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MINIMAL INDICES AND MINIMAL BASES VIA FILTRATIONS∗

D. STEVEN MACKEY†

Abstract. A new way to formulate the notions of minimal basis and minimal indices is developed in this paper, based

on the concept of a filtration of a vector space. The goal is to provide useful new tools for working with these important

concepts, as well as to gain deeper insight into their fundamental nature. This approach also readily reveals a strong minimality

property of minimal indices, from which follows a characterization of the vector polynomial bases in rational vector spaces.

The effectiveness of this new formulation is further illustrated by proving several fundamental properties: the invariance of the

minimal indices of a matrix polynomial under field extension, the direct sum property of minimal indices, the polynomial linear

combination property, and the predictable degree property.
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1. Introduction. Minimal indices and bases are quantities commonly associated with singular matrix

polynomials, and thus play a significant role in a number of applications, especially in systems and control

theory [7, 15, 19, 20]; they also are important in algebraic coding theory [6, 17, 18, 20]. Although they have

been defined in the literature in several different ways [7, 9], these definitions have been shown to lead to the

same quantities [3]. The purpose of this note is to introduce a new formulation of the notions of minimal

basis and minimal indices, with the goals of:

• developing new tools for effectively working with these important concepts and

• simplifying the conceptual foundation, so as to smoothly unify the classical approaches to minimal

indices and to make the well-definedness of minimal indices as transparent as possible.

This new formulation takes the algorithmic approach described in [9] by Gantmacher (and attributed to

Kronecker) as a starting point, but is motivated by the following simple idea. Rather than deal with the

special polynomial bases produced by Kronecker’s algorithm, which are far from canonical due to the many

arbitrary choices made in generating them, focus instead on the underlying subspaces from which these

choices are made. These subspaces are uniquely defined, canonical objects which more clearly and directly

reveal the intrinsic nature of minimal indices, and form the building blocks of the filtration at the heart of

the new formulation.

Although the motivating idea is simple, some preliminary work is required to set up the appropriate

definitions, terminology, and notation needed to effectively implement this idea. Section 2 begins this

background work by reviewing the notion of filtration and giving some examples; Section 3 continues these

preliminaries by recalling the two “classical” ways of defining minimal bases and indices. Section 3 then goes

on to introduce the new characterization of minimal bases and indices by means of a special filtration called
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the “degree filtration”, and from this develops several new tools for proving results about minimal indices

and minimal bases. Section 4 shows how the filtration point of view reveals a “strong” minimality property of

minimal indices, which is then used to unify and simplify the connection between the two classical approaches

to minimal indices. Finally, the effectiveness of these new tools and this new point of view is illustrated

in Sections 5, 6, and 7 by proving several properties: the invariance of the minimal indices of a matrix

polynomial under field extension, the behavior of minimal indices under direct sums, and the polynomial

linear combination and predictable degree properties.

2. Filtrations. Let us begin with a quote from Hilton & Wylie’s classic text on algebraic topology [11,

p. 395]:

We now introduce the notion of a filtration. It has a rather wide application; a construct

may be said to be filtered if an increasing sequence of sub-constructs is selected which

exhaust the whole construct.

Clearly all kinds of mathematical objects can be filtered: topological spaces, groups, algebras, modules,

chain complexes, etc. However, in this paper we only need to consider filtrations of vector spaces, which we

now formally define.

Definition 2.1 (Filtration of a Vector Space). A filtration F of a vector space V is an infinite nested

sequence of subspaces of V ,

(2.1) F : W0 ⊆ W1 ⊆ W2 ⊆ W3 ⊆ · · · ,

such that
⋃∞
i=0Wi = V . A vector space V equipped with a filtration F as in (2.1) is said to be a filtered

vector space.

For our purposes, it will be convenient to allow Wi = Wj for i 6= j in (2.1), although in some contexts

authors require the subspaces in a filtration to be distinct. In fact, the filtrations of most interest to us will

usually not have distinct subspaces. The inclusion relations in (2.1) of course imply that

(2.2) dimW0 ≤ dimW1 ≤ dimW2 ≤ · · · .

Definition 2.2 (Dimension Sequence of a Filtration). The infinite sequence of numbers (dimW0,

dimW1 , dimW2 , . . . ) in (2.2) will be referred to as the dimension sequence of the filtration F , and denoted

dimF .

Example 2.3.

(a) For V = Fn, the standard basis
{
e1, e2, . . . , en

}
induces the “standard” filtration

(2.3) {0} ⊆ span{e1} ⊆ span{e1, e2} ⊆ · · · ⊆ span{e1, e2, . . . , en−1} ⊆ V ⊆ V ⊆ · · · .

(b) Indeed any ordered list of vectors
{
v1, v2, . . . , vm

}
induces an associated filtration of the vector space

V = span{v1, v2, . . . , vm} as follows:

{0} ⊆ span{v1} ⊆ span{v1, v2} ⊆ · · · ⊆ span{v1, v2, . . . , vm−1} ⊆ V ⊆ V ⊆ · · · .

In particular, for any matrix A ∈ Fm×n, the ordered columns
{
a1, a2, . . . , an

}
induce a filtration

F(A) of the column space V = Col(A) ⊆ Fm:

{0} ⊆ span{a1} ⊆ span{a1, a2} ⊆ · · · ⊆ span{a1, a2, . . . , an−1} ⊆ V ⊆ V ⊆ · · · .



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 276-294, March 2021.

D. Steven Mackey 278

(c) A sequence of Krylov subspaces for A ∈ Fn×n,

span{x} ⊆ span{x, Ax} ⊆ span{x, Ax, A2x} ⊆ · · · ,

is certainly nested, but does not necessarily define a filtration for V = Fn, since the condition⋃∞
i=0Wi = Fn may not be satisfied.

(d) Suppose A ∈ Fn×n has eigenvalue λ0 ∈ F, with the corresponding generalized eigenspace ker(A −
λ0I)n =: V . Then

(2.4) {0} ⊆ ker(A− λ0I) ⊆ ker(A− λ0I)2 ⊆ · · · ⊆ ker(A− λ0I)n−1 ⊆ V ⊆ V ⊆ · · · ,

is a well-known sequence of nested subspaces associated with V . Indeed, the Jordan block structure

of A associated with λ0 is determined by the dimension sequence of these subspaces [12], so it is

reasonable to call (2.4) the Jordan filtration of the generalized eigenspace for λ0.

(e) For a pair (A,B) ∈ Fn×n × Fn×m associated with a linear control system ẋ = Ax+Bu, the matrix

R(A,B) := [B AB A2B · · · An−1B ] is called the reachability (or sometimes the controllability)

matrix of the pair (A,B). The column space V := Col
(
R(A,B)

)
can easily be shown to be the

minimal A-invariant subspace containing Col(B); this V is often referred to as the reachable subspace

of the control system [23]. Letting Wj := Col
(

[B AB A2B · · · Aj−1B ]
)

for j = 1, . . . , n, then

clearly

(2.5) {0} ⊆ W1 ⊆ W2 ⊆ · · · ⊆ Wn = V ⊆ V ⊆ · · · ,

is a filtration of the reachable subspace V . Because of the close connection of the dimension sequence

of (2.5) to the Brunovsky canonical form of the pair (A,B) [23], Zaballa has suggested [25] that

(2.5) might be called the Brunovsky filtration.

In a filtration F , if for some index m we have Wm = V (and hence, Wn = V for all n ≥ m), then F is

said to be a finite filtration and is sometimes written in the truncated fashion

W0 ⊆ W1 ⊆ W2 ⊆ · · · ⊆ Wm = V ,

although we will not do so here. Note that any filtration of a finite dimensional space V is necessarily a

finite filtration, because the condition
⋃∞
i=0Wi = V forces Wm = V to hold for some index m. A filtration

such that dimWj = j for all 0 ≤ j ≤ dimV is called a complete filtration; a complete filtration of Fn is

sometimes called a flag.

Remark 2.4. Various types of flags, such as “Hessenberg flags” and “eigenflags” associated with a

matrix, have been used as tools in a geometric approach to understanding the convergence behavior of the

QR-algorithm. See, for example, [1], [13, Appendix L7], [14], [22].

Definition 2.5 (Compatible Basis for a Filtration). Let V be a finite dimensional filtered vector space,

with a given filtration F as in (2.1). Then an ordered basis B = {v1, v2, . . . , vn} for V is said to be compatible

with (or adapted to) the filtration F if for each subspace W` in F there is an initial segment {v1, v2, . . . , vj}
of B (with j ≤ n) that forms a basis for W`.
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Example 2.6.

(a) Suppose A ∈ Fn×n is nonsingular. Then the (ordered) columns of A form a basis compatible with

the “standard” filtration (2.3) if and only if A is upper triangular.

(b) Here is a well-known result expressed in the language of filtrations:

Suppose A is nonsingular with QR-decomposition A = QR. Then the ordered columns of

Q form a basis compatible with the filtration F(A) induced by the ordered columns of A.

Equivalently, one could express this result simply by saying that F(A) = F(Q).

3. Minimal bases and minimal indices.

3.1. Two classical approaches. Minimal bases and indices were originally introduced by Kronecker

as a means to help prove the uniqueness of what we now refer to as the Kronecker canonical form (KCF) for

matrix pencils L(λ) = λX + Y , where X,Y ∈ Cm×n. We begin by recalling the main points of this theory,

summarizing the development in Gantmacher [9].

First some notation. Throughout the paper, F denotes an arbitrary field, F[λ] the ring of polynomials

in the variable λ with coefficients from F, and F(λ) the field of rational functions over F. Then the column

vectors F(λ)n form an n-dimensional vector space over the field F(λ), and the elements v(λ) ∈ F[λ]n ⊂ F(λ)n

are the vector polynomials in F(λ)n. The degree of a vector polynomial is the maximum of the degrees of its

component scalar polynomials.

For a matrix pencil L(λ) = λX + Y ∈ F[λ]m×n, viewed as a linear transformation F(λ)n → F(λ)m,

consider the right nullspace of L(λ), i.e., consider

Nr(L) :=
{
w(λ) ∈ F(λ)n : L(λ)w(λ) ≡ 0

}
.

Our goal is to find a basis for the subspace Nr(L) consisting solely of vector polynomials, but with the

minimum possible degrees. In the Kronecker/Gantmacher development, this minimality is defined by the

following “greedy” algorithm for constructing a vector polynomial basis.

Algorithm 3.1 (Kronecker/Gantmacher Construction).

• First choose any nonzero vector polynomial v1(λ) ∈ Nr(L) of minimal degree.

• Letting V1 := span{v1(λ)}, next choose any vector polynomial v2(λ) of minimal degree in the

complement Nr(L) \ V1, and extend to
{
v1(λ), v2(λ)

}
.

• With Vj := span{v1(λ), . . . , vj(λ)}, continue in this fashion until a basis for Nr(L) is attained,

always extending
{
v1(λ), . . . , vk−1(λ)

}
to
{
v1(λ), . . . , vk(λ)

}
by choosing a vector polynomial vk(λ)

of minimal degree in the remaining complement Nr(L) \ Vk−1.

Definition 3.2 (K-minimal Basis). Any vector polynomial basis produced by Algorithm 3.1 is said to

be a minimal basis for Nr(L) in the sense of Kronecker/Gantmacher, or a K-minimal basis for short. Such

a basis is also commonly referred to as a right minimal basis for the pencil L(λ).

It can be shown (see [9] for details) that the ordered list of degrees ε1 ≤ ε2 ≤ · · · ≤ εp, where εj =

deg vj(λ), is the same for every K-minimal basis of Nr(L), and thus displays an intrinsic feature of Nr(L).

Definition 3.3 (K-minimal Indices). The numbers ε1 ≤ ε2 ≤ · · · ≤ εp are the K-minimal indices of

Nr(L), often referred to as the right minimal indices of the pencil L(λ).
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Clearly one can proceed analogously with the left nullspace of L(λ), i.e.,

N`(L) :=
{
y(λ) ∈ F(λ)m : y(λ)TL(λ) ≡ 0

}
,

and thus obtain left minimal bases for L(λ), and thence the left minimal indices of L(λ). It can be shown

(again, see [9] for details) that these left and right minimal indices encode the sizes of the “singular blocks”

in the KCF of L(λ), thus proving that the “singular part” of the KCF is uniquely determined.

An examination of Algorithm 3.1 shows that L(λ) being a matrix pencil plays no role in the discussion;

it might just as well be any matrix polynomial P (λ) ∈ F[λ]m×n. Thus the same development applied to

the right and left nullspaces Nr(P ) ⊆ F(λ)n and N`(P ) ⊆ F(λ)m yields right and left minimal bases for P ,

as well as right and left minimal indices for P . Indeed we can go one step further, and observe that even

the matrix polynomial P is not essential. One can apply the “greedy” algorithm to any rational subspace

V ⊆ F(λ)n (i.e., to an arbitrary F(λ)-subspace of F(λ)n), and thus obtain K-minimal bases and K-minimal

indices for any such V . Note that K-minimal indices are sometimes referred to in the literature as Kronecker

indices [10, 24].

The recognition that the notions of minimal bases and indices apply to any subspace V ⊆ F(λ)n is made

explicit by Forney in [7], where he uses a somewhat different minimality principle to define minimal bases

and minimal indices. Instead of building up vector polynomial bases one step at a time and invoking a

“local” minimality condition at each step of the construction, Forney works more “globally” by assigning a

single number to each vector polynomial basis; the order of a vector polynomial basis B =
{
v1(λ), . . . , vp(λ)

}
for a subspace V ⊆ F(λ)n is

(3.6) ord(B) :=

p∑
i=1

deg vi(λ) .

Thus we have the following definition.

Definition 3.4 (F-minimal Basis). A minimal basis for a subspace V ⊆ F(λ)n in the sense of Forney,

or an F-minimal basis, is any vector polynomial basis for V with minimum order among all vector polynomial

bases for V .

Forney then shows in [7] that the ordered degree sequence 0 ≤ f1 ≤ f2 ≤ · · · ≤ fp, where fi = deg vi(λ), is

the same for any F-minimal basis for V , thus uniquely defining the F-minimal indices for V .

Remark 3.5. Note that Forney does not use the phrase F-minimal indices in [7] for the ordered degree

sequence f1 ≤ f2 ≤ · · · ≤ fp; instead he calls them the “invariant dynamical indices” of the subspace

V ⊆ F(λ)n. Several later authors have referred to these as the Forney indices of V [17, 18, 20].

It is natural to wonder whether there is any simple relationship between K-minimality and F-minimality,

for either bases or indices. This question was addressed in [3].

Theorem 3.6 (K-minimality vs. F-minimality [3, Lemma 2.4]). Consider any subspace V ⊆ F(λ)n.

Then a vector polynomial basis B for V is K-minimal if and only if it is F-minimal. Thus, the K-minimal

indices are identical to the F-minimal indices for V .

As a consequence, we see that the minimality principles used by Kronecker/Gantmacher and Forney are

equivalent, and can be used interchangeably, depending on convenience.
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3.2. Minimal bases from filtrations. We aim to reformulate the Kronecker/Gantmacher approach

to minimal bases in such a way that it becomes completely transparent why all the arbitrary choices made

in building a K-minimal basis always result in the same list of degrees, thereby producing a well-defined list

of K-minimal indices. For an arbitrary rational subspace V ⊆ F(λ)n, we will see that there is an intrinsic,

uniquely defined filtration induced by the notion of the degree of vector polynomials in V . This will be

referred to as the (canonical) degree filtration of V , and denoted by Fdeg(V ). It is from this particular

filtration that the K-minimal bases and K-minimal indices of V can be immediately recovered.

Here is how to define Fdeg(V ). Consider subsets of V consisting of vector polynomials of bounded degree;

in particular, for each integer d ≥ 0 define

(3.7) Pd(V ) :=
{
v(λ) ∈ V : v(λ) is a vector polynomial with deg v(λ) ≤ d

}
.

Clearly Pd(V ) is an F-subspace of V , but not an F(λ)-subspace. Observe also that the inclusions

P0(V ) ⊆ P1(V ) ⊆ P2(V ) ⊆ · · · ,

clearly hold. Now to get F(λ)-subspaces of V , and thence a filtration of V , we simply take the F(λ)-spans

of these vector polynomial subsets,

(3.8) Sd(V ) := span
F(λ)
Pd(V ) .

Note that if Pd(V ) is nontrivial, then Sd(V ) contains vector polynomials of unbounded degree, not just of

degree at most d. This is because for any v(λ) ∈ Pd(V ), multiplying by the scalars λm ∈ F(λ) gives vector

polynomials λmv(λ) that are in Sd(V ) for every m ∈ N. However, since Pd(V ) is by definition a spanning

set for Sd(V ), we know there is always a basis of Sd(V ) consisting solely of elements chosen from Pd(V ); let

us call any such basis a “Pd(V )-basis” for Sd(V ). Furthermore, any Pd(V )-basis for Sd(V ) can be extended

to a Pd+1(V )-basis for Sd+1(V ). Note also that

dim
F(λ)
Sd(V ) ≤ dim

F
Pd(V ) ,

i.e., the dimension of Sd(V ) as an F(λ)-vector space is never greater than the dimension of Pd(V ) as an

F-vector space, and is often very much less. This is because any F-basis for Pd(V ) is also an F(λ)-spanning

set for Sd(V ).

It is not hard to see that the condition
⋃∞
d=0 Sd(V ) = V is satisfied. Suppose that v(λ) is an arbitrary

element of V . Then there is some (scalar) polynomial q(λ) such that w(λ) = q(λ)v(λ) is a vector polynomial in

V (just clear all the denominators of the entries of v(λ)), with some degree d = degw(λ). Then w(λ) ∈ Pd(V ),

and so v(λ) =
(

1

q(λ)

)
· w(λ) is in Sd(V ). Thus every element of V is contained in some Sd(V ), and so the

equality
⋃∞
d=0 Sd(V ) = V follows. Consequently the subspaces Sd(V ) define a filtration of V .

Definition 3.7 (The Degree Filtration). The nested sequence

(3.9) S0(V ) ⊆ S1(V ) ⊆ S2(V ) ⊆ · · · ⊆ Sd(V ) ⊆ · · ·

is the degree filtration of V , denoted Fdeg(V ).

In the context of a rational subspace V ⊆ F(λ)n filtered by its degree filtration, the natural bases to

consider are those vector polynomial bases for V that are compatible with the filtration Fdeg(V ), and at the

same time provide Pd(V )-bases for each Sd(V ), as in the following definition.
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Definition 3.8 (Minimal Basis of Fdeg(V )). An ordered vector polynomial basis B for a rational

subspace V ⊆ F(λ)n is said to be a minimal basis for the degree filtration Fdeg(V ) provided

(a) B is compatible with the filtration Fdeg(V ), and

(b) for each d ≥ 0, the initial segment of B that forms a basis for Sd(V ) is a Pd(V )-basis.

Now observe that the Kronecker/Gantmacher construction (Algorithm 3.1) for generating a K-minimal

basis can be simply described as follows: first find a P0(V )-basis for S0(V ), then extend to a P1(V )-basis

for S1(V ), then extend to a P2(V )-basis for S2(V ), . . . , and so on inductively through the degree filtration

of V , until a vector polynomial basis for all of V is attained. But this is exactly how to generate a minimal

basis for the filtration Fdeg(V ); indeed any minimal basis for Fdeg(V ) can be viewed as being generated in

this way. Thus we have the following theorem.

Theorem 3.9 (Equivalence of Minimal Basis Concepts). An ordered vector polynomial basis B for a

rational subspace V ⊆ F(λ)n is a K-minimal basis for V if and only if B is a minimal basis for the degree

filtration Fdeg(V ).

3.3. Minimal indices from the degree filtration. In order to conveniently work with arbitrary lists

of vector polynomials, we introduce one final bit of terminology.

Definition 3.10 (Degree Sequence). Suppose L =
{
v1(λ), v2(λ), . . . , vk(λ)

}
with di = deg vi(λ) for

i = 1, . . . , k is any finite set of vector polynomials from a rational subspace V ⊆ F(λ)n, and let L be ordered

so that di ≤ di+1 for i = 1, . . . , k − 1. Then the list of numbers d1 ≤ d2 ≤ · · · ≤ dk is the degree sequence of

L.

An important feature of the characterization in Theorem 3.9 is that it transparently reveals why every

K-minimal basis for V has exactly the same list of degrees, and hence why the notion of K-minimal indices

of V is well-defined and meaningful. Since K-minimality and minimality with respect to the degree filtration

are now seen to be equivalent notions, from now on we will just use the phrase “minimal indices,” as in the

following definition.

Definition 3.11 (Minimal Indices). The minimal indices of a rational subspace V ⊆ F(λ)n are the

numbers ε1 ≤ ε2 ≤ · · · ≤ εp in the degree sequence of any K-minimal basis for V , or equivalently, the list of

numbers in the degree sequence of any minimal basis for the degree filtration Fdeg(V ).

From this definition, it is clear that the number of minimal indices having the value ε = 0 is just

dimF(λ) S0(V ), the number of minimal indices with ε ≤ 1 is dimF(λ) S1(V ), and in general for any d ∈ N
the number of minimal indices with ε ≤ d is dimF(λ) Sd(V ). Thus we have a simple and intrinsic way to

characterize minimal indices, which gives us the following useful tool for determining and working with them.

Theorem 3.12 (Minimal Indices from the Degree Filtration). Let V be an arbitrary rational subspace

of F(λ)n. Then the minimal indices of V are uniquely determined by the dimension sequence of the degree

filtration Fdeg(V ), and vice versa. In particular, the number of zero minimal indices ε = 0 is dim
F(λ)
S0(V ),

while for j ≥ 1 the number of minimal indices having the value ε = j is

(3.10) dim
F(λ)
Sj(V ) − dim

F(λ)
Sj−1(V ) .
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Conversely, the dimensions of the subspaces Sd(V ) are uniquely determined from the minimal indices of V

by

(3.11) dim
F(λ)
Sd(V ) = “total number of minimal indices with value ε ≤ d”.

As an immediate corollary, we have the following criterion for deciding if two subspaces have the same

minimal indices.

Corollary 3.13 (Equality of Minimal Indices). Let F and K be any two fields, and let n and q be any

two positive integers. Then a pair of subspaces V ⊆ F(λ)n and W ⊆ K(λ)q have the same minimal indices

if and only if

dim
F(λ)
Fdeg(V ) = dim

K(λ)
Fdeg(W ) ,

i.e., if and only if the degree filtrations of V and W have identical dimension sequences.

Another significant corollary of Theorem 3.12 is the characterization of minimal bases by their degree

sequence.

Corollary 3.14 (Degree Sequence Characterizes Minimal Bases). Suppose B is any vector polynomial

basis for a rational subspace V ⊆ F(λ)n. Then B is a minimal basis for the degree filtration Fdeg(V ) if and

only if its degree sequence is identical to the minimal indices of V .

Proof. The (⇒) direction follows immediately from Definition 3.11 and Theorem 3.12. For the converse

(⇐), consider a vector polynomial basis B, ordered as in Definition 3.10, whose degree sequence exactly

matches the minimal indices of V . Then for d = 0, the number of vectors in B with degree zero is exactly

the same as dim
F(λ)
S0(V ). Thus an initial segment of B forms a P0(V )-basis for S0(V ). Indeed, by (3.11) we

see that for each d ≥ 0, there is an initial segment of B that forms a Pd(V )-basis for Sd(V ). Hence, B forms

a minimal basis for Fdeg(V ) by Definition 3.8, i.e., B is a minimal basis for V in the filtration sense.

Remark 3.15. It is interesting to note that the successive-difference calculation used in (3.10) of Theo-

rem 3.12 is also important in other filtrations. For example, consider the dimension sequence of the Jordan

filtration associated with an eigenvalue λ0, as described in Example 2.3(d). Then successive differences of

dimensions as in (3.10) yield the Weyr characteristic of λ0 [21]; taking the conjugate partition (see [21] or

[23]) of the Weyr characteristic gives the Segre characteristic of λ0.

The analogous successive-difference calculation on the dimension sequence of the Brunovsky filtration

associated with a matrix pair (A,B) (see Example 2.3(e)) produces a sequence of numbers sometimes referred

to as the Brunovsky indices [2] of (A,B); the conjugate partition of this Brunovsky index sequence then

yields the controllability indices of (A,B) [23].

In Sections 5 and 6, we will illustrate the efficacy of the tools provided by Theorem 3.12 and Corollary 3.13

by establishing two fundamental properties of minimal indices:

(i) for nullspaces of matrix polynomials, minimal indices are unchanged by passage to any field exten-

sion,

(ii) minimal indices behave nicely under direct sums; i.e., the list of minimal indices of V ⊕W , where

V ⊆ F(λ)n and W ⊆ F(λ)m, is just the concatenation of the list of minimal indices of V with the

list of minimal indices of W .
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But first we will see how the degree filtration notion of minimal indices connects up with Forney’s approach

in [7]. This connection will be made via a property of minimal indices brought to light by the filtration

view, a “strong” minimality property that leads to a characterization of the vector polynomial bases in any

rational subspace of F(λ)n.

4. A strong minimality property of minimal indices. The filtration view of minimal indices

provides insight that is not so readily obtained from either the Kronecker or Forney point of view, as

illustrated by the following simple example.

Example 4.1. Suppose a two-dimensional rational subspace V ⊆ F(λ)n has minimal indices ε1 = 1 and

ε2 = 4. Is it possible for there to exist a vector polynomial basis B =
{
v1(λ), v2(λ)

}
for V with degree

sequence (3, 3)? From the Kronecker/Gantmacher point of view, this seems to be perfectly plausible; once

you choose v1(λ) with non-minimal degree (deg v1 = 3) to be the first basis vector in B, then you are no

longer following the greedy algorithm, so all bets are off as to what might be available for a second basis

vector. The Forney view also does not seem to offer any objection to the existence of such a basis B, since

ord(B) = 6 is certainly compatible with the minimal order being ε1 + ε2 = 5.

In fact, though, it is impossible for V to have such a basis B, and this can be seen rather easily

from the filtration point of view. The minimal indices ε1 = 1 and ε2 = 4 immediately imply that the

dimension sequence of the degree filtration of V must be (0, 1, 1, 1, 2, 2, 2, 2, . . . ); in particular, we would

have dimS3(V ) = 1. But the existence of a vector polynomial basis B with degree sequence (3, 3) would

mean that S3(V ) would have to have dimension 2. This contradiction shows the impossibility of such a basis

B for V . This example also hints at the presence of subtle constraints on the possible vector polynomial

bases in a general rational vector space V ⊆ F(λ)n, or at least at constraints that are not so obvious from

either the Forney or Kronecker/Gantmacher definitions.

The idea used to resolve the question posed in Example 4.1 can be extended and refined to establish

the following strong minimality property (4.12), which now characterizes the degree sequences of all vector

polynomial bases in any rational subspace V ⊆ F(λ)n, and thus fully justifies the name “minimal indices”.

Note that the proof given here is a modified version of an argument used in [3, Lemma 2.4].

Theorem 4.2 (Strong Minimality Property of Minimal Indices). Suppose that V ⊆ F(λ)n is a p-

dimensional rational subspace with minimal indices ε1 ≤ ε2 ≤ · · · ≤ εp. Then δ1 ≤ δ2 ≤ · · · ≤ δp is the

degree sequence of some vector polynomial basis B =
{
v1(λ), . . . , vp(λ)

}
for V if and only if

(4.12) εj ≤ δj for each j = 1, . . . , p .

Proof. (⇒) If δ1 ≤ δ2 ≤ · · · ≤ δp is the degree sequence of B, then clearly ε1 ≤ δ1 , since ε1 is the

minimal degree among all vector polynomials in V . Now suppose (4.12) fails for some 1 < j ≤ p, and let m

be the smallest such j. With d := εm − 1, we would then have

εm−1 ≤ δm−1 ≤ δm ≤ d < εm .

Now by Theorem 3.12, εm−1 ≤ d < εm implies that dimSd(V ) = m − 1. But δm ≤ d means that

{v1(λ), . . . , vm(λ)} would be a linearly independent set of vector polynomials in Sd(V ), forcing dimSd(V ) ≥
m. This contradiction shows that (4.12) cannot fail at any j.
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(⇐) To see that any degree sequence δ1 ≤ δ2 ≤ · · · ≤ δp satisfying (4.12) can be realized by some vector

polynomial basis for V , let
{
w1(λ),w2(λ), . . . ,wp(λ)

}
be any minimal basis for V , with degree sequence

ε1 ≤ ε2 ≤ · · · ≤ εp. Then

B :=
{
λδ1−ε1w1(λ), λδ2−ε2w2(λ), . . . , λδp−εpwp(λ)

}
,

is clearly a vector polynomial basis for V , with the desired degree sequence δ1 ≤ δ2 ≤ · · · ≤ δp .

As an easy consequence of this strong minimality property, we can now immediately (and simultaneously)

establish two of the fundamental properties of the F-minimal indices introduced by Forney in [7]: that they

are well-defined, and that they are identical to the K-minimal indices. Note that this argument is completely

independent of the results in [7], and substantially simplifies and unifies our understanding of the relationships

between these various notions of minimal indices.

Corollary 4.3 (F-minimal and K-minimal Indices are Identical). A vector polynomial basis B for

a rational subspace V ⊆ F(λ)n is F-minimal (i.e., has minimal order) if and only if its degree sequence is

identical to the minimal indices of the degree filtration Fdeg(V ).

Proof. By (4.12) in Theorem 4.2 it is clear that for every vector polynomial basis B for V , the order

of B is bounded below by the sum µ =
∑
j εj of all the minimal indices of the degree filtration Fdeg(V ).

But since this lower bound µ is actually attained by any K-minimal basis, this must be the order of any

F-minimal basis for V . It is also clear from (4.12) that the only way for a vector polynomial basis B to

attain the minimum order µ is for its degree sequence to be identical to the minimal indices of the degree

filtration Fdeg(V ).

Remark 4.4. The strong minimality property of minimal indices proved in Theorem 4.2 does not seem

to be widely known. However, it does appear in the coding theory literature, as least as early as [18].

5. Minimal indices and field extensions. Historically, the original reason to introduce the notions

of minimal bases and indices was to help clarify the properties of the Kronecker canonical form (KCF), a

classical result for matrix pencils over algebraically closed fields (see [9]). In a recent investigation of a new

equivalence relation on matrix polynomials [4], matrix pencils L(λ) over an arbitrary field F were under

consideration, and we wanted to make use of the KCF of L(λ), viewed as a pencil over the algebraic closure

F. In this context, a key question is whether the minimal indices of L can be affected by the change of field

from F to F. The goal of this section is to resolve this issue, by proving the following invariance result for

the minimal indices of a matrix polynomial over an arbitrary field.

Theorem 5.1 (Invariance of Minimal Indices under Field Extension). Suppose P (λ) is an m×n matrix

polynomial over a field F, and F̃ ⊇ F is an extension field. Let

V :=
{
v(λ) ∈ F(λ)n : P (λ)v(λ) ≡ 0

}
⊆ F(λ)n,

be the right nullspace of P (λ) viewed as a matrix polynomial over F, and let

W :=
{
w(λ) ∈ F̃(λ)n : P (λ)w(λ) ≡ 0

}
⊆ F̃(λ)n,

be the right nullspace of P (λ) viewed as a matrix polynomial over F̃. Then the minimal indices of V and W

are identical.

The strategy of the proof is to show that the dimension sequences dimFdeg(V ) over the field F(λ), and

dimFdeg(W ) over the field F̃(λ), are identical; Corollary 3.13 then implies the desired conclusion. Before we

get to the proof of the theorem, we need some preliminary results.
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Lemma 5.2. Suppose K is a field, K̃ ⊇ K is a field extension, and v1, v2, . . . , v` ∈ Kn ⊆ K̃n are column

vectors in Kn (hence also in K̃n). Then

v1, v2, . . . , v` are linearly independent in Kn ⇐⇒ v1, v2, . . . , v` are linearly independent in K̃n .

Proof. Line up the ` column vectors v1, v2, . . . , v` side-by-side to form an n× ` matrix

A =
[
v1 v2 . . . v`

]
∈ Kn×` ⊂ K̃n×`.

Then v1, v2, . . . , v` are linearly independent in Kn ⇔ A has an `× ` submatrix Â such that det Â 6= 0 ⇔
v1, v2, . . . , v` are linearly independent in K̃n.

Lemma 5.3. Let P (λ), V , and W be as in Theorem 5.1. Then for each d ∈ N, we have

dim
F
Pd(V ) = dim

F̃
Pd(W ) .

Proof. Let P (λ) = A0+λA1+λ2A2+· · ·+λkAk be an m×n matrix polynomial over a field F. Extending

a technique used by Gantmacher [9] to analyze singular pencils, consider the following (possibly rectangular)

block-Toeplitz matrices built from the coefficient matrices of P (λ):

(5.13) M0 :=


A0

A1...
Ak

 , M1 :=


A0 0

A1 A0... A1

Ak
...

0 Ak

 , . . . , Md :=



A0

A1 A0... A1
. . .

Ak
...

. . . A0

Ak A1
. . .

...

Ak


, . . .

where Md has d+ 1 block columns. Now suppose v(λ) = v0 + λv1 + λ2v2 + · · ·+ λdvd is a vector polynomial

of degree at most d with vi ∈ Fn for i = 0, . . . , d, and ṽ := [ vT0 vT1 · · · vTd ]T is the vector in F(d+1)n formed

by vertically stacking up all the coefficient vectors vi. Then it is not hard to see that v(λ) ∈ Pd(V ) if and

only if

A0v0 = 0 , A1v0 +A0v1 = 0 , A2v0 +A1v1 +A0v2 = 0 , . . . , Akvd = 0,

if and only if Md ṽ = 0. From this it follows that the map

Pd(V ) −→ kerMd

v(λ) 7−→ ṽ,

is a linear isomorphism of F-vector spaces, and so dimF Pd(V ) = dimF kerMd.

The same argument, viewing Md and the coefficients of P (λ) as matrices with entries in any extension

field F̃, shows that dim
F̃
Pd(W ) = dim

F̃
kerMd. Now the rank/nullity theorem implies that dim kerMd =

(d + 1)n − rankMd. But the rank of a matrix is the size of the largest square submatrix with nonzero

determinant, so rank is insensitive to field extensions. Thus we have

dim
F
Pd(V ) = dim

F
kerMd = (d+ 1)n− rankMd = dim

F̃
kerMd = dim

F̃
Pd(W ) ,

and the proof is complete.
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With these two lemmas in hand, we now return to the proof of Theorem 5.1.

Proof of Theorem 5.1. The strategy of the proof is to show that for each d ∈ N, the F(λ)-dimension of Sd(V )

is the same as the F̃(λ)-dimension of Sd(W ), and hence that

dim
F(λ)
Fdeg(V ) = dim

F̃(λ)
Fdeg(W ) ,

i.e., the degree filtrations Fdeg(V ) and Fdeg(W ) have identical dimension sequences. It then follows from

Corollary 3.13 that the minimal indices of V and W are identical, as desired.

To get a handle on the spaces Sd(V ) and Sd(W ), we begin by considering the vector polynomial spaces

Pd(V ) and Pd(W ). Let B be any F-basis for the F-vector space Pd(V ). Then clearly B ⊆ Pd(W ), and

by Lemma 5.2 (with K = F and K̃ = F̃) it follows that B is an F̃-linearly independent subset of Pd(W ).

The equality of the dimensions dimF Pd(V ) and dim
F̃
Pd(W ) from Lemma 5.3 now implies that B is also an

F̃-basis for the F̃-vector space Pd(W ).

Since Pd(V ) is F-generated by B, and Sd(V ) is F(λ)-generated by Pd(V ), the fact that F ⊆ F(λ) implies

that B is an F(λ)-spanning set for Sd(V ). The same kind of argument shows that B is also an F̃(λ)-spanning

set for Sd(W ).

Inside of the spanning set B we can now find a subset B̂ ⊆ B that forms an F(λ)-basis for Sd(V ), and

hence is a maximal F(λ)-linearly independent subset of Sd(V ). Using Lemma 5.2 again, this time with

K = F(λ) and K̃ = F̃(λ), we see that B̂ is not only an F̃(λ)-linearly independent subset of Sd(W ), it is

actually a maximal F̃(λ)-linearly independent subset of Sd(W ). [ If not, then there would be a strictly larger

F̃(λ)-linearly independent subset B′ of B, i.e., B̂ ⊂ B′ ⊆ B ⊆ Pd(V ), which by Lemma 5.2 would contradict

the maximality of B̂ as an F(λ)-linearly independent subset of Sd(V ). ] Thus, we see that B̂ is simultaneously

an F(λ)-basis for Sd(V ) as well as an F̃(λ)-basis for Sd(W ), showing that dimF(λ) Sd(V ) = dim
F̃(λ)
Sd(W ),

and the proof is complete.

Remark 5.4. Note that Theorem 5.1, despite the simple nature of its statement, has not to our knowl-

edge appeared before in the literature. Indeed, the search for a clear proof of this result was the primary

motivation for developing the filtration formulation of minimal indices in the first place.

Remark 5.5. The invariance of minimal indices under field extension also holds for the left nullspace of

any matrix polynomial P (λ). Simply apply Theorem 5.1 to the right nullspace of PT (λ), which is the same

as the left nullspace of P (λ).

6. Minimal indices and direct sums. In the course of developing the Kronecker canonical form in

[9], Gantmacher remarks without proof that:

The complete system of indices for the columns (rows) of a quasi-diagonal matrix is obtained

as the union of the corresponding systems of minimal indices of the individual diagonal

blocks. [9, Vol. II, p. 39]

In my view, this assertion is not obvious and requires some proof, especially since it is an essential component

of the overall argument for the KCF. In this section, we close this “gap” by showing that minimal indices

behave nicely under direct sums more generally; in particular, we show that the list of minimal indices of

V ⊕W is just the concatenation of the individual lists of minimal indices of V and W . The filtration view

of minimal indices allows for a completely straightforward proof of this result, although some preliminary
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discussion of how filtrations interact with direct sums is needed. Thus we begin with the simple notion of

the direct sum of filtrations, applicable to any pair of filtered vector spaces.

Definition 6.1 (Direct Sum of Filtrations). Suppose V and W are filtered vector spaces over the same

field K, with given filtrations

F(V ) : V0 ⊆ V1 ⊆ V2 ⊆ · · · and F(W ) : W0 ⊆ W1 ⊆ W2 ⊆ · · · ,

respectively. Then the direct sum filtration F(V )⊕F(W ) of the K-vector space V ⊕W is defined to be

V0 ⊕W0 ⊆ V1 ⊕W1 ⊆ V2 ⊕W2 ⊆ · · · .

In Section 3 we introduced some special vector spaces V having a canonical filtration, namely subspaces

V ⊆ F(λ)n equipped with the degree filtration Fdeg(V ). An obvious question is whether the degree filtration

of the direct sum V ⊕W has any nice relationship to the degree filtrations of the individual spaces V and

W . The next result gives the simple answer.

Lemma 6.2 (Degree Filtration of Direct Sum). Let V ⊆ F(λ)n and W ⊆ F(λ)k be arbitrary rational

subspaces, so that V ⊕W is a rational subspace of F(λ)n+k. Then

(6.14) Fdeg(V ⊕W ) = Fdeg(V )⊕Fdeg(W ) .

Proof. To determine the degree filtration of V ⊕W , we must first understand the vector polynomial

subsets Pd(V ⊕W ). Any element of V ⊕W has the form z =
[
v
w

]
, where v ∈ V and w ∈ W . Thus any

vector polynomial z ∈ Pd(V ⊕W ) must be built from some v ∈ Pd(V ) together with some w ∈ Pd(W ).

Consequently we see that Pd(V ⊕W ) = Pd(V )⊕ Pd(W ).

Next we consider the F(λ)-span of Pd(V ⊕W ), or equivalently of Pd(V ) ⊕ Pd(W ), in order to obtain

the F(λ)-subspace Sd(V ⊕W ) that is part of the degree filtration Fdeg(V ⊕W ). It is easy to see that any

linear combination of elements zi from the direct sum Pd(V ) ⊕ Pd(W ) can be expressed as the direct sum

of a linear combination from Pd(V ) together with a linear combination from Pd(W ):

∑
i

cizi =
∑
i

ci

[
vi
wi

]
=

[ ∑
civi∑
ciwi

]
=
∑
i

civi ⊕
∑
i

ciwi .

Conversely, any direct sum of a linear combination from Pd(V ) and a linear combination from Pd(W ) can

be written as a linear combination of elements from Pd(V )⊕ Pd(W ):

∑
i

bivi ⊕
∑
j

cjwj =

[ ∑
bivi∑
cjwj

]
=

[ ∑
bivi
0

]
+

[
0∑
cjwj

]

=
∑
i

bi

[
vi
0

]
+
∑
j

cj

[
0
wj

]
.

Together these observations imply that

span
F(λ)

[
Pd(V )⊕ Pd(W )

]
= span

F(λ)

[
Pd(V )

]
⊕ span

F(λ)

[
Pd(W )

]
=: Sd(V )⊕ Sd(W ) .
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Thus we have

Sd(V ⊕W ) := span
F(λ)

[
Pd(V ⊕W )

]
= span

F(λ)

[
Pd(V )⊕ Pd(W )

]
= Sd(V )⊕ Sd(W ) .

Assembling these together for all d ∈ N shows that (6.14) holds.

Now that we know how degree filtrations behave with respect to direct sums, it is just one easy further

step to see how the minimal indices of a direct sum are related to the minimal indices of the summands.

Theorem 6.3 (Minimal Indices of Direct Sum). Let V ⊆ F(λ)n and W ⊆ F(λ)k be arbitrary rational

subspaces, so that V ⊕W is a subspace of F(λ)n+k. Then the list of minimal indices of V ⊕W is just the

concatenation of the list of minimal indices of V together with the list of those of W .

Proof. From (6.14) it follows that the dimension sequence of Fdeg(V ⊕W ) is just the (entry-wise) sum

of the dimension sequences of Fdeg(V ) and Fdeg(W ), i.e., that

(6.15) dim Fdeg(V ⊕W ) = dim Fdeg(V ) + dim Fdeg(W ) .

The desired result now follows from (6.15) and the minimal index formula (3.10) in Theorem 3.12:

# (min. indices ε = d for V ⊕W ) = dim Sd(V ⊕W ) − dim Sd−1(V ⊕W )

=

{[
dimSd(V ) + dim Sd(W )

]
−
[

dim Sd−1(V ) + dim Sd−1(W )
]}

=

{[
dimSd(V )− dim Sd−1(V )

]
+
[

dim Sd(W )− dim Sd−1(W )
]}

=

{
# (min. indices ε = d for V )

+ # (min. indices ε = d for W )

}
,

and the theorem is proved.

7. Further properties of minimal bases. In this final section we consider two additional significant

properties of minimal bases, the polynomial linear combination property and the predictable degree property.

Although these properties were previously established using Forney’s definition [7], we include a discussion of

them here to further illustrate how the filtration point of view leads to natural and straightforward proofs, as

well as provides new insight into the properties themselves. Note that we only outline these filtration-based

proofs, leaving some of the details to the reader.

The first of these properties concerns the generation of vector polynomials from a vector polynomial

basis of a rational subspace V ⊆ F(λ)n.

Definition 7.1 (Polynomial Linear Combination Property). Suppose V ⊆ F(λ)n is a rational subspace,

and B = {vj(λ)}j=1,k is a vector polynomial basis for V , so that every w(λ) ∈ V is uniquely expressed as an

F(λ)-linear combination

(7.16) w(λ) =

k∑
j=1

rj(λ)vj(λ) , with rj(λ) ∈ F(λ) .
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Then we say that the basis B has the polynomial linear combination (PLC) property if for every vector

polynomial w(λ) ∈ V , the rational coefficients rj(λ) in (7.16) are all polynomials. In other words, every

vector polynomial in V can be generated as a polynomial linear combination of the vectors in B.

Theorem 7.2 (Minimal Bases have the PLC Property). Any minimal basis B (in the filtration sense)

for a rational subspace V ⊆ F(λ)n has the PLC property.

Proof. One nice feature of the filtration view of minimal bases is that it encourages and facilitates the

use of induction arguments moving up through the degree filtration Fdeg(V ) of V . Indeed, this Theorem 7.2

may be proved using exactly that strategy.

Begin by establishing two simple background facts concerning proper rational functions ri(λ) (i.e., ra-

tional functions u(λ)
`(λ) where deg u < deg `), and proper rational linear combinations of vector polynomials

vi(λ) with deg vi ≤ k :

(F1) q(λ) :=
∑m
i ri(λ) is a polynomial ⇒ q = 0 .

(F2) w(λ) :=
∑m
i ri(λ)vi(λ) is a vector polynomial ⇒ deg w < k .

Then by induction on the degree parameter d of the filtration Fdeg(V ), show that any vector polynomial

v(λ) ∈ Sd(V ) can be expressed as a polynomial linear combination of the vectors in any Pd(V )-basis for

Sd(V ), in particular for the Pd(V )-basis Bd ⊆ B forming an initial segment of the ordered basis B.

The base case of the induction (d = 0) follows easily from background fact (F1). Write an arbitrary

vector polynomial v(λ) ∈ S0(V ) as a rational linear combination
∑

vi∈B0
si(λ)vi of (constant) vectors in B0,

then expand each rational coefficient into a sum si(λ) = pi(λ) + ri(λ), where pi is polynomial and ri is a

proper rational function, so that

(7.17) v(λ) =
∑

vi∈B0

si(λ)vi =
∑

vi∈B0

pi(λ)vi +
∑

vi∈B0

ri(λ)vi .

The rightmost sum in (7.17) can now be seen to be the zero vector, using (F1) on each component. Thus

the PLC property holds for the minimal basis B0 of the rational subspace S0(V ).

For a general d, we can proceed in a similar manner and consider an arbitrary vector polynomial

v(λ) ∈ Sd(V ), written as a rational linear combination of vector polynomials in Bd. Again expanding each

of these rational coefficients as a sum of a polynomial and a proper rational function, we have

(7.18) v(λ) =
∑

vj∈Bd

sj(λ)vj(λ) =
∑

vj∈Bd

pj(λ)vj(λ) +
∑

vj∈Bd

rj(λ)vj(λ)

︸ ︷︷ ︸
w(λ)

.

Using fact (F2), we can now see that the rightmost sum in (7.18) represents a vector polynomial w(λ) in V

of degree less than d, and hence in Pd−1(V ) ⊆ Sd−1(V ). Then by the induction hypothesis this w(λ) can be

expressed as a polynomial linear combination of the vectors in Bd−1, and so the PLC property holds for the

minimal basis Bd of the rational subspace Sd(V ).

The filtration of V by the subspaces Sd(V ) now implies that the PLC property holds for all of V ,

completing the proof.
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The second significant property considers the question of determining the degree of polynomial linear

combinations of vector polynomials, i.e., for sums of the form

(7.19) v(λ) :=

k∑
j=1

pj(λ)vj(λ) ,

where each pj(λ) is a scalar polynomial, and each vj(λ) is a vector polynomial. Clearly each term pj(λ)vj(λ)

has degree equal to (deg pj + deg vj), and the degree of the whole linear combination vector v(λ) has the

upper bound

deg v(λ) ≤ max
j

(
(deg pjvj)

)
= max

j

(
deg pj + deg vj

)
.

Indeed, we might reasonably expect equality to hold generically in this bound, since for v(λ) to have lower

degree than this upper bound would require the simultaneous cancellation of all terms of highest degree in

all components of the vector.

Definition 7.3 (Predictable Degree Property). A polynomial linear combination v(λ) of vector poly-

nomials defined as in (7.19) has the predictable degree property (PDP) if

deg v(λ) = max
j

(
deg(pjvj)

)
= max

j

(
deg pj + deg vj

)
.

By extension, a vector polynomial basis B = {vj(λ)}j=1,k for a rational subspace V ⊆ F(λ)n is said to have

the predictable degree property if every polynomial linear combination built from B has the PDP.

Remark 7.4. The predictable degree property in Definition 7.3 is a special case of a more general

predictable degree property for products of polynomial matrices, as described in [5].

Theorem 7.5 (Minimal Bases have the PDP). Any minimal basis B (in the filtration sense) for a

rational subspace V ⊆ F(λ)n has the PDP.

Proof. Once again we can induct on the degree parameter d in the filtration Fdeg(V ). To begin the

induction (at d = 0), consider an arbitrary vector polynomial v(λ) ∈ S0(V ), expressible (by Theorem 7.2)

as a polynomial linear combination v(λ) =
∑

vi∈B0
pi(λ)vi of the (all constant) basis vectors in B0 ⊆ B.

Letting

m := max
vi∈B0

(
deg(pivi)

)
= max

vi∈B0

(
deg(pi(λ)

)
,

our goal is to show that deg v(λ) = m. But this follows easily by expanding each polynomial coefficient as

pi(λ) = c
(i)
m λm + (l.o.t.), where “ l.o.t.” denotes lower order terms, so that v(λ) can now be expressed by

v(λ) = λm
( ∑

vi∈B0

c(i)m vi

)
+ (l.o.t.) .

Since the coefficient of λm is a nontrivial linear combination of the linear independent vectors in B0, we see

that deg v(λ) is indeed equal to m. Thus the minimal basis B0 for the rational subspace S0(V ) has the PDP.

To complete the induction, we show that if the basis Bd−1 for the subspace Sd−1(V ) has the PDP, then

the same is true for the basis Bd for Sd(V ); the proof will proceed in the contrapositive form. That is,

suppose there exists a nonzero vector polynomial w(λ) ∈ Sd(V ), that when expressed in terms of the basis

Bd does not have the PDP. Then from w(λ) we show how to construct a nonzero vector polynomial z(λ) in

Sd−1(V ) that also does not have the PDP, thus establishing the desired contrapositive implication.
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So consider w(λ) =
∑

vi∈Bd
pi(λ)vi(λ) ∈ Sd(V ), and as before let

(7.20) m := max
vi∈Bd

(
deg
(
pi(λ)vi(λ)

))
.

Note that if m < d, then w(λ) is itself in Sd−1(V ), so taking z(λ) := w(λ) completes the argument. Thus

from now on we assume that d ≤ m; also we have deg w(λ) < m, since w(λ) is assumed to violate the PDP.

The first step in the construction of the desired z(λ) ∈ Sd−1(V ) is to remove all the terms pi(λ)vi(λ) from

w(λ) that have deg pivi < m, to form the deleted sum w′(λ) =
∑′

pj(λ)vj(λ) in which every term pjvj has

degree m. Observe that this deleted sum is a nontrivial polynomial linear combination because of (7.20),

hence is a nonzero vector polynomial, and still has deg w′(λ) < m. Next expand each remaining coefficient

pj(λ) as pj(λ) = cjλ
dj + (l.o.t.), where dj + deg vj(λ) = m and each cj 6= 0, and delete all the lower order

terms (l.o.t.) to form the vector polynomial w̃′(λ) =
∑′

cjλ
djvj(λ). This w̃′(λ) is again a nonzero vector

polynomial with each individual term cjλ
djvj(λ) having degree m, but deg w̃′(λ) < m; hence w̃′(λ) violates

the PDP. The final step in the construction of z(λ) is to observe that each dj ≥ m− d, and so

z(λ) :=

(
1

m− d

)
w̃′(λ) =

∑′
cjλ

dj−m+dvj(λ),

is a nonzero vector polynomial. Furthermore, each term cjλ
dj−m+dvj(λ) in this summation defining z(λ)

has degree d, but deg z(λ) < d. Thus z(λ) is a nonzero vector polynomial that does not have the PDP, but

is an element of Pd−1(V ), hence also of Sd−1(V ). The existence of such a vector polynomial then completes

the proof of the inductive step.

Theorems 7.2 and 7.5 have shown that any minimal basis has both the PDP and the PLC properties.

But more than this is true. In fact these two properties characterize when a polynomial basis is minimal.

That is, a vector polynomial basis B is minimal if and only if B has both the PDP and PLC properties.

This result was shown in [7] using Forney’s definition of minimal basis; in the final theorem of this paper we

complete the argument for this characterization from the filtration point of view.

Theorem 7.6 (Characterization of Minimal Bases). A vector polynomial basis B for a rational subspace

V ⊆ F(λ)n is a minimal basis (in the filtration sense) if and only if it has the PDP and PLC properties.

Proof. All that remains is to show that for a vector polynomial basis B, the properties PDP and PLC

together imply that B is a minimal basis. We consider this in the contrapositive form, i.e., we show that the

non-minimality of a basis B implies that either PDP or PLC fails to hold.

So suppose V ⊆ F(λ)n is a k-dimensional rational subspace with minimal indices ε1 ≤ ε2 ≤ · · · ≤ εk ,

and B =
{
w1(λ),w2(λ), . . . ,wk(λ)

}
is any vector polynomial basis for V , ordered so that the degrees

δi = deg wi(λ) satisfy δ1 ≤ δ2 ≤ · · · ≤ δk . Then assuming that B is not minimal (in the filtration

sense), we aim to show that either the PDP or the PLC property fails for B. By the strong minimality

property (Theorem 4.2) we know that ε1 ≤ δ1 , ε2 ≤ δ2 , . . . , εk ≤ δk , and since B is not minimal, by

Corollary 3.14 there must be at least one index where equality does not hold. Let ` be the first index

where we have strict inequality; i.e., ε1 = δ1 , ε2 = δ2 , . . . , ε`−1 = δ`−1 , but ε` < δ` = deg w`(λ) .

With d := ε`, it is clear that dimSd(V ) ≥ `, so there must be some degree d vector polynomial v(λ) in

Sd(V ) \ span
{
w1(λ),w2(λ), . . . ,w`−1(λ)

}
.

Now we claim that any such v(λ) is a witness to the failure of either the PDP or the PLC property for

the basis B. Certainly v(λ) can be (uniquely) expanded as a rational linear combination

(7.21) v(λ) =
∑
wi∈B

ri(λ)wi(λ),



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 276-294, March 2021.

293 Minimal indices and minimal bases via filtrations

of the basis vectors in B, with at least one nonzero coefficient rj(λ) with ` ≤ j ≤ k. On the one hand, if any

of the nonzero coefficients ri(λ) in (7.21) is not polynomial, then B would fail to have the PLC property.

On the other hand, if the linear combination (7.21) does have all polynomial coefficients, then B would not

have the PDP, since d = deg v(λ) would be strictly less than the maximal degree m of the terms rj(λ)wj(λ)

in the summation (7.21); indeed, m ≥ δ` > ε` = d. Thus at least one of the properties (PDP or PLC) is

violated by any non-minimal basis B.

8. Conclusions. We have shown how the Kronecker/Gantmacher approach to the minimal bases and

indices of any rational subspace V ⊆ F(λ)n can be reformulated in a more intrinsic fashion using the degree

filtration of V . This reformulation unifies and simplifies our understanding of the classical approaches to

minimal bases and indices, clarifies the relationship between these various approaches, and provides new

tools with which to prove basic properties of minimal indices and minimal bases. These new tools have

been utilized to show that the minimal indices of any singular matrix polynomial are unchanged by field

extension, and to prove the direct sum property of minimal indices. The filtration point of view has also

provided deeper insight into minimal indices, bringing an under-recognized strong minimality property clearly

into the light, thereby leading to a characterization of the vector polynomial bases in rational vector spaces.

The efficacy and naturalness of this new approach have been further highlighted by finding new arguments

for the previously known polynomial linear combination and predictable degree properties of minimal bases.

Additional results and insights about minimal indices and bases can be expected to emerge from continued

development of the filtration point of view.
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