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SIMPLE NECESSARY CONDITIONS FOR HADAMARD FACTORIZABILITY

OF HURWITZ POLYNOMIALS∗

STANIS LAW BIA LAS† AND MICHA L GÓRA‡

Abstract. In this paper, we focus the attention on the Hadamard factorization problem for Hurwitz polynomials. We

give a new necessary condition for Hadamard factorizability of Hurwitz stable polynomials of degree n ≥ 4 and show that for

n = 4 this condition is also sufficient. The effectiveness of the result is illustrated during construction of examples of stable

polynomials that are not Hadamard factorizable.
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1. Introduction. A problem of the existence of a Hadamard factorization for a given Hurwitz stable

polynomial has been taken by many authors. Recall that a Hurwitz stable polynomial of degree n ≥ 1 has

a Hadamard factorization if it is a Hadamard product of two Hurwitz stable polynomials of degree n. It

is known that every stable polynomial of degree n ≤ 3 admits a Hadamard factorization (see Garloff and

Shrinivasan [5]) and that for every n ≥ 4 there exists an n-th degree stable polynomial which is not Hadamard

factorizable (see Bia las and Góra [2]). Some conditions for the existence of a Hadamard factorization can be

found in Loredo–Villalobos and Aguirre–Hernández [8, 9], but these conditions cannot be effectively applied

in practice. In turn, some topological properties of the entire family of polynomials admitting a Hadamard

factorization can be found in Aguirre–Hernández et al. [1].

Note also, that there are some issues in which polynomials having a Hadamard factorization play an

important role. In [3], the authors have considered the stability problem for the generalized Hadamard

product of polynomials (recall that the generalized Hadamard product f • g of polynomials f of degree m

and g of degree n ≥ m is a set consisting of polynomials of degree m which are defined as the Hadamard

products of the polynomial f and some other n−m+ 1 polynomials formed from the polynomial g). It was

shown, among others, that if f and g are Hurwitz stable, then f • g is quasi-stable (i.e. all zeros of every

polynomial belonging to f •g have non-positive real parts). If, additionally, f has a Hadamard factorization,

then f • g occurs to be Hurwitz stable. This shows that the Hadamard factorization problem has both

theoretical and applied significance.

In this work, we develop the idea used in our recent paper [2]. We give a new necessary condition for

Hadamard factorizability of a polynomial and show that for n = 4 this condition is also sufficient. The

effectiveness of the result is illustrated during construction of examples of stable polynomials that are not

Hadamard factorizable.
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2. Preliminary results. Let us now introduce the notations and remind some results which will be

used in the sequel.

2.1. Basic notations. We use standard notation: R and Rn×n stand for the set of real numbers and

for the set of real matrices of order n × n, respectively; π+
n denotes the family of n–th degree polynomials

with positive coefficients.

2.2. Stable polynomials. A polynomial f ∈ π+
n (n ≥ 1) ,

(1) f (s) = a0 + a1s+ . . .+ an−1s
n−1 + ans

n,

is Hurwitz stable (or shortly stable) if all its zeros have negative real parts. It is well known (and easily

verified) that a necessary condition for the stability of a real polynomial is that its coefficients are all of the

same sign; without losing generality we will assume in the sequel that they are positive. The entire family

of Hurwitz stable polynomials of degree n with positive coefficients will be denoted by H+
n .

Let 4i (f) denote the i–th leading principal minor of the Hurwitz matrix Hf ∈ Rn×n associated with

polynomial (1):

(2) Hf =



an−1 an 0 0 . . . 0

an−3 an−2 an−1 an . . . 0

an−5 an−4 an−3 an−2 . . . 0
...

... an−5 an−4 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . a0


,

in particular 41 (f) = an−1 and 4n (f) = detHf = a04n−1 (f). It follows from the Routh–Hurwitz

stability criterion (see, e.g., Gantmacher [4]) that polynomial (1) with positive coefficients is stable if and

only if 4i (f) > 0, for i = 1, 2, . . . , n− 1. Among many other properties of the Hurwitz matrix, one can also

find the following given by Kemperman [7] (see Theorem 2 therein).

Theorem 1. If f ∈ H+
n , then every square submatrix of the Hurwitz matrix Hf has positive determinant

if and only if all its diagonal elements are positive.

Suppose now that n ≥ 4 and that {H1, . . . ,Hmn
} ⊂ R3×3 is a set of all 3× 3 submatrices of the form:

(3) Hf,k =

 h
(k)
11 h

(k)
12 0

h
(k)
21 h

(k)
22 h

(k)
23

0 h
(k)
32 h

(k)
33

 with h
(k)
ij > 0,

of the Hurwitz matrix Hf . Entries h
(k)
ij occurring in (3) depend on the polynomial f but, to simplify the

notation, throughout this paper we do not make this dependence explicit.

Example 1. For n = 4 we have m4 = 2 and

Hf,1 =

 a3 a4 0

a1 a2 a3
0 a0 a1

 and Hf,2 =

 a3 a4 0

a1 a2 a4
0 a0 a2

 .
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For n = 5 we have m5 = 4 and

Hf,1 =

 a3 a4 0

a1 a2 a4
0 a0 a2

 , Hf,2 =

 a3 a5 0

a1 a3 a4
0 a1 a2

 ,
Hf,3 =

 a2 a4 0

a0 a2 a4
0 a0 a2

 , Hf,4 =

 a2 a5 0

a0 a3 a4
0 a1 a2

 .

Theorem 1 allows us to conclude that if polynomial (1) of degree n ≥ 4 is stable then

(4) h
(k)
11 h

(k)
22 − h

(k)
12 h

(k)
21 > 0, h

(k)
22 h

(k)
33 − h

(k)
23 h

(k)
32 > 0,

and

(5) h
(k)
11 h

(k)
22 h

(k)
33 − h

(k)
11 h

(k)
23 h

(k)
32 − h

(k)
12 h

(k)
21 h

(k)
33 > 0,

for k = 1, . . . ,mn. These inequalities will play a key role in our further considerations.

2.3. Polynomials admitting a Hadamard factorization. Together with polynomial (1), we will

consider a polynomial g ∈ π+
n :

(6) g (s) = b0 + b1s+ . . .+ bn−1s
n−1 + bns

n,

their Hadamard product f ◦ g ∈ π+
n defined as an element-wise multiplication, that is,

(f ◦ g) (s) = a0b0 + a1b1s+ . . .+ an−1bn−1s
n−1 + anbns

n,

and their Hadamard quotient f � g ∈ π+
n defined as an element-wise division, that is,

(f � g) (s) =
a0
b0

+
a1
b1
s+ . . .+

an−1
bn−1

sn−1 +
an
bn
sn.

Garloff and Wagner [6] proved that the Hadamard product of two real Hurwitz stable polynomials is again

Hurwitz stable, and thus it seems to be quite natural to say that the polynomial f ∈ H+
n has a Hadamard

factorization (or is Hadamard factorizable) if there exist two polynomials f1, f2 ∈ H+
n such that f = f1 ◦ f2.

Equivalently, the polynomial f ∈ H+
n has a Hadamard factorization if there exists a polynomial g ∈ H+

n

such that f � g ∈ H+
n . A stable polynomial which is not Hadamard factorizable is said to be Hadamard

irreducible.

3. Main results. Let f ∈ π+
n and let w

(k)
f,1, w

(k)
f,2 be positive numbers given by:

(7) w
(k)
f,1 =

h
(k)
21 h

(k)
12

h
(k)
11 h

(k)
22

, w
(k)
f,2 =

h
(k)
32 h

(k)
23

h
(k)
22 h

(k)
33

,

for k = 1, . . . ,mn. We start with the following simple observation.

Lemma 2. Let n ≥ 4.

(a) If f ∈ H+
n , then for k = 1, . . . ,mn

(8) w
(k)
f,1 < 1, w

(k)
f,2 < 1, w

(k)
f,1 + w

(k)
f,2 < 1.
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(b) If f ∈ H+
n and g ∈ π+

n are such that f � g ∈ H+
n , then for k = 1, . . . ,mn

(9) w
(k)
f,1 < w

(k)
g,1 , w

(k)
f,2 < w

(k)
g,2 ,

and

(10) w
(k)
f,1/w

(k)
g,1 + w

(k)
f,2/w

(k)
g,2 < 1.

Proof. The above inequalities follow from the stability of f and f � g: conditions (8) are equivalent to

(4)–(5) and conditions (9)–(10) follow from (8) and from the identities:

w
(k)
f�g,1 = w

(k)
f,1/w

(k)
g,1 and w

(k)
f�g,2 = w

(k)
f,2/w

(k)
g,2 .

3.1. A necessary condition for Hadamard factorizability of real polynomials. We are now

ready to prove the main result of this section.

Theorem 3. Let n ≥ 4. If a polynomial f ∈ π+
n has a Hadamard factorization, then

(11) ∆k(f) =
(
w

(k)
f,1 − w

(k)
f,2

)2
− 2

(
w

(k)
f,1 + w

(k)
f,2

)
+ 1 > 0,

for k = 1, . . . ,mn.

Proof. It follows from the assumption that there exists a polynomial g ∈ H+
n for which the polynomial

f � g is stable. Then, by Lemma 2, we conclude that for any fixed k ∈ {1, . . . ,mn} it holds

w
(k)
g,1 + w

(k)
g,2 < 1,

and

w
(k)
f,1/w

(k)
g,1 + w

(k)
f,2/w

(k)
g,2 < 1.

In other words, the Hadamard factorizability of f implies that there exist x1 > 1 and x2 > 1 satisfying the

following system of inequalities:

(12)

{
1
x1

+ 1
x2
< 1

b1x1 + b2x2 < 1
,

where, to simplify the notations, we put bi = w
(k)
f,i , for i = 1, 2. By Lemma 2, we know that b1, b2 ∈ (0, 1).

It is easy to note (see Fig. 1) that system of inequalities (12) has a solution if and only if the system:

(13)


1
x1

+ 1
x2

= 1

b1x1 + b2x2 = 1

x1 > 1, x2 > 1

,

has two different solutions (x′1, x
′
2) and (x′′1 , x

′′
2). This condition holds, in turn, if and only if the equation:

(14) b2x
2
2 + (b1 − b2 − 1)x2 + 1 = 0,

has two different solutions x′2 > 1 and x′′2 > 1. This, by (8), is equivalent to (11) completing the proof.

From Theorem 3 one can draw the following sufficient condition for Hadamard irreducibility of

a polynomial.

Conclusion 1. Let n ≥ 4. If f ∈ H+
n and for some k ∈ {1, . . . ,mn} :

∆k(f) ≤ 0,

where ∆k(f) is as in (11), then f is Hadamard irreducible.
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Figure 1. Solutions to system of inequalities (12) filled with gray color.

3.2. How to get a Hadamard irreducible polynomial?. Garloff and Srinivasan considered in [5]

the Hadamard factorization problem and gave, among others, an example of the Hadamard irreducible

polynomial of degree n = 4. Now, using Theorem 3 and Conclusion 1, we will show a fairly universal way of

construction of further examples of Hadamard irreducible polynomials of arbitrary degree n ≥ 4. First, we

need to introduce some additional notations.

Let, for f ∈ H+
n and a > 0, Fa ∈ π+

n+1 be a polynomial of the form:

Fa(s) = asn+1 + f(s),

and let A,A1, . . . , Amn+1 ⊂ R be sets defined as follows:

A = {a > 0 : Fa ∈ H+
n+1},

and, for k = 1, . . . ,mn+1,

Ak = {a > 0 : ∆k(Fa) ≤ 0}.

The following theorem holds.

Theorem 4. Let n ≥ 4 and let f ∈ H+
n . Under the above notations, if for some k ∈ {1, . . . ,mn+1} we

have

(15) A ∩Ak 6= ∅,

then for every a ∈ A ∩Ak the polynomial Fa is stable and Hadamard irreducible.

Proof. The thesis is a simple consequence of Conclusion 1.

It is known (see, e.g., Lemma 3.1 in Bia las and Góra [3]) that if f ∈ H+
n then there exists a∗ > 0 such

that Fa ∈ H+
n+1 for every a ∈ (0, a∗). This means that the set A is always non-empty. On the other hand,

one can show that if the polynomial f is stable, then sets A1, . . . , Amn+1 are all separated from zero and,

hence, it is possible that in some cases assumption (15) of Theorem 4 will not be satisfied.

3.2.1. A numerical example. Consider a Hurwitz stable polynomial f ∈ π+
3 of the form:

f (s) = s3 + 3s2 + s+ 1,
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and let, for a > 0,

Fa (s) = as4 + s3 + 3s2 + s+ 1.

It follows from the Routh–Hurwitz stability criterion that the polynomial Fa is stable if and only if

(16) 0 ≤ a < 2.

On the other hand, submatrices (3) of the Hurwitz matrix HFa have the form (see Example 1):

HFa,1 =

 1 a 0

1 3 1

0 1 1

 and HFa,2 =

 1 a 0

1 3 a

0 1 3

 .

Thus, according to (7),

w
(1)
Fa,1

=
a

3
, w

(1)
Fa,2

=
1

3
and w

(2)
Fa,1

=
a

3
, w

(2)
Fa,2

=
a

9
.

Simple calculations show that the condition ∆1(Fa) ≤ 0 is satisfied if and only if

(17) amin ≤ a ≤ amax,

where amin = 4 − 2
√

3 ≈ 0.5359 and amax = 4 + 2
√

3 ≈ 7.4641. It follows from Theorem 4 that for every

a ∈ [amin, 2) the polynomial Fa is Hadamard irreducible; for a = 1 we get a Hadamard irreducible polynomial

g (s) = s4 + s3 + 3s2 + s+ 1 obtained previously by Garloff and Srinivasan [5].

To construct a Hadamard irreducible polynomial of degree n = 5, we put a = 3/2 (unfortunatly, for

a = 1 assumption (15) of Theorem 4 is not satisfied) and repeat the above reasoning. As previously, we

begin with considering the polynomial:

Ga (s) = as5 + 3/2s4 + s3 + 3s2 + s+ 1,

and showing that it is stable if and only if

(18) 0 ≤ a < a∗ = −3/2 +
√

3 ≈ 0.2320.

One of the submatrices (3) of the Hurwitz matrix HGa has the form:

HGa,1 =

 1 a 0

1 1 3/2

0 1 3

 ,
and the condition ∆1(Ga) ≤ 0 is satisfied if and only if

(19) amin ≤ a ≤ amax,

where amin = 3/2 −
√

2 ≈ 0.0858 and amax = 3/2 +
√

2 ≈ 2.9142. Combining (18) and (19), we conclude

that for every a ∈ [amin, a
∗) the polynomial Ga is Hadamard irreducible; taking for example a = 1/5 we get

a quintic polynomial:

h (s) = 1/5s5 + 3/2s4 + s3 + 3s2 + s+ 1.
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When considering the submatrix:  1/5 a 0

1 3/2 1/5

0 1 1

 ,
of the Hurwitz matrix for the polynomial Ha(s) = as6 + h(s) and performing similar calculations as above,

we show that the polynomial:

k (s) = 1/5s6 + 1/5s5 + 3/2s4 + s3 + 3s2 + s+ 1,

is stable but not Hadamard factorizable.

3.3. A necessary and sufficient condition for Hadamard factorizability of fourth-degree real

polynomials. In this last part of our work, we would like to focus the attention on polynomials of degree

n = 4. We will show that in that case a necessary condition for the Hadamard factorizability of a polynomial

given in Theorem 3 is also sufficient.

To do this, let f, g ∈ π+
4 be two polynomials of the form:

f (s) = a4s
4 + a3s

3 + a2s
2 + a1s+ a0,

g (s) = b4s
4 + b3s

3 + b2s
2 + b1s+ b0,

and let

(20) wf,1 =
a1a4
a2a3

, wf,2 =
a0a3
a2a1

, wg,1 =
b1b4
b2b3

, wg,2 =
b0b3
b2b1

.

Remark 1. It follows from the Routh–Hurwitz stability criterion that

(a) f ∈ π+
4 is stable if and only if wf,1 + wf,2 < 1;

(b) for f, g ∈ π+
4 , f � g is stable if and only if wf,1/wg,1 + wf,2/wg,2 < 1.

The following theorem holds.

Theorem 5. A polynomial f ∈ H+
4 is Hadamard factorizable if and only if

(21) (wf,1 − wf,2)
2 − 2 (wf,1 + wf,2) + 1 > 0,

where wf,1 and wf,2 are as in (20).

Before proceeding to the proof, we need an auxiliary lemma.

Lemma 6. Suppose that 0 < b1 < 1, 0 < b2 < 1 and that

(22) (b1 − b2)
2 − 2 (b1 + b2) + 1 > 0.

Then

1. there exist x1 > 1 and x2 > 1 satisfying the system of inequalities:

(23)

{
b1x1 + b2x2 < 1

1
x1

+ 1
x2
< 1

;
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2. it holds

(24)
√
b1 +

√
b2 < 1.

Proof. The first part of the thesis follows from the proof of Theorem 3 where the equivalence of conditions

(12) and (14) was derived.

To prove the second part note that the first one implies that b1 + b2 < 1. Then, (24) is a simple

consequence of the following equality:

(b1 − b2)
2 − 2 (b1 + b2) + 1 =

(
1−

(√
b1 +

√
b2

)2)(
1− b1 − b2 + 2

√
b1b2

)
.

Proof of Theorem 5. The necessity of (21) for the Hadamard factorizability of f follows from Theorem 3.

To prove the sufficiency, we will show that condition (21) implies that there exists a polynomial g ∈ H+
4

such that f � g ∈ H+
4 .

It follows from (21) and from Lemma 6 that there exist s1 > 1, s2 > 1 such that

(25)

{
wf,1 · s1 + wf,2 · s2 < 1

1
s1

+ 1
s2
< 1

.

Let, for any solutions s1 > 1 and s2 > 1 of system (25),

(26) g (s) = s4 + 2s3 + s2 +
2

s1
s+

1

s1s2
.

According to (20), we have wg,1 = 1/s1 and wg,2 = 1/s2. It follows from Remark 1(a) and from (25) that

polynomial (26) is stable. Besides, as follows from (25),

wf,1/wg,1 + wf,2/wg,2 < 1.

It means, by Remark 1(b), that f � g is stable too. This completes the proof. �

As a conclusion, we present the following theorem collecting the necessary and sufficient conditions for

Hadamard factorizability of polynomials of degree n = 4 derived in this section.

Theorem 7. For f ∈ H+
4 , the following conditions are equivalent:

(a) the polynomial f (s) = a4s
4 + a3s

3 + a2s
2 + a1s+ a0 is Hadamard factorizable;

(b) it holds

(wf,1 − wf,2)
2 − 2 (wf,1 + wf,2) + 1 > 0;

(c) it holds
√
wf,1 +

√
wf,2 < 1;

(d) it holds

a0a3
a1

<

(√
a1a4
a3
−
√
a2

)2

;

(e) the polynomial g (s) =
√
a4s

4 +
√
a3s

3 +
√
a2s

2 +
√
a1s+

√
a0 is stable.
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Proof. The equivalence (a) ⇔ (b) follows from Theorem 5, the implication (b) ⇒ (c) follows from

Lemma 6, the equivalence (c) ⇔ (d) is straightforward and follows from the stability of f , the equivalence

(c) ⇔ (e) follows from Remark 1 and from the identities wg,1 =
√
wf,1 and wg,2 =

√
wf,2, and the last

implication (e)⇒ (a) follows from the obvious equality f = g ◦ g. This completes the proof.

Let us point out that alternative proofs of two equivalences stated in Conclusion 7 can be found in some

earlier works: the equivalence (a)⇔ (d) was previously proven by Loredo–Villalobos and Aguirre–Hernández

[8] (see Lemma 3 therein) and (a)⇔ (e) by Aguirre–Hernández et al. [1] (see Theorem 7 therein).
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