Mach. Theory, 39(11):1123–1138, 2004.
[14] T.G. Wright. EigTool, 2002. http://www.comlab.ox.ac.uk/pseudospectra/eigtool/
[15] A.D. Wunsch. Complex Variables with Applications. Addison Wesley, 1994.
[16] P.F. Zachlin and M.E. Hochstenbach. On the field of values of a matrix. Linear Multilinear Algebra, 56:185–225, 2008.

English translation with comments and corrections of [7].

http://www.comlab.ox.ac.uk/pseudospectra/eigtool/

	Introduction
	Matrices with common Gershgorin regions
	Definition of eigenvalue orbits and trajectories

	Equations of orbits and trajectories
	Equation of an orbit
	Equation of a trajectory

	Special points to consider
	Zeros and poles
	Singularities
	Orthogonality
	Typical and not-so-typical behavior of eigenvalues

	Shifting our focus to foci
	Foci of algebraic curves
	Isotropic coordinates
	Finding ordinary foci
	Ordinary foci of orbits and trajectories
	Circularity of orbits and trajectories
	Singular foci of orbits and trajectories
	Counting foci

	Connections and possible directions for future study
	An application to eigenvalues of equimodular sets
	A note on varying a diagonal entry
	Connections with pseudospectra

	References

