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POTENTIALLY STABLE AND 5-BY-5 SPECTRALLY ARBITRARY TREE SIGN

PATTERN MATRICES WITH ALL EDGES NEGATIVE∗
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Abstract. Characterization of potentially stable sign pattern matrices has been a long-standing open problem. In this

paper, we give some sufficient conditions for tree sign pattern matrices with all edges negative to allow a properly signed nest.

We also characterize potentially stable star and path sign pattern matrices with all edges negative. We give a conjecture on

characterizing potentially stable tree sign pattern matrices with all edges negative in terms of allowing a properly signed nest

which is verified to be true for sign pattern matrices up to order 6. Finally, we characterize all 5-by-5 spectrally arbitrary tree

sign pattern matrices with all edges negative.
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1. Introduction. A sign pattern matrix is a matrix with entries from {+,−, 0}. If Mm×n(R) is the

set of all m × n real matrices, then the qualitative class of an m × n sign pattern matrix A is denoted by

Q(A) and is defined by:

Q(A) = {C ∈Mm×n(R) : sign(cij) = aij for all i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}}.

A sign pattern matrix A allows a property P if at least one matrix in Q(A) has the property P and requires

a property P if all matrices in Q(A) have the property P . A square sign pattern matrix A = [aij ] is said to

be combinatorially symmetric if for each i, j, either both aij , aji are zero or both aij , aji are nonzero. Let

us recall some definitions from [12].

A subpattern Ã of a sign pattern matrix A is a sign pattern matrix obtained from A by replacing some

(possibly none) of the nonzero entries of A with 0. In this case, A is said to be a super-pattern of Ã.

A diagonal sign pattern matrix is a square sign pattern matrix with all off-diagonal entries 0. A signature

sign pattern matrix is a diagonal sign pattern matrix with each diagonal entry + or −. A signature similarity

of a square sign pattern matrix A is a product SAS, where S is a signature sign pattern matrix.

A permutation sign pattern matrix is a square sign pattern matrix with entries from {0,+}, where the

entry + occurs precisely once in each row and each column. A permutation similarity of a square sign pattern

matrix A is a product PTAP , where P is a permutation sign pattern matrix.

A sign pattern matrix B is equivalent to another sign pattern matrix A if B is obtained from A by

negation and/or permutation similarity and/or signature similarity.

For a simple undirected graph G, we denote the edge between two vertices i, j by [i, j]. Let us recall

from [13] that the graph of a matrix A of order n, denoted by G(A), is defined to be a simple undirected

graph with vertices 1, 2, . . . , n and for i 6= j it has the edge [i, j] if and only if aij 6= 0 or aji 6= 0. A sign
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pattern matrix A is a tree sign pattern matrix if A is combinatorially symmetric and G(A) is a tree. In

particular, if G(A) is a star or a path, then A is called a star sign pattern matrix or a path sign pattern

matrix, respectively.

The eigenvalues of matrices in the qualitative class of a tree sign pattern matrix A depend on the signs

aii and aijaji. Therefore each tree sign pattern matrix can be identified by a signed tree whose vertices may

be signed +,−, 0 and whose edges may be signed +,−. Vertex i has the sign aii, and for i 6= j, if aijaji 6= 0,

then the edge between vertices i and j has the sign aijaji. For example, a sign pattern matrix with its signed

tree is as follows:


0 − 0 + 0

− 0 + 0 −
0 − + 0 0

− 0 0 + 0

0 − 0 0 0


0

0

+ 0 +

23

5

1 4

+ −−

+

Two signed trees are said to be equivalent if one is obtained from the other after relabeling its vertices.

A tree sign pattern matrix is symmetric if each edge of its signed tree is +.

Let C be a square matrix of order n. If α ⊆ {1, 2, . . . , n}, then C[α] is the principal submatrix of

C having rows and columns corresponding to the indices in α. The inertia of C is the triple i(C) =

(i+(C), i−(C), i0(C)), where i+(C) is the number of eigenvalues of C with positive real part, i−(C) is the

number of eigenvalues of C with negative real part and i0(C) is the number of eigenvalues of C with zero

real part. A sign pattern matrix A of order n is said to be potentially stable if there exists a C ∈ Q(A) such

that i(C) = (0, n, 0).

For a real number a, the function sgn is defined by:

sgn(a) =


1, if a > 0;

0, if a = 0;

−1, if a < 0.

We recall from [14] that a sign pattern matrix A of order n allows a properly signed nest if there exists a

C ∈ Q(A) and a permutation matrix P of order n such that

sgn det((PCPT )[{1, 2, . . . , k}]) = (−1)k for k = 1, 2, . . . , n.

The following result was given by Johnson et al. [14] in an attempt to obtain a sufficient condition for

a tree sign pattern matrix with negative edges to allow a properly signed nest.

[14, Corollary 3.7]. If A is a tree sign pattern matrix in which at least one diagonal entry is negative

and every edge is negative (except possibly those with both end vertices negative), and A allows a nonzero

determinant, then A allows a properly signed nest.

However, the following example shows that the above result is not true in general.
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Example 1.1. Let us consider the tree sign pattern matrix:

A =

+ + 0

− − +

0 − +

 .
Let C ∈ Q(A). Then without loss of generality we may assume that

C =

 a 1 0

−d −b 1

0 −e c

 ,
where a, b, c, d, e > 0. If A allows a properly signed nest, then we must have

−b < 0, e− bc > 0 or d− ab > 0 and ae+ cd− abc < 0,

for some a, b, c, d, e > 0, which is not possible. So A does not allow a properly signed nest.

Remark 1.2. By [15, Fig. 2], A in the above example is not potentially stable.

In Section 2, we give some sufficient conditions for tree sign pattern matrices with all edges negative to

allow a properly signed nest.

Johnson et al. [14] proved that if a sign pattern matrix allows a properly signed nest, then it is potentially

stable. They also mention that the converse is not true, even for tree sign pattern matrices. In Section 3, we

discuss the cases for which the converse is also true and characterize potentially stable star and path sign

pattern matrices with all edges negative.

Drew et al. [6] introduced the concept of spectrally arbitrary patterns. A sign pattern matrix A of

order n is said to be a spectrally arbitrary pattern if, for any given real monic polynomial r(x) of degree n,

there is a matrix in Q(A) with characteristic polynomial r(x). In Section 4, we describe all 5-by-5 spectrally

arbitrary tree sign pattern matrices with all edges negative.

2. Tree sign pattern matrices with all edges negative that allow properly signed nests.

Olesky et al. [17] characterized sign pattern matrices allowing a properly signed nest in terms of another

allow problem. Cavalcanti [4] characterized sign pattern matrices allowing a properly signed nest through a

relation between two subsequent leading principal minors (after permutation, if required). Using matchings

of a graph, we give some sufficient conditions for a sign pattern matrix with all edges negative to allow a

properly signed nest. Let us recall the following definitions from [10].

If G is a simple undirected graph with vertex set V (G) and edge set E(G), then the subgraph of G

induced by S ⊆ V (G) is the graph with vertex set S and edge set {[i, j] ∈ E(G) : i, j ∈ S}. We denote

this induced subgraph by G(S). If S ⊆ V (G), then G − S is the subgraph of G obtained from G by

deleting the vertices in S and the edges incident to them. A path between two vertices u, v of G is a

sequence {v0, v1, v2, . . . , vk−1, vk} of distinct vertices such that v0 = u, vk = v, and [vi−1, vi] ∈ E(G) for all

i ∈ {1, 2, . . . , k}. A set of edges in an undirected graph G is called a matching if no two edges in that set

have a common end vertex. A perfect matching of a graph G is a matching such that each vertex of G is

an end vertex of an edge in that matching. The degree of a vertex u, denoted by deg(u), is the number of

distinct vertices of G adjacent to u. If deg(u) = 1, then u is called pendant. Throughout this paper, 〈n〉
denotes the set {1, 2, . . . , n}.
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Lemma 2.1. Let T be a tree with a vertex v such that T − {v} has a perfect matching. Then for each

vertex u adjacent to v, there is a path {vi1 , vi2 , . . . , vik−1
, vik} such that deg(vik) = 1 and deg(vik−1

) = 2,

where vi1 = v and vi2 = u.

Proof. Let u be a vertex adjacent to v. Since T − {v} has a perfect matching, u is not pendant. We

consider a longest path {vi1 , vi2 , . . . , vik−1
, vik} in T , where vi1 = v and vi2 = u. Then, vik must be a pendant

vertex. If deg(vik−1
) > 2, then vik−1

must be adjacent to another pendant vertex, say w. So we have two

pendant vertices w, vik distinct from v such that vik−1
is adjacent to both w, vik . Then, T −{v} cannot have

a perfect matching, a contradiction. So deg(vik−1
) = 2.

Lemma 2.2. Let T be a tree with 2n + 1 vertices and let v be a vertex of T . If T − {v} has a perfect

matching, then we can label the vertices with the numbers from 〈2n+ 1〉 such that the vertex v is labeled as

1 and for each s ∈ 〈2n + 1〉, G(〈s〉) has a perfect matching when s is even, and G(〈s〉) − {1} has a perfect

matching when s is odd.

Proof. We prove this by induction on n. For n = 1, T is a tree with three vertices. Since T − {v} has

a perfect matching, v must be a pendant vertex. If we label v as 1, the vertex adjacent to v as 2, and the

other vertex as 3, we get the desired result.

Suppose the required result is true for any tree with 2n−1 vertices. Let T be a tree with 2n+1 vertices,

and let T has a vertex v such that T − {v} has a perfect matching. Then by Lemma 2.1, there is a path

{vi1 , vi2 , . . . , vik−1
, vik} such that deg(vik) = 1 and deg(vik−1

) = 2, where vi1 = v and vik−1
, vik 6= v. So

T̃ = T − {vik−1
, vik} is a tree such that T̃ − {v} has a perfect matching. Further, T̃ is a tree with 2n − 1

vertices. So by induction hypothesis, we can label T̃ such that the vertex v is labeled as 1; and for each

s ∈ 〈2n− 1〉, G(〈s〉) has a perfect matching when s is even, and G(〈s〉)− {1} has a perfect matching when

s is odd. If vik−2
is labeled as m in the above labeling, then label vik−1

as m+ 1, vik as m+ 2, and relabel

all vertices j(> m) of T̃ as j + 2.

If m is even, then by induction hypothesis, both G(〈m〉) and G(〈m− 1〉)− {1} have perfect matchings

in T̃ . So G(〈m+ 1〉)− {1} has a perfect matching, namely the perfect matching for G(〈m− 1〉)− {1} in T̃

together with the edge [m,m+ 1]; and G(〈m+ 2〉) has a perfect matching, namely the perfect matching for

G(〈m〉) in T̃ together with the edge [m+ 1,m+ 2].

If m is odd, then by induction hypothesis, both G(〈m〉) − {1} and G(〈m − 1〉) have perfect matchings

in T̃ . So G(〈m + 1〉) has a perfect matching, namely the perfect matching for G(〈m − 1〉) in T̃ together

with the edge [m,m + 1]; and G(〈m + 2〉) − {1} has a perfect matching, namely the perfect matching for

G(〈m〉)− {1} in T̃ together with the edge [m+ 1,m+ 2].

For each odd s > m+ 2, G(〈s〉)− {1} has a perfect matching, namely the perfect matching for G(〈s−
2〉)−{1} in T̃ together with the edge [m+1,m+2]. For each even s > m+2, G(〈s〉) has a perfect matching,

namely the perfect matching for G(〈s− 2〉) in T̃ together with the edge [m+ 1,m+ 2].

For each odd s ≤ m, G(〈s〉)−{1} has a perfect matching, namely the perfect matching for G(〈s〉)−{1}
in T̃ . For each even s ≤ m, G(〈s〉) has a perfect matching, namely the perfect matching for G(〈s〉) in T̃ .

Therefore for each s ∈ 〈2n + 1〉, G(〈s〉) has a perfect matching when s is even, and G(〈s〉) − {1} has a

perfect matching when s is odd.

Corollary 3.8 of [14] can be rephrased as follows.
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Lemma 2.3 ([14]). If a sign pattern matrix A allows a properly signed nest, then every super-pattern

of A also allows a properly signed nest.

The following theorem gives a sufficient condition for a tree sign pattern matrix of odd order with

negative edges to allow a properly signed nest.

Theorem 2.4. Let A be a tree sign pattern matrix of odd order n with all edges negative. If G(A)

contains a vertex v such that G(A) − {v} has a perfect matching and avv = −, then A allows a properly

signed nest.

Proof. Let B be a subpattern of A such that B is a tree sign pattern matrix, bvv = − and buu = 0 for

all u 6= v. By Lemma 2.2, we can label G(B) such that v is labeled as 1 so that for each s ∈ 〈n〉, the induced

subgraph G(〈s〉) has a perfect matching when s is even, and G(〈s〉)− {1} has a perfect matching when s is

odd. Let C ∈ Q(B) be such that cij = 1, 0,−1 accordingly as bij = +, 0,−. So there exists a permutation

matrix P such that det((PCPT )[〈s〉]) = (−1)s for all s ∈ 〈n〉. Thus, B allows a properly signed nest, and

therefore by Lemma 2.3, A allows a properly signed nest.

The converse of the above result is not true.

Example 2.5. Let us consider a tree sign pattern matrix A with its signed tree as follows:

A =


− + 0 + 0

− 0 + 0 +

0 − + 0 0

− 0 0 + 0

0 − 0 0 0


0+

0

− +

2
3

5

1 4

− −−

−

C =


−3 1 0 1 0

−2 0 1 0 1

0 −1 1 0 0

−2 0 0 1 0

0 −1 0 0 0

 ∈ Q(A).

The leading principal minors of C are −3, 2, −1, 1, and −1. So A allows a properly signed nest. However,

G(A)− {1} does not have a perfect matching.

Lemma 2.6. If two sign pattern matrices A1 and A2 allow properly signed nests, then A1 ⊕A2 allows a

properly signed nest.

Proof. Let the orders of A1 A2 be r and s respectively. Since both A1 and A2 allow properly signed

nests, there exist permutation matrices P1 and P2 and C1 ∈ Q(A1) and C2 ∈ Q(A2) such that

sgn det(P1C1P
T
1 )[〈t〉] = (−1)t for t = 1, 2, . . . , r,

and

sgn det(P2C2P
T
2 )[〈t〉] = (−1)t for t = 1, 2, . . . , s.

Then, sgn det[(P1⊕P2)(C1⊕C2)(P1⊕P2)T ][〈t〉] = (−1)t for t = 1, 2, . . . , r+s. Since C1⊕C2 ∈ Q(A1⊕A2),

A1 ⊕A2 allows a properly signed nest.
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The following corollary is a generalization of Theorem 2.4.

Corollary 2.7. Let A be a tree sign pattern matrix with all edges negative. If there exist k vertices

v1, . . . , vk such that G(A) − {v1, . . . , vk} has a perfect matching and avivi = − for i = 1, 2, . . . , k, then A

allows a properly signed nest.

Proof. Suppose there exist vertices v1, . . . , vk such that G(A)−{v1, . . . , vk} has a perfect matching. Let

M be such a perfect matching. If two vertices, say vk−1, vk are adjacent, then G(A) − {v1, . . . , vk−2} has

a perfect matching M ∪ {[vk−1, vk]}. Without loss of generality, we may assume that no two vertices from

{v1, . . . , vk} are adjacent.

We prove this by induction on k. For k = 1, the result is true by Theorem 2.4. Suppose the result is

true for k = m and we consider a tree sign pattern matrix A with k = m+ 1.

Let P be the path in G(A) from v1 to v2. Then the edge e in P with an end vertex v1 does not belong to

M . If we delete the edge e, then we will have two tree components. Let Ã be the sign pattern matrix obtained

from A by converting the two entries corresponding to the edge e to zero. So there exists a permutation

sign pattern matrix P such that PÃPT = A1 ⊕ A2, where both A1 and A2 allow properly signed nests, by

induction hypothesis. Therefore, by Lemma 2.6, A1⊕A2 allows a properly signed nest, and thus by Lemma

2.3, A allows a properly signed nest.

The following theorem gives a sufficient condition for a tree sign pattern matrix of even order with

negative edges to allow a properly signed nest.

Theorem 2.8. Let A be a tree sign pattern matrix of even order with all edges negative. If A has at

least one negative diagonal entry and G(A) has a perfect matching, then A allows a properly signed nest.

Proof. Let v be a vertex such that avv = −. If B is a subpattern of A such that B is a tree sign pattern

matrix, bvv = − and buu = 0 for all u 6= v, then G(B) also has a perfect matching. Let M be a perfect

matching of G(B). Consider a path {v1, v2, . . . , v2k} in G(B) such that v1 = v,deg(v2k) = 1 and

S = {[v2i−1, v2i] : 1 ≤ i ≤ k} ⊆M.

Let T = G(B) − {v2k}. Then (M \ S) ∪ {[v2i, v2i+1] : 1 ≤ i ≤ k − 1} is a perfect matching for T − {v}.
Therefore, by Theorem 2.4, B({v2k}) allows a properly signed nest and sign detB({v2k}) = −. Again,

sign det(B) = +. Therefore, B allows a properly signed nest. Hence, by Lemma 2.3, A allows a properly

signed nest.

The converse of the above result is not true.

Example 2.9. Let us consider a tree sign pattern matrix A with its signed tree as follows:

A =


0 − + +

+ 0 0 0

− 0 − 0

− 0 0 −


0

0

− −

1

2

4 3

−−

−

By Corollary 2.7, A allows a properly signed nest. However, G(A) does not have a perfect matching.
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3. Potentially stable tree sign pattern matrices with all edges negative. Characterization

of potentially stable sign pattern matrices has been a long-standing open problem. Gao and Li [7] gave a

necessary and sufficient condition for potentially stable star sign pattern matrices. Few methods to construct

higher-order potentially stable sign pattern matrices from lower-order potentially stable sign pattern matrices

are given in [2, 8]. Cavers [5] gave few methods to identify some sign pattern matrices which are not

potentially stable.

For a tree sign pattern matrix A, the symmetric factorization of A is A = S̃Ã, where S̃ is a signature

sign pattern matrix with the (1, 1) entry + and Ã is a symmetric tree sign pattern matrix. Let i+(S) denotes

the number of + of a signature sign pattern matrix S. The following result by Jeffries and Johnson [13] is

very useful in identifying some tree sign pattern matrices which are not potentially stable.

Lemma 3.1 ([13]). Let A = S̃Ã be the symmetric factorization of an n× n tree sign pattern matrix A.

If A is potentially stable, then there is a symmetric matrix C̃ ∈ Q(Ã) such that i+(C̃) = n− i+(S̃).

The following result is given by Johnson et al. [14].

Lemma 3.2 ([14]). If a sign pattern matrix A allows a properly signed nest, then A is potentially stable.

As we discussed earlier, the converse is not true, even for tree sign pattern matrices. Now we discuss

the cases for which the converse is also true. Johnson and Summers [15] proved that a super-pattern of a

potentially stable sign pattern matrix is also a potentially stable sign pattern matrix.

Lemma 3.3 ([15]). Suppose that B is a potentially stable n × n sign pattern matrix, and suppose that

B is a subpattern of the n× n sign pattern matrix A. Then A is also potentially stable.

The following result characterizes all potentially stable path sign pattern matrices with all edges negative.

Theorem 3.4. If A is a path sign pattern matrix of order n with all edges negative and G(A) is the

graph of A with vertices 1, 2, . . . , n such that i is adjacent to i+ 1 for i = 1, 2, . . . , n− 1, then the following

statements are equivalent.

1. A is potentially stable.

2. A allows a properly signed nest.

3. Exactly one of the following statements is true.

(a) n is even and A has a negative diagonal entry.

(b) n is odd and the i-th diagonal entry of A is negative for some odd i.

Proof. Theorems 2.4 and 2.8 imply 3⇒ 2. By Lemma 3.2, 2⇒ 1. Now we show 1⇒ 3.

A is potentially stable implies that A has a negative diagonal entry. So 1 ⇒ 3 when n is even. If n

is odd, then suppose aii 6= − for all odd i. Consider a path sign pattern matrix B of order n such that A

is a subpattern of B and the (2i − 1)-th diagonal entry of B is positive for all i with 1 ≤ i ≤ n+1
2 . Let

B = S̃B̃ be the symmetric factorization of B. Since the number of vertices at even distance from the vertex 1

including itself is n+1
2 , i+(S̃) = n+1

2 . If B is potentially stable, then by Lemma 3.1, there exists a symmetric

matrix C̃ ∈ Q(B̃) such that i+(C̃) = n− i+(S̃) = n−1
2 . But B̃ has a principal submatrix, which is a direct

sum of n+1
2 [+]s. So by Cauchy’s interlacing theorem for real symmetric matrices ([11, Theorem 4.3.17]),

i+(X̃) ≥ n+1
2 for any symmetric matrix X̃ ∈ Q(B̃). Thus, B is not potentially stable, and therefore by

Lemma 3.3, A is not potentially stable, which is a contradiction. So A is a potentially stable sign pattern

matrix of order n implies that the i-th diagonal entry of A is negative for some odd i. Therefore, 1⇒ 3.
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The following result characterizes all potentially stable star sign pattern matrices with all edges negative.

Theorem 3.5. If A is a star sign pattern matrix of order n ≥ 2 with all edges negative, then the following

statements are equivalent.

1. A is potentially stable.

2. A allows a properly signed nest.

3. A diagonal entry corresponding to at most one pendant vertex of G(A) is nonnegative.

Proof. For n = 2, the potentially stable star sign pattern matrices (up to equivalence) with all edges

negative are one of the following sign pattern matrices:[
− +

− 0

]
,

[
+ +

− −

]
,

[
− +

− −

]
.

Each of these sign pattern matrices satisfies all the above conditions. So the result is true for n = 2.

For n ≥ 3, Corollary 2.7 implies that 3⇒ 2. Again by Lemma 3.2, 2⇒ 1. Now we show 1⇒ 3.

If condition 3 is not true, then at least two diagonal entries corresponding to pendant vertices of G(A) are

nonnegative. Let B be a star sign pattern matrix of order n such that A is a subpattern of B and two diagonal

entries of B corresponding to pendant vertices of G(A) are +. Without loss of generality, we may assume

that one of these pendant vertices is labeled as 1. Let B = S̃B̃ be the symmetric factorization of B. Since the

number of vertices at even distance from the vertex 1 including itself is n−1, i+(S̃) = n−1. If B is potentially

stable, then by Lemma 3.1, there exists a symmetric matrix C̃ ∈ Q(B̃) such that i+(C̃) = n − i+(S̃) = 1.

But B̃ has a principal submatrix [+]⊕ [+]. So by Cauchy’s interlacing theorem for real symmetric matrices,

i+(X̃) ≥ 2 for any symmetric matrix X̃ ∈ Q(B̃). Thus, B is not potentially stable. So by Lemma 3.3, A is

not potentially stable, which is a contradiction. Therefore, 1⇒ 3.

We get from Lemma 3.2 that if a sign pattern matrix allows a properly signed nest, then it is potentially

stable. Since from Theorems 3.4 and 3.5, we get that for path and star sign pattern matrices with all edges

negative, potential stability implies the existence of a properly signed nest, we believe that the same is true

for all tree sign pattern matrices with all edges negative.

Conjecture 3.6. A tree sign pattern matrix A with all edges negative is potentially stable if and only

if it allows a properly signed nest.

If A has exactly one nonzero diagonal entry, then the conjecture is true by [14, Theorem 4.2]. We do

not have a complete answer to the above conjecture as yet; however, the following theorem shows that the

above conjecture is true for tree sign pattern matrices up to order 6.

Theorem 3.7. Let A be a tree sign pattern matrix of order at most 6 with all edges negative. Then A

is potentially stable if and only if A allows a properly signed nest.

Proof. Let A be a tree sign pattern matrix of order n with all edges negative. By Lemma 3.2, if a sign

pattern matrix allows a properly signed nest, then it is potentially stable. So we need to show that if A is

potentially stable, then A allows a properly signed nest.

Case I: n ≤ 4. In this case, G(A) is either a path or a star. So the result is true by Theorems 3.4 and

3.5, respectively.
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Case II: n = 5. IfG(A) is a path or a star, then the result is true by Theorems 3.4 and 3.5, respectively.

Suppose G(A) is neither a star nor a path. Then A with its signed tree is as follows:

A =


a1 + + + 0

− a2 0 0 0

− 0 a3 0 0

− 0 0 a4 +

0 0 0 − a5


a1

a2

a3 a4 a5

12

3

4 5

− −−

−

The symmetric factorization of A is

A =


a1 + + + 0

− a2 0 0 0

− 0 a3 0 0

− 0 0 a4 +

0 0 0 − a5

 =


+ 0 0 0 0

0 − 0 0 0

0 0 − 0 0

0 0 0 − 0

0 0 0 0 +




a1 + + + 0

+ −a2 0 0 0

+ 0 −a3 0 0

+ 0 0 −a4 −
0 0 0 − a5

 = S̃Ã.

If A is potentially stable, then by Lemma 3.1, there exists a symmetric matrix C̃ ∈ Q(Ã) such that i+(C̃) =

5− i+(S̃) = 3 and thus i−(C̃) ≤ 2.

Case II(1). If a2, a3, a4 = +, then the eigenvalues of X̃[{2, 3, 4}] are negative for all X̃ ∈ Q(Ã). So

by Cauchy’s interlacing theorem, i−(X̃) ≥ 3 for all symmetric matrix X̃ ∈ Q(Ã), a contradiction.

Therefore, A is not potentially stable. Hence, by Lemma 3.3, A is not potentially stable if, a2, a3, a4 ∈
{0,+}.

Case II(2). If a2, a3 = +, a5 = −, then the eigenvalues of X̃[{2, 3, 5}] are negative for all X̃ ∈ Q(Ã). So

by Cauchy’s interlacing theorem, i−(X̃) ≥ 3 for all symmetric matrix X̃ ∈ Q(Ã), a contradiction.

Therefore, A is not potentially stable. Hence, by Lemma 3.3, A is not potentially stable if, a2, a3 ∈
{0,+} and a5 ∈ {0,−}.

Now a2, a3 can be interchanged by a permutation similarity, and the potential stability of a sign pattern

matrix is not affected by permutation similarity. Suppose A is potentially stable. Then by Case II(1), at

least one of a2, a3, a4 is −. If a2 = − or a3 = −, then A is permutation similar to some super-pattern of

A1 =


0 + + + 0

− − 0 0 0

− 0 0 0 0

− 0 0 0 +

0 0 0 − 0

 .
If a4 = − and A is not a super-pattern of A1, then a2, a3 ∈ {0,+} and thus by Case II(2), a5 = +. Further,

A is potentially stable implies A allows nonsingularity and thus at least one of a2 and a3 is +. Therefore, A

is permutation similar to some super-pattern of

A2 =


0 + + + 0

− + 0 0 0

− 0 0 0 0

− 0 0 − +

0 0 0 − +

 .
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Now A1 allows a properly signed nest by Theorem 2.4. Again A2 is permutation similar to the sign pattern

matrix in Example 2.5, and thus A2 allows a properly signed nest. Therefore, by Lemma 2.3, A is potentially

stable implies A allows a properly signed nest.

Case III: n = 6. If G(A) is a path or a star, then the result is true by Theorems 3.4 and 3.5,

respectively. Suppose G(A) is neither a star nor a path. There are four nonequivalent such signed trees,

which are listed below:

a1

a2 a3a4

a5a6

1

6

3

2

4

5

−

−

−

−

−

G1

a1

a2

a3

a4 a5 a61 6

2

3

4 5

−

−

−

−

−

G2

a1a2

a3

a4

a5 a6

1

2

3

4

5

6−

−

−

−

−

G3

a1

a2

a3 a4 a5

a6

1

2

3 4 5

6

−−

−

−

−

G4

1. Let G(A) be equivalent to G1. If A is potentially stable, then A has a negative diagonal entry. So

by Theorem 2.8, A is potentially stable implies A allows a properly signed nest.

2. If G(A) is equivalent to G2, then we can consider

A =



a1 + + + 0 0

− a2 0 0 0 0

− 0 a3 0 0 0

− 0 0 a4 + 0

0 0 0 − a5 +

0 0 0 0 − a6


.
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The symmetric factorization of A is

A =



+ 0 0 0 0 0

0 − 0 0 0 0

0 0 − 0 0 0

0 0 0 − 0 0

0 0 0 0 + 0

0 0 0 0 0 −





a1 + + + 0 0

+ −a2 0 0 0 0

+ 0 −a3 0 0 0

+ 0 0 −a4 − 0

0 0 0 − a5 +

0 0 0 0 + −a6


= S̃Ã.

If A is potentially stable, then by Lemma 3.1, there exists a symmetric matrix C̃ ∈ Q(Ã) such that

i+(C̃) = 6− i+(S̃) = 4 and thus i−(C̃) ≤ 2.

Case III(2.1) If any three of a2,a3,a4, and a6 are +, then by Cauchy’s interlacing theorem,

i−(X̃) ≥ 3 for all symmetric matrix X̃ ∈ Q(Ã), a contradiction. Therefore, A is not po-

tentially stable. Hence, by Lemma 3.3, A is not potentially stable if, any three of a2,a3,a4, and

a6 are in {0,+}.
Case III(2.2) If a2, a3 = +, a5 = −, then by Cauchy’s interlacing theorem, i−(X̃) ≥ 3 for all

symmetric matrix X̃ ∈ Q(Ã), a contradiction. Therefore, A is not potentially stable. Hence,

by Lemma 3.3, A is not potentially stable if, a2, a3 ∈ {0,+} and a5 ∈ {0,−}.
Now a2 and a3 can be interchanged by a permutation similarity, and the potential stability of a

sign pattern matrix is not affected by permutation similarity. Suppose A is potentially stable. Then

from Case III(2.1), at least one of (a2, a4), (a2, a6), (a3, a4), (a3, a6), (a2, a3), (a4, a6) is (−,−).

If at least one of (a2, a4), (a2, a6), (a3, a4), (a3, a6), (a2, a3) is (−,−), then A is permutation similar

to some super-pattern of one among

A21 =



0 + + + 0 0

− − 0 0 0 0

− 0 0 0 0 0

− 0 0 − + 0

0 0 0 − 0 +

0 0 0 0 − 0


, A22 =



0 + + + 0 0

− − 0 0 0 0

− 0 0 0 0 0

− 0 0 0 + 0

0 0 0 − 0 +

0 0 0 0 − −


,

A23 =



0 + + + 0 0

− − 0 0 0 0

− 0 − 0 0 0

− 0 0 0 + 0

0 0 0 − 0 +

0 0 0 0 − 0


.

If (a4, a6) = (−,−) and A is not a super-pattern of one among A21, A22, A23, then a2, a3 ∈ {0,+}
and thus by Case III(2.2), a5 = +. Further, A is potentially stable implies A allows nonsingularity

and thus at least one of a2, a3 is +. Therefore A is permutation similar to some super-pattern of

A24 =



0 + + + 0 0

− + 0 0 0 0

− 0 0 0 0 0

− 0 0 − + 0

0 0 0 − + +

0 0 0 0 − −


.
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Now by Corollary 2.7, A21, A22, A23 allow properly signed nests. Further, A24({6}) allows a properly

signed nest, since it is permutation similar to the sign pattern matrix in Example 2.5. Thus by

Lemmas 2.3 and 2.6, A24 allows a properly signed nest. Therefore by Lemma 2.3, A is potentially

stable implies A allows a properly signed nest.

3. If G(A) is equivalent to G3, then we can consider

A =



a1 + + + + 0

− a2 0 0 0 0

− 0 a3 0 0 0

− 0 0 a4 0 0

− 0 0 0 a5 +

0 0 0 0 − a6


.

The symmetric factorization of A is

A =



+ 0 0 0 0 0

0 − 0 0 0 0

0 0 − 0 0 0

0 0 0 − 0 0

0 0 0 0 − 0

0 0 0 0 0 +





a1 + + + + 0

+ −a2 0 0 0 0

+ 0 −a3 0 0 0

+ 0 0 −a4 0 0

+ 0 0 0 −a5 −
0 0 0 0 − a6


= S̃Ã.

If A is potentially stable, then by Lemma 3.1, there exists a symmetric matrix C̃ ∈ Q(Ã) such that

i+(C̃) = 6− i+(S̃) = 4 and thus i−(C̃) ≤ 2.

Case III(3.1) If any three of a2, a3, a4, a5 are +, then by Cauchy’s interlacing theorem, i−(X̃) ≥ 3

for all symmetric matrix X̃ ∈ Q(Ã), a contradiction. Therefore A is not potentially stable.

Hence by Lemma 3.3, A is not potentially stable if, any three of a2, a3, a4, a5 are in {0,+}.
Case III(3.2) If any two of a2, a3, a4 are + and a6 = −, then by Cauchy’s interlacing theorem,

i−(X̃) ≥ 3 for all symmetric matrix X̃ ∈ Q(Ã), a contradiction. Therefore A is not potentially

stable. Hence by Lemma 3.3, A is not potentially stable if, any two of a2, a3, a4 are in {0,+}
and a6 ∈ {0,−}.

Now a2, a3, a4 can be permuted by a permutation similarity, and the potential stability of a sign

pattern matrix is not affected by permutation similarity. Suppose A is potentially stable. Then

by Case III(3.1), at least one of (a2, a3), (a2, a4), (a3, a4), (a2, a5), (a3, a5), (a4, a5) is (−,−). If at

least one of (a2, a3), (a2, a4), (a3, a4) is (−,−), then A is permutation similar to some super-pattern

of

A31 =



0 + + + + 0

− − 0 0 0 0

− 0 − 0 0 0

− 0 0 0 0 0

− 0 0 0 0 +

0 0 0 0 − 0


.

If at least one of (a2, a5), (a3, a5), (a4, a5) is (−,−) and A is not a super-pattern of A31, then exactly

one of a2, a3, a4 is − and thus by Case III(3.2), a6 = +. Further, A is potentially stable implies
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A allows nonsingularity and thus at least one of a2, a3, a4 is +. Therefore A is permutation similar

to some super-pattern of

A32 =



0 + + + + 0

− + 0 0 0 0

− 0 − 0 0 0

− 0 0 0 0 0

− 0 0 0 − +

0 0 0 0 − +


.

Now by Corollary 2.7, A31 allows a properly signed nest. Further, A32({3}) allows a properly signed

nest, since it is permutation similar to the sign pattern matrix in Example 2.5. Thus by Lemmas 2.3

and 2.6, A32 allows a properly signed nest. Therefore by Lemma 2.3, A is potentially stable implies

A allows a properly signed nest.

4. If G(A) is equivalent to G4, then we can consider

A =



a1 + + + 0 0

− a2 0 0 0 0

− 0 a3 0 0 0

− 0 0 a4 + +

0 0 0 − a5 0

0 0 0 − 0 a6


.

The symmetric factorization of A is

A =



+ 0 0 0 0 0

0 − 0 0 0 0

0 0 − 0 0 0

0 0 0 − 0 0

0 0 0 0 + 0

0 0 0 0 0 +





a1 + + + 0 0

+ −a2 0 0 0 0

+ 0 −a3 0 0 0

+ 0 0 −a4 − −
0 0 0 − a5 0

0 0 0 − 0 a6


= S̃Ã.

If A is potentially stable, then by Lemma 3.1, there exists a symmetric matrix C̃ ∈ Q(Ã) such that

i+(C̃) = 6− i+(S̃) = 3 and thus i−(C̃) ≤ 3.

Case III(4.1) If a2, a3 = +, a5, a6 = −, then by Cauchy’s interlacing theorem, i−(X̃) ≥ 4 for all

symmetric matrix X̃ ∈ Q(Ã), a contradiction. Therefore A is not potentially stable. Hence by

Lemma 3.3, A is not potentially stable if, a2, a3 ∈ {0,+} and a5, a6 ∈ {0,−}.
Case III(4.2) If a2, a3 = −, a5, a6 = +, then by Cauchy’s interlacing theorem, i+(X̃) ≥ 4 for all

symmetric matrix X̃ ∈ Q(Ã), a contradiction. Therefore A is not potentially stable. Hence by

Lemma 3.3, A is not potentially stable if, a2, a3 ∈ {0,−} and a5, a6 ∈ {0,+}.
Now a2, a3 can be interchanged, a5, a6 can be interchanged, and a1, a2, a3 can be interchanged with

a4, a5, a6 respectively by a permutation similarity, and the potential stability of a sign pattern matrix

is not affected by permutation similarity. Suppose A is potentially stable. Then by Case III(4.1)

and Case III(4.2), at least one of (a2, a5), (a2, a6), (a3, a5), and (a3, a6) is either (−,−) or (+,+).
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If at least one of (a2, a5), (a2, a6), (a3, a5), and (a3, a6) is (−,−), then A is permutation similar to

some super-pattern of

A41 =



0 + + + 0 0

− − 0 0 0 0

− 0 0 0 0 0

− 0 0 0 + +

0 0 0 − − 0

0 0 0 − 0 0


.

If at least one of (a2, a5), (a2, a6), (a3, a5), and (a3, a6) is (+,+) and A is not a super-pattern of

A41, then A is permutation similar to some super-pattern of one among

A42 =



0 + + + 0 0

− + 0 0 0 0

− 0 − 0 0 0

− 0 0 0 + +

0 0 0 − + 0

0 0 0 − 0 0


, A43 =



− + + + 0 0

− + 0 0 0 0

− 0 0 0 0 0

− 0 0 0 + +

0 0 0 − + 0

0 0 0 − 0 0


,

since A is potentially stable implies A has a − on the diagonal.

Now by Corollary 2.7, A41 allows a properly signed nest. Since the leading principal minors of

PCPT are −1, 2, −1, 1, −1, and 1, where

C =



0 1 1 1 0 0

−3 2 0 0 0 0

−2 0 −1 0 0 0

−1 0 0 0 1 1

0 0 0 −1 1 0

0 0 0 −1 0 0


∈ Q(A42) and P =



0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 1


,

A42 allows a properly signed nest. Further, A43({3}) allows a properly signed nest, since it is

permutation similar to the sign pattern matrix in Example 2.5. Since detA43 = +, A43 allows a

properly signed nest. Therefore, by Lemma 2.3, A is potentially stable implies A allows a properly

signed nest.

4. 5-by-5 spectrally arbitrary tree sign pattern matrices with all edges negative. A sign

pattern matrix A of order n is potentially nilpotent if there exists a C ∈ Q(A) such that det(zI − C) = zn,

where I is an identity matrix. In this case, C is a nilpotent realization of A. Drew et al. [6] had introduced

the following method to find spectrally arbitrary sign pattern matrices.

Nilpotent-Jacobian method. To show that an n-by-n irreducible pattern Y is a spectrally arbitrary

pattern, considerX ∈ Q(Y ) with its nonzero entries specified by positive parameters x0, x1, . . . , xk. IfX has a

nilpotent realization X̂ with (x0, x1, . . . , xk) = (x̂0, x̂1, . . . , x̂k), and there are n xis, say x0, x1, . . . , xn−1, such

that the Jacobian of the coefficients of zn−1, zn−2, . . . , z1, z0 in det(zI −X) with respect to x0, x1, . . . , xn−1
is nonzero when evaluated at (x̂0, x̂1, . . . , x̂k), then any super-pattern of Y is a spectrally arbitrary pattern.

MacGillivray et al. [16] identified all spectrally arbitrary star sign pattern matrices. All spectrally

arbitrary sign pattern matrices up to order 3 were determined by Britz et al. [3]. Arav et al. [1] characterized

all 4-by-4 spectrally arbitrary tree sign pattern matrices.
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In this paper, we identify all 5-by-5 tree sign pattern matrices with all edges negative. We get the

following result from [16, Theorem 7.1].

Lemma 4.1. There are no 5-by-5 spectrally arbitrary star sign pattern matrices with all edges negative.

If A is a 5-by-5 tree sign pattern matrix with all edges negative such that G(A) is not a star, then A is

equivalent to one among

(4.1) P =


p1 + 0 0 0

− p2 + 0 0

0 − p3 + 0

0 0 − p4 +

0 0 0 − p5

 , R =


r1 + + + 0

− r2 0 0 0

− 0 r3 0 0

− 0 0 r4 +

0 0 0 − r5

 ,

where p1, p2, p3, p4, p5, r1, r2, r3, r4, r5 ∈ {+,−, 0}.

Let n ≥ 2 and a sign pattern matrix of order n be given by:

Tn =



− + 0 · · · · · · 0

− 0 +
. . .

...

0 − 0 +
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . − 0 +

0 · · · · · · 0 − +


.

Lemma 4.2 ([9]). Every super-pattern of Tn is a spectrally arbitrary pattern for all n ≥ 2.

If G is a simple undirected graph, then the path {u = v0, v1, v2, . . . , vk−1, vk = v} between two vertices

u and v of G has length k. The distance between u and v, denoted by d(u, v), is the length of the shortest

path between them.

Lemma 4.3. Let A be a path sign pattern matrix of order n with all edges negative and G(A) be the

graph of A with vertices 1, 2, . . . , n such that i is adjacent to i + 1 for i = 1, 2, . . . , n − 1. Suppose A has a

nonzero diagonal entry and umin = min{u : auu 6= 0}, umax = max{u : auu 6= 0}. If

max{d(1, umin), d(n, umax)} ≥
⌊n

2

⌋
,

then A is not potentially nilpotent.

Proof. Let C ∈ Q(A).

Let n be even. If d(1, umin) ≥ n
2 , then (Cn)11 6= 0. If d(n, umax) ≥ n

2 , then (Cn)nn 6= 0. So C is not

nilpotent.

Let n be odd. Suppose d(1, umin) ≥ n−1
2 . Let w be the vertex of G(A) such that w < umin and

d(w, umin) = n−1
2 . Then (Cn)ww 6= 0. So C is not nilpotent. Similarly, if d(n, umax) ≥ n−1

2 , then C is not

nilpotent.

Hence, A is not potentially nilpotent.
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Lemma 4.4. The sign pattern matrices

N1 =


+ + 0 0 0

− 0 + 0 0

0 − − + 0

0 0 − − +

0 0 0 − 0

 , N2 =


+ + 0 0 0

− + + 0 0

0 − − + 0

0 0 − − +

0 0 0 − 0

 , N3 =


+ + 0 0 0

− − + 0 0

0 − − + 0

0 0 − − +

0 0 0 − 0

 ,

do not allow a nilpotent matrix.

Proof. Let b1, b2, b3, b4, a1, a3, a4 > 0, a2 ∈ R and

C =


a1 1 0 0 0

−b1 a2 1 0 0

0 −b2 −a3 1 0

0 0 −b3 −a4 1

0 0 0 −b4 0

 .

The characteristic polynomial of C is z5 − c1z4 + c2z
3 − c3z2 + c4z − c5, where

c1 = a1 + a2 − a3 − a4;

c2 = a1(a2 − a3 − a4)− a2(a3 + a4) + a3a4 + b1 + b2 + b3 + b4;

c3 = a1(b2 + b3 + b4) + a2(b3 + b4)− a3(b1 + b4)− a4(b1 + b2)− a1a2(a3 + a4) + (a1 + a2)a3a4;

c4 = b1b3 + b1b4 + b2b4 + a1a2(b3 + b4)− a1a3b4 − a1a4b2 − a2a3b4 + a3a4b1 + a1a2a3a4;

c5 = a1b2b4 − a3b1b4 − a1a2a3b4.

Suppose C is nilpotent. Then, c1 = c2 = c3 = c4 = c5 = 0.

Now c1 = 0⇒ a1 + a2 = a3 + a4, c5 = 0⇒ a1b2 − a3b1 − a1a2a3 = 0 and thus b1 + a1a2 > 0.

c3 = 0⇒ a1(b3 + b4) + a2(b3 + b4)− a3b4 − a4(b1 + b2)− a1a2a4 + (a1 + a2)a3a4 = 0

⇒ (a1 + a2)b3 + b4(a1 + a2 − a3)− a4(b1 + b2 + a1a2 − a1a3 − a2a3) = 0

⇒ (a3 + a4)b3 + a4b4 − a4(b1 + b2 + a1a2 − a1a3 − a2a3) = 0

⇒ b1 + b2 + a1a2 − a1a3 − a2a3 > 0.

Then c4 = b1b3 + b1b4 + b2b4 + a1a2(b3 + b4)− a1a3b4 − a1a4b2 − a2a3b4 + a3a4b1 + a1a2a3a4

= b1b3 + a1a2b3 + b4(b1 + b2 + a1a2 − a1a3 − a2a3) + a4(a3b1 − a1b2 + a1a2a3)

= (b1 + a1a2)b3 + b4(b1 + b2 + a1a2 − a1a3 − a2a3) > 0.

This is a contradiction. So C is not nilpotent and thus none among N1, N2, N3 allow a nilpotent

matrix.

A sign pattern matrix A is said to allow the inertia (n1, n2, n3) if there exists a C ∈ Q(A) such that

i(C) = (n1, n2, n3).
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Lemma 4.5. If the path sign pattern matrix P in (4.1) is potentially nilpotent and allows the inertias

(5, 0, 0), (0, 5, 0), then P is equivalent to some super-pattern of one among

P1 =


+ + 0 0 0

− 0 + 0 0

0 − 0 + 0

0 0 − 0 +

0 0 0 − −

 , P2 =


+ + 0 0 0

− 0 + 0 0

0 − − + 0

0 0 − 0 +

0 0 0 − +

 , P3 =


+ + 0 0 0

− 0 + 0 0

0 − − + 0

0 0 − + +

0 0 0 − 0

 .

Proof. By Theorem 3.4,

P =


p1 + 0 0 0

− p2 + 0 0

0 − p3 + 0

0 0 − p4 +

0 0 0 − p5

 ,

allows the inertia (0, 5, 0) if and only if at least one of p1, p3, p5 is −. Similarly, P allows the inertia (5, 0, 0)

if and only if at least one of p1, p3, p5 is +. Hence, by Lemma 4.3, the path sign pattern matrices of order

5, which are potentially nilpotent and allow the inertias (0, 5, 0) and (5, 0, 0) can only be equivalent to some

super-pattern of one among P1, P2, P3 and

P4 =


+ + 0 0 0

− 0 + 0 0

0 − − + 0

0 0 − − +

0 0 0 − 0

 .

The only super-patterns of P4 of the form P , which are super-patterns of none among P1, P2, P3 are

N1, N2, N3. By Lemma 4.4, none among N1, N2, N3 allow a nilpotent matrix. Hence, the result follows:

Lemma 4.6. The sign pattern matrix

R̃ =


r1 + + + 0

− r2 0 0 0

− 0 r3 0 0

− 0 0 0 +

0 0 0 − 0

 ,

is not potentially nilpotent, where r1, r2, r3 ∈ {+,−, 0}.

Proof. Let

C =


a1 1 1 1 0

−b1 a2 0 0 0

−b2 0 a3 0 0

−b3 0 0 0 1

0 0 0 −b4 0

 ∈ Q(R̃),

where a1, a2, a3 ∈ R and b1, b2, b3, b4 > 0.
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The characteristic polynomial of C is z5 − c1z4 + c2z
3 − c3x2 + c4z − c5, where

c1 = a1 + a2 + a3,

c2 = a2a3 + a1a2 + a1a3 + b1 + b2 + b3 + b4,

c3 = a1b4 + a2(b2 + b3 + b4) + a3(b1 + b3 + b4) + a1a2a3,

c4 = b4(a2a3 + a1a2 + a1a3 + b1 + b2) + a2a3b3,

c5 = b4(a1a2a3 + a3b1 + a2b2).

Suppose C is a nilpotent matrix. Then c1 = c2 = c3 = c4 = c5 = 0.

Case I: Assume a1 6= 0.

Then, c1 = 0⇒ a1 + a2 + a3 = 0 and c5 = 0⇒ a1a2a3 + a3b1 + a2b2 = 0.

Hence, c3 = 0⇒ a2 + a3 = 0⇒ a1 = 0, a contradiction.

Case II: Assume a1 = 0.

Then, c2 = 0⇒ b1 + b2 + a2a3 < 0 and c1 = 0⇒ a2 + a3 = 0⇒ a2a3 ≤ 0.

Therefore, c4 = b4(a2a3 + b1 + b2) + a2a3b3 < 0, a contradiction.

Hence, C is not a nilpotent matrix and thus R̃ is not potentially nilpotent.

Lemma 4.7. The sign pattern matrix R in (4.1) is spectrally arbitrary if and only if it is equivalent to

some super-pattern of one among

R1 =


0 + + + 0

− + 0 0 0

− 0 − 0 0

− 0 0 − +

0 0 0 − 0

 , R2 =


0 + + + 0

− + 0 0 0

− 0 − 0 0

− 0 0 0 +

0 0 0 − −

 , R3 =


0 + + + 0

− + 0 0 0

− 0 0 0 0

− 0 0 − +

0 0 0 − +

 .

Proof. We have

R =


r1 + + + 0

− r2 0 0 0

− 0 r3 0 0

− 0 0 r4 +

0 0 0 − r5

 .

Suppose R is spectrally arbitrary. Then, R is potentially nilpotent and allows the inertias (5, 0, 0) and

(0, 5, 0). Since R allows the inertia (0, 5, 0), from Case II in the proof of Theorem 3.7, R is permutation

similar to some super-pattern of one among

A1 =


0 + + + 0

− − 0 0 0

− 0 0 0 0

− 0 0 0 +

0 0 0 − 0

 , A2 =


0 + + + 0

− + 0 0 0

− 0 0 0 0

− 0 0 − +

0 0 0 − +

 .
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Now

S(−R)S =


−r1 + + + 0

− −r2 0 0 0

− 0 −r3 0 0

− 0 0 −r4 +

0 0 0 − −r5

 , where S =


+ 0 0 0 0

0 − 0 0 0

0 0 − 0 0

0 0 0 − 0

0 0 0 0 +

 .
So both A2 and S(−A2)S allow the inertia (0, 5, 0). Since the inertia of a matrix remains unchanged after

a similarity transformation, both A2 and −A2 allow the inertia (0, 5, 0), that is, A2 allows the inertias

(0, 5, 0) and (5, 0, 0). If R allows the inertia (0, 5, 0) and R is not permutation similar to any super-pattern

of A2, then R must be permutation similar to some super-pattern of A1. Any super-pattern of A1, which

is not equivalent to any super-pattern of A2 and allows the inertia (5, 0, 0), must be equivalent to some

super-pattern of

A3 =


0 + + + 0

− + 0 0 0

− 0 − 0 0

− 0 0 0 +

0 0 0 − 0

 .
Therefore, if R is spectrally arbitrary, then by Lemma 4.6, we can conclude that R must be equivalent to

some super-pattern of one among R1, R2, R3.

For the converse part, let X =


0 1 1 1 0

−x0 x1 0 0 0

−x2 0 0 0 0

−x3 0 0 −x4 1

0 0 0 −x5 x6

 ∈ Q(R3), where x0, x1, x2, x3, x4, x5, x6 > 0.

The characteristic polynomial of X is z5 − c1z4 + c2z
3 − c3z2 + c4z − c5, where

c1 = x1 − x4 + x6,

c2 = x0 + x2 + x3 + x5 − x1x4 + x1x6 − x4x6,
c3 = x1x2 + x1x3 + x1x5 − x0x4 − x2x4 + x0x6 + x2x6 + x3x6 − x1x4x6,

c4 = (x0 + x2)(x5 − x4x6)− x1x2x4 + x1x6(x2 + x3),

c5 = x1x2(x5 − x4x6).

X has a nilpotent realization at (x̂0, x̂1, x̂2, x̂3, x̂4, x̂5, x̂6) = (2, 2, 1, 1, 4, 8, 2). The Jacobian of the coefficients

of z4, z3, z2, z1, z0 with respect to x0, x1, x2, x3, x5 at (2, 2, 1, 1, 4, 8, 2) is∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 0 0

1 −x4 + x6 1 1 1

x4 − x6 −x2 − x3 − x5 + x4x6 −x1 + x4 − x6 −x1 − x6 −x1
x5 − x4x6 −x2x4 + x6(x2 + x3) x5 − x4x6 − x1x4 + x1x6 x1x6 x0 + x2

0 −x2(x5 − x4x6) −x1(x5 − x4x6) 0 −x1x2

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 0 0

1 −2 1 1 1

2 −2 0 −4 −2

0 0 −4 4 3

0 0 0 0 −2

∣∣∣∣∣∣∣∣∣∣∣
= −2

∣∣∣∣∣∣
1 1 1

2 0 −4

0 −4 4

∣∣∣∣∣∣ = 64 6= 0.
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Therefore, by the Nilpotent-Jacobian method, every super-pattern of R3 is spectrally arbitrary. Similarly,

the super-patterns of the sign pattern matrices R1 and R2 can be shown to be spectrally arbitrary by the

Nilpotent-Jacobian method. Such nilpotent matrices in Q(R1) and Q(R2) are respectively,
0 1 1 1 0

− 9+5
√
3

3 2 +
√

3 0 0 0

− 3+
√
3

3 0 −1 0 0

− 2+
√
3

2 0 0 −1−
√

3 1

0 0 0 − 2+
√
3

2 0

 ,


0 1 1 1 0

− 9+5
√
3

6

√
3 + 1 0 0 0

− 9−5
√
3

6 0 −
√

3 + 1 0 0

−1 0 0 0 1

0 0 0 −2 −2

 .

Since any sign pattern matrix equivalent to a spectrally arbitrary pattern is also spectrally arbitrary, the

converse part follows.

The following result characterizes all 5-by-5 spectrally arbitrary tree sign pattern matrices with all edges

negative.

Theorem 4.8. A 5-by-5 tree sign pattern matrix with all edges negative is spectrally arbitrary if and

only if it is equivalent to some super-pattern of one among P1, P2, P3, R1, R2, R3.

Proof. Let A be a 5-by-5 spectrally arbitrary tree sign pattern matrix with all edges negative. Then by

Lemma 4.1, A is not a star sign pattern matrix. If A is a path sign pattern matrix, then it is equivalent

to a matrix of the form P in (4.1). If A is spectrally arbitrary, then A is potentially nilpotent and allows

the inertias (5, 0, 0) and (0, 5, 0). So by Lemma 4.5, A is equivalent to some super-pattern of one among

P1, P2, P3.

If A is neither a star sign pattern matrix nor a path sign pattern matrix, then it is equivalent to a

matrix of the form R in (4.1). If A is spectrally arbitrary, then by Lemma 4.7, A must be equivalent to some

super-pattern of one among R1, R2, R3.

Now we prove the converse part. By Lemma 4.2, the super-patterns of P1 are spectrally arbitrary.

The super-patterns of the sign pattern matrices P2 and P3 can be shown to be spectrally arbitrary by the

Nilpotent-Jacobian method, and such nilpotent matrices in Q(P2) and Q(P3) are respectively,

√
5 + 1 1 0 0 0

−4 0 1 0 0

0 −4 −2
√

5 1 0

0 0 −4 0 1

0 0 0 −4
√

5− 1

 ,


6 1 0 0 0

−12 0 1 0 0

0 −24 −12 1 0

0 0 −54 6 1

0 0 0 −18 0

 .

The super-patterns of the sign pattern matrices R1, R2, and R3 are spectrally arbitrary by Lemma 4.7.

Since any sign pattern matrix equivalent to a spectrally arbitrary pattern is also spectrally arbitrary, the

converse part follows.

Acknowledgment. The author is grateful to Indian Institute of Technology Guwahati, India, for pro-

viding him with a graduate fellowship to carry out research. The author is grateful to Dr. Sriparna Bandy-

opadhyay for careful reading and suggestions for a better presentation of the paper. The author is also

grateful to the reviewer(s) for their comments and suggestions which help to improve the paper and thankful

to the Editor-in-Chief for giving the author a chance to revise.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 562-582, July 2021.

S. Das 582

REFERENCES

[1] M. Arav, F. Hall, Z. Li, K. Kaphle, and N. Manzagol. Spectrally arbitrary tree sign patterns of order 4. Electron. J.

Linear Algebra, 20:180–197, 2010.

[2] T. Bone. Positive feedback may sometimes promote stability. Linear Algebra Appl., 51:143–151, 1983.

[3] T. Britz, J.J. McDonald, D.D. Olesky, and P. van den Driessche. Minimal spectrally arbitrary sign patterns. SIAM J.

Matrix Anal. Appl., 26(1):257–271, 2004.

[4] J. Cavalcanti. Potentially Hurwitz structures: A characterization of nests. In: 2020 59th IEEE Conference on Decision

and Control (CDC), 5180–5187, 2020.

[5] M. Cavers. Polynomial stability and potentially stable patterns Linear Algebra Appl., 613:87–114, 2021.

[6] J.H. Drew, C.R. Johnson, D.D. Olesky, and P. van den Driessche. Spectrally arbitrary patterns. Linear Algebra Appl.,

308(1–3):121–137, 2000.

[7] Y. Gao and J. Li. On the potential stability of star sign pattern matrices. Linear Algebra Appl., 327(1–3):61–68, 2001.

[8] D.A. Grundy, D.D. Olesky, and P. van den Driessche. Constructions for potentially stable sign patterns. Linear Algebra

Appl., 436(12):4473–4488, 2012.

[9] C. Garnett and B.L. Shader. A proof of the Tn conjecture: centralizers, Jacobians and spectrally arbitrary sign patterns.

Linear Algebra Appl., 436(12):4451–4458, 2012.

[10] J.M. Harris, J.L. Hirst, and M.J. Mossinghoff. Combinatorics and Graph Theory, Second edition. Undergraduate Texts

in Mathematics. Springer, New York, 2008.

[11] R.A. Horn and C.R. Johnson. Matrix Analysis, Second edition. Cambridge University Press, Cambridge, 2013.

[12] F.J. Hall and Z. Li. In: L. Hogben (editor), Handbook of Linear Algebra, Second edition. Discrete Mathematics and Its

Applications. CRC Press, Boca Raton, FL, 2014.

[13] C. Jeffries and C.R. Johnson. Some sign patterns that preclude matrix stability. SIAM J. Matrix Anal. Appl., 9(1):19–25,

1988.

[14] C.R. Johnson, J.S. Maybee, D.D. Olesky, and P. van den Driessche. Nested sequences of principal minors and potential

stability. Linear Algebra Appl., 262:243–257, 1997.

[15] C.R. Johnson and T.A. Summers. The potentially stable tree sign patterns for dimensions less than five. Linear Algebra

Appl., 126:1–13, 1989.

[16] G. MacGillivray, R.M. Tifenbach, and P. van den Driessche. Spectrally arbitrary star sign patterns. Linear Algebra Appl.,

400:99–119, 2005.

[17] D.D. Olesky, M.J. Tsatsomeros, and P. van den Driessche. Sign patterns with a nest of positive principal minors. Linear

Algebra Appl., 436(12):4392–4399, 2012.


	Introduction
	Tree sign pattern matrices with all edges negative that allow properly signed nests
	Potentially stable tree sign pattern matrices with all edges negative
	5-by-5 spectrally arbitrary tree sign pattern matrices with all edges negative
	References

