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SOME RESULTS ON GROUP INVERSES OF BLOCK MATRICES
OVER SKEW FIELDS∗

CHANGJIANG BU† , JIEMEI ZHAO† , AND KUIZE ZHANG†

Abstract. In this paper, necessary and sufficient conditions are given for the existence of

the group inverse of the block matrix
�

A A
B 0

�
over any skew field, where A, B are both square and

rank(B) ≥ rank(A). The representation of this group inverse and some relative additive results are

also given.
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1. Introduction. Let K be a skew field and Kn×n be the set of all matrices
over K. For A ∈ Kn×n, the matrix X ∈ Kn×n is said to be the group inverse of A, if

AXA = A, XAX = X, AX = XA.

We then write X = A�. It is well known that if A� exists, it is unique; see [16].

Research on representations of the group inverse of block matrices is an important
effort in generalized inverse theory of matrices; see [14] and [13]. Indeed, generalized
inverses are useful tools in areas such as special matrix theory, singular differential
and difference equations and graph theory; see [5], [9] [11], [12] and [15]. For example,
in [9] it is shown that the adjacency matrix of a bipartite graph can be written in the

form of
(

0 B

C 0

)
, and necessary and sufficient conditions are given for the existence

and representation of the group inverse of a block matrix
(

0 B

C 0

)
.

In 1979, Campbell and Meyer proposed the problem of finding an explicit repre-

sentation for the Drazin (group) inverse of a 2 × 2 block matrix
(

A B

C D

)
in terms

of its sub-blocks, where A and D are required to be square matrices; see [5]. In [10] a

condition for the existence of the group inverse of
(

A B

C D

)
is given under the as-
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sumption that A and (I+CA−2B) are both invertible over any field; however, the rep-
resentation of the group inverse is not given. The representation of the group inverse

of a block matrix
(

A B

0 C

)
over skew fields has been given in 2001; see [6]. The rep-

resentation of the Drazin (group) inverse of a block matrix of the form
(

A B

C 0

)
(A

is square, 0 is square null matrix) has not been given since it was proposed as a prob-
lem by Campbell in 1983; see [4]. However, there are some references in the literature

about representations of the Drazin (group) inverse of the block matrices
(

A B

C 0

)

under certain conditions. Some results are on matrices over the field of complex num-
bers, e.g., in [8]; or when A = B = In in [7]; or when A, B, C ∈ {P, P ∗, PP ∗}, P 2 = P

and P ∗ is the conjugate transpose of P . Some results are over skew fields, e.g., in [1],
when A = In and rank(CB)2 = rank(B) = rank(C); in [3] when A = B, A2 = A. In
addition, in [2] results are given on the group inverse of the product of two matrices
over a skew field, as well as some related properties.

In this paper, we mainly give necessary and sufficient conditions for the exis-

tence and the representation of the group inverse of a block matrix
(

A A

B 0

)
or

(
A B

A 0

)
, where A, B ∈ Kn×n, rank(B) ≥ rank(A). We also give a sufficient

condition for AB to be similar to BA.

Letting A ∈ Km×n, the order of the maximum invertible sub-block of A is said
to be the rank of A, denoted by rank(A); see [17]. Let A, B ∈ Kn×n. If there is an
invertible matrix P ∈ Kn×n such that B = PAP−1, then A and B are similar; see
[17].

2. Some Lemmas.

Lemma 2.1. Let A, B ∈ Kn×n. If rank(A) = r, rank(B) = rank(AB) =
rank(BA), then there are invertible matrices P, Q ∈ Kn×n such that

A = P

(
Ir 0
0 0

)
Q, B = Q−1

(
B1 B1X

Y B1 Y B1X

)
P−1,

where B1 ∈ Kr×r, X ∈ Kr×(n−r), and Y ∈ K(n−r)×r.

Proof. Since rank(A) = r, there are nonsingular matrices P, Q ∈ Kn×n such that

A = P

(
Ir 0
0 0

)
Q, B = Q−1

(
B1 B2

B3 B4

)
P−1,
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where B1 ∈ Kr×r, B2 ∈ Kr×(n−r), B3 ∈ K(n−r)×r, and B4 ∈ K(n−r)×(n−r). From
rank(B) = rank(AB), we have

B3 = Y B1, B4 = Y B2, Y ∈ K(n−r)×r.

Since rank(B) = rank(BA), we obtain

B2 = B1X, B4 = B3X, X ∈ Kr×(n−r).

So

B = Q−1

(
B1 B1X

Y B1 Y B1X

)
P−1.

Lemma 2.2. [6] Let A ∈ Kr×r, B ∈ K(n−r)×r, M =
(

A 0
B 0

)
∈ Kn×n.

Then the group inverse of M exists if and only if the group inverse of A exists and

rank(A) = rank

(
A

B

)
. If the group inverse of M exists, then

M � =
(

A� 0
B(A�)2 0

)
.

Lemma 2.3. [6] Let A ∈ Kr×r, B ∈ Kr×(n−r), M =
(

A B

0 0

)
∈ Kn×n.

Then the group inverse of M exists if and only if the group inverse of A exists and
rank(A) = rank

(
A B

)
. If the group inverse of M exists, then

M � =
(

A� (A�)2B
0 0

)
.

Lemma 2.4. [2] Let A ∈ Km×n, B ∈ Kn×m. If rank(A) = rank(BA), rank(B)
= rank(AB), then the group inverse of AB and BA exist.

Lemma 2.5. Let A, B ∈ Kn×n. If rank(A) = rank(B) = rank(AB) =
rank(BA), then the following conclusions hold:

(i) AB(AB)�A = A,
(ii) A(BA)�BA = A,
(iii) BA(BA)�B = B,
(iv) B(AB)�A = BA(BA)�,
(v) A(BA)� = (AB)�A.
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Proof. Suppose rank(A) = r. By Lemma 2.1, we have

A = P

(
Ir 0
0 0

)
Q, B = Q−1

(
B1 B1X

Y B1 Y B1X

)
P−1,

where B1 ∈ Kr×r, X ∈ Kr×(n−r), Y ∈ K(n−r)×r. Then

AB = P

(
B1 B1X

0 0

)
P−1, BA = Q−1

(
B1 0

Y B1 0

)
Q.

Since rank(A) = rank(B), we have that B1 is invertible. By using Lemma 2.2 and
Lemma 2.3, we get

(AB)� = P

(
B1

−1 B1
−1X

0 0

)
P−1, (BA)� = Q−1

(
B1

−1 0
Y B1

−1 0

)
Q.

Then

(i) AB(AB)�A = P

(
Ir 0
0 0

)
Q = A,

(ii) A(BA)�BA = P

(
Ir 0
0 0

)
Q = A,

(iii) BA(BA)�B = Q−1

(
B1 B1X

Y B1 Y B1X

)
P−1 = B,

(iv) B(AB)�A = Q−1

(
Ir 0
Y 0

)
Q = BA(BA)�,

(v) A(BA)� = P

(
B1

−1 0
0 0

)
Q = (AB)�A.

3. Conclusions.

Theorem 3.1. Let M =
(

A A

B 0

)
, where A, B ∈ Kn×n, rank(B) ≥ rank(A)

= r. Then

(i) The group inverse of M exists if and only if rank(A) = rank(B) = rank(AB) =
rank(BA).

(ii) If the group inverse of M exists, then M � =
(

M11 M12

M21 M22

)
, where

M11 = (AB)�A − (AB)�A2(BA)�B,

M12 = (AB)�A,

M21 = (BA)�B − B(AB)�A2(BA)� + B(AB)�A(AB)�A2(BA)�B,

M22 = −B(AB)�A2(BA)�.
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Proof. (i) It is obvious that the condition is sufficient. Now we show that the
condition is necessary.

rank(M) = rank

(
A A

B 0

)
= rank

(
0 A

B 0

)
= rank(A) + rank(B),

rank(M2) = rank

(
A2 + AB A2

BA BA

)
= rank

(
AB A2

0 BA

)
.

Since the group inverse of M exists if and only if rank(M) = rank(M2), we have

rank(A) + rank(B) = rank(M2)

≤ rank(AB) + rank

(
A2

BA

)

≤ rank(AB) + rank(A),

rank(A) + rank(B) = rank(M2)

≤ rank
(

AB A2
)

+ rank(BA)

≤ rank(BA) + rank(A).

Then rank(B) ≤ rank(AB), and rank(B) ≤ rank(BA). Therefore

rank(B) = rank(AB) = rank(BA).

From rank(B) = rank(AB) ≤ rank(A), and rank(A) ≤ rank(B), we have

rank(A) = rank(B).

Since rank(A)+rank(B) ≤ rank
(

AB A2
)
+rank(BA), and rank

(
AB A2

) ≤
rank(A), we get rank

(
AB A2

)
= rank(A). Thus

rank
(

AB A2
)

= rank(AB).

Then there exists a matrix U ∈ Kn×n such that ABU = A2. Then

rank(M2) = rank

(
AB 0
0 BA

)
= rank(AB) + rank(BA).

So we get

rank(A) = rank(B) = rank(AB) = rank(BA).
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(ii) Let X =
(

M11 M12

M21 M22

)
. We will prove that the matrix X satisfies the

conditions of the group inverse. Firstly, we compute

MX =
(

AM11 + AM21 AM12 + AM22

BM11 BM12

)
,

XM =
(

M11A + M12B M11A

M21A + M22B M21A

)
.

Applying Lemma 2.5 (i), (ii), and (v), we have

AM11 + AM21 = A(AB)�A − A(AB)�A2(BA)�B + A(BA)�B − AB(AB)�A2(BA)�

+ AB(AB)�A(AB)�A2(BA)�B

= A(BA)�B,

M11A + M12B = (AB)�A2 − (AB)�A2(BA)�BA + (AB)�AB

= (AB)�A2 − (AB)�A2 + (AB)�AB

= A(BA)�B.

Using Lemma 2.5 (i), (ii), and (v), we get

AM12 + AM22 = A(AB)�A − AB(AB)�A2(BA)�

= A(AB)�A − A2(BA)�

= 0,

M11A = (AB)�A2 − (AB)�A2(BA)�BA

= (AB)�A2 − (AB)�A2

= 0.

From Lemma 2.5 (ii), we obtain

BM11 = B(AB)�A − B(AB)�A2(BA)�B,

M21A + M22B = (BA)�BA − B(AB)�A2(BA)�A + B(AB)�A2(BA)�A(BA)�BA

− B(AB)�A2(BA)�B

= (BA)�BA − [B(AB)�A2(BA)�A − B(AB)�A2(BA)�A]

− B(AB)�A2(BA)�B

= B(AB)�A − B(AB)�A2(BA)�B.
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Using Lemma 2.5 (ii), we have

BM12 = B(AB)�A,

M21A = (BA)�BA − B(AB)�A2(BA)�A + B(AB)�A2(BA)�A(BA)�BA

= B(AB)�A.

So

MX = XM =
(

A(BA)�B 0
B(AB)�A − B(AB)�A2(BA)�B B(AB)�A

)
.

Secondly,

MXM =
(

A A

B 0

) (
A(BA)�B 0

B(AB)�A − B(AB)�A2(BA)�B B(AB)�A

)

=
(

X11 X12

X21 0

)
.

Applying Lemma 2.5 (i) and (iii), we compute

X11 = A2(BA)�B + AB(AB)�A − AB(AB)�A2(BA)�B

= AB(AB)�A

= A,

X12 = AB(AB)�A = A,

X21 = BA(BA)�B = B.

Hence

MXM =
(

A A

B 0

)
.

Finally,

XMX =
(

M11 M12

M21 M22

) (
A(BA)�B 0

B(AB)�A − B(AB)�A2(BA)�B B(AB)�A

)

=
(

Y11 Y12

Y21 Y22

)
.

Then

Y11 = (AB)�A2(BA)�B − (AB)�A2(BA)�BA(BA)�B + (AB)�AB(AB)�A

− (AB)�AB(AB)�A2(BA)�B

= (AB)�A − (AB)�A2(BA)�B

= M11,
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and

Y12 = M12B(AB)�A

= (AB)�AB(AB)�A

= (AB)�A

= M12.

We can easily get

Y21 = M21A(BA)�B + M22B(AB)�A − M22B(AB)�A2(BA)�B

= M21;

Y22 = M22B(AB)�A = M22.

So we have X = M �.

Theorem 3.2. Let M =
(

A B

A 0

)
, where A, B ∈ Kn×n, rank(B) ≥ rank(A)

= r. Then

(i) The group inverse of M exists if and only if rank(A) = rank(B) = rank(AB) =
rank(BA).

(ii) If the group inverse of M exists, then M � =
(

Z11 Z12

Z21 Z22

)
, where

Z11 = (AB)�A − B(AB)�A2(BA)�,

Z12 = B(AB)� − (AB)�A2(BA)�B + B(AB)�A2(BA)�A(BA)�B,

Z21 = (AB)�A,

Z22 = − (AB)�A2(BA)�B.

Proof. Let X =
(

M11 M12

M21 M22

)
. By Lemma 2.5, we have

MX = XM =
(

B(AB)�A A(BA)�B − B(AB)�A2(BA)�B

0 A(BA)�B

)
.

Furthermore, we can prove MXM = M, XMX = X easily. Thus, X = M �.

Theorem 3.3. Let A, B ∈ Kn×n, if rank(B) = rank(AB) = rank(BA). Then
AB and BA are similar.

Proof. Suppose rank(A) = r, using Lemma 2.1, there are invertible matrices
P, Q ∈ Kn×n such that

A = P

(
Ir 0
0 0

)
Q, B = Q−1

(
B1 B1X

Y B1 Y B1X

)
P−1,
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where B1 ∈ Kr×r, X ∈ Kr×(n−r), Y ∈ K(n−r)×r. Hence

AB = P

(
B1 B1X

0 0

)
P−1

= P

(
Ir −X

0 In−r

) (
B1 0
0 0

) (
Ir X

0 In−r

)
P−1,

BA = Q−1

(
B1 0

Y B1 0

)
Q

= Q−1

(
Ir 0
Y In−r

)(
B1 0
0 0

) (
Ir 0
−Y In−r

)
Q.

So AB and BA are similar.
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