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ERROR ANALYSIS OF THE GENERALIZED LOW-RANK MATRIX

APPROXIMATION∗

PABLO SOTO-QUIROS†

Abstract. In this paper, we propose an error analysis of the generalized low-rank approximation, which is a generalization

of the classical approximation of a matrix A ∈ Rm×n by a matrix of a rank at most r, where r ≤ min{m,n}.
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1. Introduction. Throughout this paper, we adopt the following notation: Rm×n
r denotes the set of

all real m× n matrices of rank at most r, where r ≤ min{m,n}, i.e., A ∈ Rm×n
r if and only if rank(A) ≤ r.

Im ∈ Rm×m and 0m×n ∈ Rm×n are the identity matrix of order m and the null m× n matrix, respectively.

M†, tr{M}, ‖M‖ and N (M) denote the pseudoinvserse, the trace, the Frobenius norm and the null space

of M , respectively. Furthermore, N1/2 is the square root of N ∈ Rm×m, i.e., N = N1/2N1/2.

Let D = UDΣDV
T
D be the singular value decomposition (SVD) of D ∈ Rm×n, where UD ∈ Rm×m and

VD ∈ Rn×n are two orthogonal matrices, and ΣD = diag(σ1(D), ..., σmin(m,n)(D)) ∈ Rm×n is a generalized

diagonal matrix with singular values σ1(D) ≥ σ2(D) ≥ ... ≥ σmin(m,n)(D) ≥ 0 on the main diagonal. The

r-truncated SVD is defined by

bDcr =

r∑
i=1

σi(D)uiv
T
i = UD,rΣD,rV

T
D,r ∈ Rm×n,

where UD,r ∈ Rm×r and VD,r ∈ Rn×r are formed with the first r columns of UD and VD, respectively,

and ΣD,r = diag(σ1(D), . . . , σr(D)) ∈ Rr×r. If k = rank(D), then PD,L ∈ Rm×m and PD,R ∈ Rn×n are the

orthogonal projections of D on the range of D and DT , respectively, where PD,L = DD† = UD,kU
T
D,k and

PD,R = D†D = VD,kV
T
D,k.

A generalization of the low-rank approximation was proposed in [2, 3, 4]. Given matrices A ∈ Rp×q,

B ∈ Rp×m and C ∈ Rn×q, and rank r ≤ min{m,n}, the generalized low-rank approximation finds a matrix

X̂r ∈ Rm×n
r such that

(1.1) ‖A−BX̂rC‖2 = min
X∈Rm×n

r

‖A−BXC‖2 .

Note that if B and C are identity matrices, the problem (1.1) is the well-known low-rank approximation

problem proposed by Eckart and Young [1]. The problem in (1.1) was studied in [2, 3, 4] by Sonderman,

Friedland and Torokthi, respectively. The following theorem presents the solution of the generalized low-rank

approximation given in [3].
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Theorem 1.1. Let A ∈ Rp×q, B ∈ Rp×m and C ∈ Rn×q, and let M = UMΣMV
T
M be the SVD of

M = PB,LAPC,R = BB†AC†C. Then matrix

(1.2) X̂r = B†bMcrC† = B†UM,rΣM,rV
T
M,rC

†,

minimizes the problem (1.1). This solution is unique if and only if either

r ≥ rank(M),

or

1 ≤ r < rank(M) and σr(M) ≥ σr+1(M).

In this paper, we present an error analysis for the solution of the problem (1.1). The main result of this

paper is presented below, in Theorem 3.1. In the related work, for the same problem, in [5, Theorem 3.2]

Wang presented an error analysis for the specific case of rank(X̂r) = r. In this paper, we extend the analysis

to the case rank(X̂r) ≤ r. The formula for the error in [5, Theorem 3.2] is different from that in Theorem

3.1.

2. Preliminaries. In this section, we present some preliminary results that will be used in the next

section to study the error associated with the solution of the problem (1.1).

Lemma 2.1 (Theorem 2.8 in [6]). If A ∈ Rm×n and B ∈ Rn×m, then AB and BA have the same

nonzero eigenvalues, counting multiplicity.

Lemma 2.2 (Propositions 3.1 and 3.2 in [7]). A† = AT (A†)TA† = A†(A†)TAT = (ATA)†AT , for all

A ∈ Rm×n.

Lemma 2.3 (Lemma 2.4.1 in [8]). Let A ∈ Rm×n and B ∈ Rp×m. Then N (A) ⊆ N (BA).

Lemma 2.4 (Lemma 23 in [9] - Fact 2 in [10]). For any M ∈ Rm×n, N ∈ Rp×n and S ∈ Rm×s, the

following statements hold.

(a) If N (M) ⊆ N (N), then NM†M = N .

(b) If N (MT ) ⊆ N (ST ), then MM†S = S.

Lemma 2.5. Let M ∈ Rm×n and r ≤ min{m,n}. Then N (M) ⊆ N (bMcr) .

Proof. Without loss of generality, we assume m ≤ n. Let M = UMΣMV
T
M be the SVD of M . If

x ∈ N (M), then Mx = 0n×1, and therefore, ΣMV
T
Mx = 0n×1, because UM is an orthogonal matrix. If

ΣM,r = diag(σ1(M), ..., σr(M), 0, ..., 0) ∈ Rm×n, then

ΣMV
T
Mx = 0n×1 ⇒

[
Ir 0 k×m−r

0m−r×r 0m−r×m−r

]
ΣMV

T
Mx = 0n×1

⇒ ΣM,rV
T
Mx = 0n×1

⇒ UMΣM,rV
T
Mx = 0n×1.

Note that

UMΣM,rV
T
M =

min{m,n}∑
i=1

σi(M)uiv
T
i =

r∑
i=1

σi(M)uiv
T
i = bMcr.

Finally, bMcrx = 0n×1. Thus, x ∈ N (bMcr).
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Lemma 2.6. If M ∈ Rm×n, S ∈ Rn×s and R ∈ Rs×m, then the following statements hold.

(a) bRMcrM†M = bRMcr.

(b) SS†bSRcr = bSRcr.

Proof. We consider (a). It follows from Lemma 2.3 that N (M) ⊆ N (RM). By Lemma 2.5, we obtain

N (RM) ⊆ N (bRMcr), and therefore, N (M) ⊆ N (bRMcr). As a result, (a) follows from Lemma 2.4. The

proof of (b) is similar to the proof of (a).

3. Main Result.

Theorem 3.1. Let A ∈ Rp×q, B ∈ Rp×m, C ∈ Rn×q and r ≤ min{m,n}. The error of the solution of

the problem (1.1) is given by

(3.3) min
X∈Rm×n

r

‖A−BXC‖2 = ‖A‖2 −
r∑

i=1

λi(T ),

where T = B†AC†CATB ∈ Rm×m and λi(T ) is the i−th eigenvalue of T with λ1(T ) ≥ λ2(T ) ≥ ... ≥ λm(T ).

Proof. It follows from the identity ||D||2 = tr{DDT } and the linearity of the trace operator that

(3.4) ‖A−BXC‖2 = ‖A‖2 − ‖M‖2 + ‖M − (BTB)1/2X(CCT )1/2‖2,

where M = (BTB)1/2†BTACT (CCT )1/2†. Note that ‖M − (BTB)1/2X(CCT )1/2‖2 is the only term in (3.4)

that depends on X. Therefore, problem (1.1) is equivalent to

(3.5) min
X∈Rm×n

r

‖M − (BTB)1/2X(CCT )1/2‖2.

Based on Theorem 1.1, the solution of the problem (3.5) is given by

(3.6) X̂r = (BTB)1/2†
⌊
P(BTB)1/2,LMP(CCT )1/2,R

⌋
r

(CCT )1/2†.

Note that (BTB)1/2† and (CCT )1/2† are symmetric matrices. Therefore, it follows from Lemma 2.2 that

(3.7) P(BTB)1/2,L(BTB)1/2† = (BTB)1/2(BTB)1/2†(BTB)1/2† = (BTB)1/2†,

and

(3.8) (CCT )1/2†P(CCT )1/2,R = (CCT )1/2†(CCT )1/2†(CCT )1/2 = (CCT )1/2†.

Further, (3.7) and (3.8) imply

bP(BTB)1/2,LMP(CCT )1/2,Rcr = bP(BTB)1/2,L(BTB)1/2†BTACT (CCT )1/2†P(CCT )1/2,Rcr
= b(BTB)1/2†BTACT (CCT )1/2†cr
= bMcr.(3.9)

It follows from (3.6) and (3.9) that X̂r = (BTB)1/2† bMcr (CCT )1/2†. On the basis of Lemma 2.6, we obtain

that

(3.10) (BTB)1/2X̂r(CCT )1/2 = (BTB)1/2(BTB)1/2† bMcr (CCT )1/2†(CCT )1/2 = bMcr .
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By equations (3.4) and (3.10) and the facts that ‖M‖2 = tr{MMT } =
∑m

i=1 λi(MMT ) and ‖ · ‖ is unitary

invariant [6], we obtain the following identity

min
X∈Rp×q

r

‖A−BXC‖2 = ‖A‖2 − ‖M‖2 + ‖M − (BTB)1/2X̂r(CCT )1/2‖2

= ‖A‖2 − ‖M‖2 + ‖M − bMcr‖2

= ‖A‖2 −
m∑
i=1

λi(MMT ) +

m∑
i=r+1

λi(MMT )

= ‖A‖2 −
r∑

i=1

λi(MMT ).(3.11)

Note that MMT = (BTB)1/2†BTAC†CATB(BTB)1/2†. From Lemmas 2.1 and 2.2, we obtain that

(3.12) λi(MMT ) = λi(B
†AC†CATB),

for all i = 1, ...,m. Finally, (3.3) follows from (3.11) and (3.12).

4. Advantage and Numerical Example. The error formula given by (3.3) is useful for choosing an

optimal value for the rank r, before computing the matrix X̂r in (1.2). For example, we consider matrices

A ∈ R20×35, B ∈ R20×30 and C ∈ R40×35 generated from a uniform distribution with zero-mean and standard

deviation 1. Figure 1 shows the relationship between the error associated with the solution of problem (1.1)

and the rank r. It follows from Figure 1 that the associated error is 0 when r ≥ 20. Therefore, the smallest

value of r that implies the minimal error of the solution of problem (1.1) is given by r = 20. Note that

it was not necessary to compute each optimal matrix X̂r, for r = 1, ..., 30, to obtain the associated error.

In this example, we only compute the eigenvalues of T = B†AC†CATB ∈ R30×30 and use the formula

(3.3). Furthermore, in this numerical simulation, we obtain that rank(T ) = 20 and σ2
i (A) = λi(T ), for all

i = 1, ..., 20. Thus,

min
X∈R30×40

r

‖A−BXC‖2 = ‖A‖2 −
r∑

i=1

λi(T ) = 0,

for all r ≥ 20.
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Figure 1. Diagram of the error associated with the solution of problem (1.1) versus rank r.
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