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ON THE KY FAN K-NORM OF THE LI-MATRIX OF GRAPHS∗

ZHEN LIN† , LIANYING MIAO‡ , GUANGLONG YU§ , AND HAN SHENG¶

Abstract. Let A(G) and D(G) be the adjacency matrix and the degree diagonal matrix of a graph G, respectively. Then

L(G) = D(G) − A(G) is called Laplacian matrix of the graph G. Let G be a graph with n vertices and m edges. Then the

LI-matrix of G are defined as LI(G) = L(G) − 2m
n

In, where In is the identity matrix. In this paper, we are interested in

extremal properties of the Ky Fan k-norm of the LI-matrix of graphs, which is closely related to the well known problems

and results in spectral graph theory, such as the Laplacian spectral radius, the Laplacian spread, the sum of the k largest

Laplacian eigenvalues, the Laplacian energy, and other parameters. Some bounds on the Ky Fan k-norm of the LI-matrix

of graphs are given, and the extremal graphs are partly characterized. In addition, upper and lower bounds on the Ky Fan

k-norm of LI-matrix of trees, unicyclic graphs, and bicyclic graphs are determined, and the corresponding extremal graphs are

characterized.
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1. Introduction. Let G be a simple finite undirected graph with vertex set V (G) and edge set E(G).

The matrix L(G) = D(G)− A(G) is called the Laplacian matrix of G, and its eigenvalues can be arranged

as:

n ≥ µ1(G) ≥ µ2(G) ≥ · · · ≥ µn−1(G) ≥ µn(G) = 0,

where µ1(G) and µn−1(G) are called Laplacian spectral radius and algebraic connectivity of G, respectively.

The investigation on the eigenvalues of Laplacian matrix of graphs is a topic of interest in spectral graph

theory. There are amount of results on the eigenvalues of L(G) in the literature, such as the Laplacian spectral

radius [14, 38], the Laplacian spread spr(L(G)) [1, 8, 45], the sum of the k largest Laplacian eigenvalues

Sk(L(G)) [10, 16, 20], the Laplacian energy LE(G) [5, 6, 17], etc. The spr(L(G)), Sk(L(G)), and LE(G)

are defined as follows:

spr(L(G)) = µ1(G)− µn−1(G), Sk(L(G)) =
k∑

i=1

µi(G), LE(G) =

n∑
i=1

∣∣∣∣µi(G)− 2m

n

∣∣∣∣ .
Recently, the trace norm of the adjacency matrix A(G) of a graph G, defined as the sum of the singular

values of A(G), has been extensively studied under the name of graph energy [27]. For generalizing and

enriching the study of graph energy, Nikiforov [31, 34] investigated the Ky Fan k-norm of adjacency matrix

of a graph G, that is

||A(G)||Fk
= σ1(A(G)) + σ2(A(G)) + · · ·+ σk(A(G)),
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where σ1(A(G)) ≥ σ2(A(G)) ≥ · · · ≥ σn(A(G)) are the singular values of the adjacency matrix A(G), i.e.

the nonnegative square roots of the eigenvalues of A(G)AT (G). Since the singular values of a real symmetric

matrix are the moduli of its eigenvalues, the Ky Fan k-norm of adjacency matrix of a graph G is also the

sum of the k largest absolute values of the eigenvalues of A(G). He showed that some well-known problems

and results in spectral graph theory are best stated in terms of the Ky Fan k-norm, for example, this norm

is related to energy, spread, spectral radius, and other parameters. Thus, he suggested to study arbitrary

Ky Fan k-norm of graphs and proposed many interesting questions, especially the maximal Ky Fan k-norm

of graphs of given order. Later, Nikiforov has done a series of systematic in-depth analyses and researches

for the Ky Fan k-norm, which are not restricted to the adjacency matrix of graphs. One may refer to

[31, 32, 33, 34, 36] for more details on the Ky Fan k-norm.

Motivated by the above works, we study the Ky Fan k-norm of the LI-matrix of graphs. Let G be a

graph with n vertices and m edges. Then the LI-matrix of G is defined as

LI(G) = L(G)− 2m

n
In.

By the definition of the Ky Fan k-norm, we have ||LI(G)||Fk
=
∑k

i=1 σi(LI(G)), where the singular values

of LI(G) are always indexed in decreasing order. Clearly, ||LI(G)||Fn
= LE(G). Thus, a close examination

of ||LI(G)||Fk
further advances the study of Laplacian energy of graphs. In particular, σ1(LI(G)) is called

the spectral norm of the LI-matrix. Moreover, if G is a regular graph, then ||LI(G)||Fk
= ||A(G)||Fk

. From

a geometric perspective, the Ky Fan k-norm of the LI-matrix of graphs represents the ordered sum of the

distance between Laplacian eigenvalues and the average of all Laplacian eigenvalues, which is relevant to the

hard problem that distribution of Laplacian eigenvalues of graphs in spectral graph theory, see [22].

In this paper, the extremal properties of the Ky Fan k-norm of the LI-matrix of graphs are studied.

Around the following Nikiforov’s question, upper and lower bounds on the Ky Fan k-norm of LI-matrix of

trees, unicyclic graphs, and bicyclic graphs are given, and the corresponding extremal graphs are character-

ized, which integrates previous results on the Laplacian spectral radius, the Laplacian spread and the sum

of the k largest Laplacian eigenvalues of trees, unicyclic graphs, and bicyclic graphs.

Question 1.1. ([31]) Study the extrema of the Ky Fan k-norm of a graph G and their relations to the

structure of G.

The rest of the paper is organized as follows. In Section 2, we introduce some notions and lemmas which

we need to use in the proofs of our results. In Section 3, some properties on σ1(LI(G)), σn(LI(G)), and

||LI(G)||F2
of a graph G are obtained. In Section 4, some bounds on ||LI(G)||Fk

of a graph G are presented,

and the extremal graphs are partly characterized. In Section 5, lower and upper bounds on the Ky Fan

k-norm of LI-matrix of trees, unicyclic graphs, and bicyclic graphs are obtained, and the corresponding

extremal graphs are characterized.

2. Preliminaries. Denote by Kn, Pn, Cn, and K1, n−1 the complete graph, path, cycle, and star

with n vertices, respectively. For vi ∈ V (G), dG(vi) = di(G) denotes the degree of vertex vi in G. The

minimum and the maximum degrees of G are denoted by δ = δ(G) and ∆ = ∆(G), respectively. We assume

that d1(G) ≥ d2(G) ≥ · · · ≥ dn(G) and say that d = (d1(G), d2(G), . . . , dn(G)) is the degree sequence of

the graph G. The conjugate of a degree sequence d is the sequence d∗ = (d∗1(G), d∗2(G), . . . , d∗n(G)) where

d∗i (G) = |{j : dj(G) ≥ i}| is the number of vertices of G of degree at least i. For a graph G, the first Zagreb

index Z1 = Z1(G) is defined as the sum of the squares of the vertices degrees.
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A threshold graph may be obtained through an iterative process which starts with an isolated vertex, and

at each step, either a new isolated vertex is added or a vertex adjacent to all previous vertices (dominating

vertex) is added. The double star Sa, b is the tree obtained from K2 by attaching a pendant edges to a vertex

and b pendant edges to the other. A connected graph is called a c-cyclic graph if it contains n vertices and

n + c − 1 edges. Specially, if c = 0, 1 or 2, then G is called a tree, a unicyclic graph, or a bicyclic graph,

respectively. The Gm,n, shown in Fig. 1, is a graph with n vertices and m edges which has m−n+1 triangles

with a common edge and 2n−m+ 3 pendent edges incident with one end vertex of the common edge. The

join graph G1 ∨ G2 is the graph obtained from G1 ∪ G2 by joining every vertex of G1 with every vertex of

G2.

Lemma 2.1. ([15, 23]) Let G be a graph with n vertices and at least one edge. Then ∆+1 ≤ µ1(G) ≤ n.

The left equality for connected graph holds if and only if ∆ = n− 1, and the right equality holds if and only

if the complement of G is disconnected.

Lemma 2.2. ([40]) Let A be an m × n matrix with singular values α1 ≥ α2 ≥ · · · ≥ αmin{m,n}. Let B

be a p× q submatrix of A, with singular values β1 ≥ β2 ≥ · · · ≥ βmin{p, q}. Then, αi ≥ βi ≥ αi+(m−p)+(n−q)

for i = 1, 2, . . . ,min{p, q} and i ≤ min{p+ q −m, p+ q − n}.

Lemma 2.3. ([2]) Let G be a graph and let H be a (not necessarily induced) subgraph of G with p

vertices. Then, µi(G) ≥ µi(H) for 1 ≤ i ≤ p .

Lemma 2.4. ([3, 26]) Let G be a graph on n vertices, with vertex degrees d1(G) ≥ d2(G) ≥ · · · ≥ dn(G).

If G is not K2 ∪ (n− 2)K1, then µ2(G) ≥ d2(G).

Lemma 2.5. ([29]) Let G be a threshold graph on n vertices with conjugate degree sequence d∗ =

(d∗1(G), d∗2(G), . . . , d∗n(G)). Then the Laplacian eigenvalue µi(G) = d∗i (G) = di(G) + 1, 1 ≤ i ≤ n− 1.

Lemma 2.6. ([42]) Let Tn the set of trees on n vertices. Then,

µ1(Tn) < µ1(S3, n−5) < µ1(T
4
n) < µ1(T

3
n) < µ1(S2, n−4) < µ1(S1, n−3) < µ1(K1, n−1),

for Tn ∈ Tn \ {K1, n−1, S1, n−3, S2, n−4, T
3
n , T

4
n , S3, n−5} and T i

n (i = 3, 4) shown in Fig. 1, where µ1(S1, n−3),

µ1(S2, n−4), respectively, are the largest root of the following equations:

x3 − (n+ 2)x2 + (3n− 2)x− n = 0,

x3 − (n+ 2)x2 + (4n− 7)x− n = 0.

Lemma 2.7. ([18]) For any tree Tn with n ≥ 4 vertices, S2(L(Tn)) ≤ S2(L(S⌈n−2
2 ⌉, ⌊n−2

2 ⌋)). The equality

holds if and only if Tn
∼= S⌈n−2

2 ⌉, ⌊n−2
2 ⌋.

Lemma 2.8. ([24]) Let G be a connected graph with n≥ 12. Then, µ1(G)+µ2(G)≥ 4+2
(
cos π

n+cos 2π
n

)
with equality holding if and only if G ∼= Pn.

Lemma 2.9. ([12]) Let Tn be a tree with n ≥ 5 vertices. Then,

spr(L(Pn)) ≤ spr(L(Tn)) ≤ spr(L(K1, n−1)).

The equality in the left-hand side holds if and only if Tn
∼= Pn, and the equality in the right-hand side holds

if and only if Tn
∼= K1,n−1.

Lemma 2.10. ([13, 43]) Let Un the set of unicyclic graphs on n vertices. Then,

µ1(Un) < µ1(Gn, n) and S2(Un) < S2(Gn, n),

for Un ∈ Un \ {Gn, n}, Gn, n shown in Fig. 1.
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Figure 1. Graphs T 3
n, T

4
n and Gmn.

Lemma 2.11. ([4, 41]) Let Un be a unicyclic graph with n ≥ 4. Then,

spr(L(Cn)) ≤ spr(L(Un)) ≤ spr(L(Gn, n)).

The equality in the left-hand side holds if and only if Un
∼= Cn, and the equality in the right-hand side holds

if and only if Un
∼= Gn, n.

Lemma 2.12. ([11, 21, 44]) Let Bn the set of bicyclic graphs on n vertices. Then,

(i) µ1(Bn) < µ1(B
∗
n) for Bn ∈ Bn \ {B∗

n}, where B∗
n is obtained from a star of order n by adding two

edges.

(ii) spr(L(Bn)) < spr(L(B∗
n)) for Bn ∈ Bn \ {B∗

n}.

(iii) S2(L(Bn)) < S2(L(Gn+1, n)) for Bn ∈ Bn \ {Gn+1, n}, Gn+1, n shown in Fig. 1.

3. Some properties on σ1(LI), σn(LI) and ||LI||F2
of a graph.

Theorem 3.1. Let G be a graph with n vertices and m ≥ 1 edges.

(i) If m ≥ n2

4 , then σ1(LI(G)) = 2m
n .

(ii) If ∆ ≥ 4m
n − 1, then σ1(LI(G)) = µ1(G)− 2m

n .

(iii) If G is a connected r-regular graph, then σ1(LI(G)) = 2m
n .

(iv) If G is a bipartite graph, then σ1(LI(G)) = µ1(G)− 2m
n .

Proof. (i) If m ≥ n2

4 , by Lemma 2.1, we have µ1(G) ≤ n ≤ 4m
n . Thus,

σ1(LI(G)) = max

{
µ1(G)− 2m

n
,
2m

n

}
=

2m

n
.

(ii) If ∆ ≥ 4m
n − 1, by Lemma 2.1, we have µ1(G) ≥ ∆+ 1 ≥ 4m

n . Thus,

σ1(LI(G)) = max

{
µ1(G)− 2m

n
,
2m

n

}
= µ1(G)− 2m

n
.

(iii) If G is a connected r-regular graph, then µ1(G) = r−λn(G), where λn(G) is the least eigenvalue of

the adjacency matrix of G. If µ1(G) = r− λn(G) > 4m
n = 2r, that is ,|λn(G)| > r = λ1(G), a contradiction.

Thus, µ1(G) ≤ 4m
n . Further, σ1(LI(G)) = 2m

n .
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Figure 3.1. The graph Hn (n = 3t, t ≥ 2 is the number of triangles).

(iv) It is well known that the spectra of Laplacian matrix and signless Laplacian matrix coincide if

and only if the graph G is bipartite. From Lemma 2.1 in [35], we have µ1(G) ≥ 4m
n . Thus, σ1(LI(G)) =

µ1(G)− 2m
n .

This completes the proof.

Corollary 3.2. Let G be a graph with n vertices and m edges. If µ1(G) < 4m
n , then G contains odd

cycles.

Remark 3.3. There exist nonbipartite graphs for which the equality σ1(LI(G)) = µ1(G) − 2m
n holds

for m < n2

4 . A bicyclic graph with n ≥ 17 vertices is an example. However, there also exist nonregular

graphs for which the equality σ1(LI(G)) = 2m
n holds for m < n2

4 . The graph Hn with n vertices and 4
3n

edges, depicted in Fig. 3.1, is an example. By direct calculations, we have µ1(Hn) = 5 < 16
3 = 4m

n . Thus,

σ1(LI(G)) = 2m
n = 8

3 . It is interesting to characterize the graphs satisfying σ1(LI(G)) = 2m
n for m < n2

4 .

Question 3.4. Characterize all graphs G satisfying σ1(LI(G)) = 2m
n for m < n2

4 .

Theorem 3.5. Let G be a graph on n > 4 vertices. Then,

µ1(G) + µ2(G) >
4m

n
+ 1.

Proof. Let (d1(G), d2(G), . . . , dn(G)) be degree sequence of G. If G is not a r-regular graph, by Lemmas

2.1 and 2.4, we have

µ1(G) + µ2(G) ≥ d1(G) + d2(G) + 1 >
2(d1(G) + d2(G) + · · ·+ dn(G))

n
+ 1 =

4m

n
+ 1.

If G is a r-regular graph, then µ1(G) + µ2(G) = 2r − λn−1(G) − λn(G), where λn−1(G) and λn(G)

are the second least eigenvalue and the least eigenvalue of A(G), respectively. Clearly, λn−1(G) ≤ 0 and

λn(G) ≤ − 1+
√
5

2 (see, e.g. [19]). Thus,

µ1(G) + µ2(G) = 2r − λn−1(G)− λn(G) ≥ 2r +
1 +

√
5

2
>

4m

n
+ 1.

From the above arguments, we have the proof.

Corollary 3.6. Let G be a graph on n > 4 vertices. If σn−1(LI(G)) > σn(LI(G)), then

σn(LI(G)) ̸= µ1(G)− 2m

n
.
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Proof. Suppose that σn(LI(G)) = µ1(G)− 2m
n . Then,

σn(LI(G)) = µ1(G)− 2m

n
< σn−1(LI(G)) ≤

∣∣∣∣µ2(G)− 2m

n

∣∣∣∣ .
If µ2(G) ≥ 2m

n , then µ1(G) < µ2(G), a contradiction. If µ2(G) < 2m
n , then µ1(G) + µ2(G) < 4m

n , a

contradiction. Therefore, σn(LI(G)) ̸= µ1(G)− 2m
n . This completes the proof.

Theorem 3.7. Let G be a graph with n vertices and m ≥ 1 edges. For any edge uv ∈ E(G), we have

||LI(G)||F2
≥

∣∣∣∣∣du + dv +
√
(du + dv)2 + 4

2
− 2m

n

∣∣∣∣∣+
∣∣∣∣∣du + dv −

√
(du + dv)2 + 4

2
− 2m

n

∣∣∣∣∣ .
Proof. Let uv ∈ E(G). By Lemma 2.2, we have σ1(LI(G)) ≥ σ′

1 and σ2(LI(G)) ≥ σ′
2, where σ′

1, σ
′
2 are

the singular values of the matrix (
du − 2m

n −1

−1 dv − 2m
n

)
.

Thus,

||LI(G)||F2
= σ1(LI(G)) + σ2(LI(G))

≥ σ′
1 + σ′

2

=

∣∣∣∣∣du + dv +
√
(du + dv)2 + 4

2
− 2m

n

∣∣∣∣∣+
∣∣∣∣∣du + dv −

√
(du + dv)2 + 4

2
− 2m

n

∣∣∣∣∣ .
This completes the proof.

Theorem 3.8. Let G be a triangle-free graph with n vertices and m ≥ 1 edges. For any edge uv ∈ E(G),

we have

||LI(G)||F2
≥
√
Υ+ 2

√
Ψ,

where Υ=
(
du − 2m

n

)2
+
(
dv − 2m

n

)2
+du+dv, Ψ=

((
du − 2m

n

)2
+ du

)((
dv − 2m

n

)2
+ dv

)
−
(
du + dv − 4m

n

)2
.

Proof. Let uv ∈ E(G). By Lemma 2.2, we have σ1(LI(G)) ≥ σ′
1 and σ2(LI(G)) ≥ σ′

2, where σ′
1, σ

′
2 are

the singular values of the matrix

B =

(
du − 2m

n −1 ∗ · · · ∗
−1 dv − 2m

n ∗ · · · ∗

)
2×n

.

Since G is a triangle-free graph, we have

BBT =

(
(du − 2m

n )2 + du
4m
n − du − dv

4m
n − du − dv (dv − 2m

n )2 + dv

)
.

Thus, the eigenvalues x1 and x2 of BBT are the roots of the following equations:

x2 −

((
du − 2m

n

)2

+

(
dv −

2m

n

)2

+ du + dv

)
x

+

((
du − 2m

n

)2

+ du

)((
dv −

2m

n

)2

+ dv

)
−
(
du + dv −

4m

n

)2

= 0.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 680-696, September 2022.

Z. Lin et al. 686

By Lemma 2.2, we have

||LI(G)||F2
= σ1(LI(G)) + σ2(LI(G))

≥ σ′
1 + σ′

2

=
√
x1 +

√
x2

=
√
x1 + x2 + 2

√
x1x2

=

√
Υ+ 2

√
Ψ,

where Υ=
(
du − 2m

n

)2
+
(
dv − 2m

n

)2
+du+dv, Ψ=

((
du − 2m

n

)2
+ du

)((
dv − 2m

n

)2
+ dv

)
−
(
du + dv − 4m

n

)2
.

This completes the proof.

4. Bounds on ||LI||Fk
of a graph.

Theorem 4.1. Let G be a connected graph on n ≥ 3 vertices and m edges, and let {v1, v2, . . . , vk} ⊂
V (G) and di(G) ≥ 4m

n for 1 ≤ i ≤ k. If vivj /∈ E(G) for 1 ≤ i, j ≤ k, or vivj ∈ E(G) and vivh /∈ E(G) and

vjvg /∈ E(G) for 1 ≤ i, j, h, g ≤ k, then

||LI(G)||Fk
= Sk(L(G))− 2km

n
.

Proof. If vivj /∈ E(G) for 1 ≤ i, j ≤ k, then the graph K1, s1 ∪K1, s2 ∪ · · · ∪K1, sk is a subgraph of G,

where each star K1, si centered on vi, si ≥ 4m
n and 1 ≤ i ≤ k. By Lemma 2.3, we have

µi(G) ≥ µi(K1, s1 ∪K1, s2 ∪ · · · ∪K1, sk) = µ1(K1, si) ≥
4m

n
+ 1,

for i = 1, 2, . . . , k. Thus, we have

||LI(G)||Fk
=

k∑
i=1

σi(LI(G)) =

k∑
i=1

∣∣∣∣µk(G)− 2m

n

∣∣∣∣ = Sk(L(G))− 2km

n
.

If vivj ∈ E(G) and vivh /∈ E(G) and vjvg /∈ E(G) for 1 ≤ i, j, h, g ≤ k, then the graph Sa1, b1 ∪
Sa2, b2 ∪ · · ·Sap, bp ∪K1, s1 ∪ · · ·K1, sq is a subgraph of G, where each double star Sap, bp centered on vi and

vj , ap, bp ≥ 4m
n − 1, sq ≥ 4m

n , 2p+ q = k, 1 ≤ p ≤ k
2 and 0 ≤ q ≤ k − 2. By Lemmas 2.3 and 2.4, we have

µi(G) ≥ µi(Sa1, b1 ∪ Sa2, b2 ∪ · · ·Sap, bp ∪K1, s1 ∪ · · ·K1, sq )

≥ min{µ1(Sap, bp), µ2(Sap, bp), µ1(K1, sq )}

≥ 4m

n
,

for i = 1, 2, . . . , k. Thus, we have

||LI(G)||Fk
=

k∑
i=1

σi(LI(G)) =

k∑
i=1

∣∣∣∣µk(G)− 2m

n

∣∣∣∣ = Sk(L(G))− 2km

n
.

Combining the above arguments, we have the proof.
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Theorem 4.2. Let G be a graph on n vertices and m edges, with vertex degrees d1(G) ≥ d2(G) ≥ · · · ≥
dn(G). If the subgraph H of G is a threshold graph with dk(H) ≥ 4m

n − 1, then

||LI(G)||Fk
= Sk(L(G))− 2km

n
.

Proof. If dk(H) ≥ 4m
n − 1, by Lemmas 2.3 and 2.5, then µk(G) ≥ µk(H) ≥ 4m

n . Thus, we have

||LI(G)||Fk
=

k∑
i=1

σi(LI(G)) =

k∑
i=1

∣∣∣∣µk(G)− 2m

n

∣∣∣∣ = Sk(L(G))− 2km

n
.

This completes the proof.

Theorem 4.3. Let G be a graph with n vertices and m edges. Then,

||LI(G)||Fk
≤ Sk(L(G)) +

2m

n
+ (k − 1)(n− 2m

n
).

The equality holds if G = Kn.

Proof. Let Jn be the all ones matrix of size n. Then, −L(G) = LI(G)+Wn and Wn = ( 2mn −n)In+Jn.

Hence, the triangle inequality implies that

||LI(G)||Fk
≤ ||L(G)||Fk

+ ||Wn||Fk
,

that is,

||LI(G)||Fk
≤ Sk(L(G)) +

2m

n
+ (k − 1)(n− 2m

n
).

This completes the proof.

Theorem 4.4. Let G ̸= Kn be a graph on n vertices and m ≥ 1 edges. If m ≥ n2

4 and k ≥ 2, then

||LI(G)||Fk
≤ 2m

n
+ (k − 1)spr(L(G)),

with equality if and only if G is a r-regular graph, and G = G1∨ (K1∪G2), |V (G2)| = n−r−1, µn−1(G1) ≥
2r − n and σ2(LI(G)) = · · · = σk(LI(G)) = µ1(G)− r.

Proof. Since m ≥ n2

4 , by Theorem 3.1, we have σ1(LI(G)) = 2m
n . Let x + y = k − 1, 0 ≤ x, y ≤ k − 1.

By the Cauchy–Schwarz inequality, we have

||LI(G)||Fk
=

k∑
i=1

σi(LI(G))

≤ 2m

n
+ x(µ1(G)− 2m

n
) + y(

2m

n
− µn−1(G))

≤ 2m

n
+
√
x2 + y2

√
(µ1(G)− 2m

n
)2 + (

2m

n
− µn−1(G))2

≤ 2m

n
+ (k − 1)spr(L(G)),

with equality if and only if σ2(LI(G)) = · · · = σk(LI(G)) = µ1(G) − 2m
n , x = k − 1 and µn−1(G) = 2m

n .

Since µn−1(G) = 2m
n and µn−1(G) ≤ δ(G) for G ̸= Kn (see, e.g. [9]), we have that G is a r-regular graph
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with µn−1(G) = r. From Theorem 1 in [25], we have µn−1(G) = r if and only if G = G1 ∨ (K1 ∪ G2),

|V (G2)| = n− r − 1 and µn−1(G1) ≥ 2r − n. This completes the proof.

Remark 4.5. If G = C4 ∨ (K1 ∪K1), then ||LI(G)||Fk
= 2m

n + (k − 1)spr(L(G)) for k = 1, 2, 3.

Theorem 4.6. Let G be a graph with n vertices and m edges. If k ≥ 2 and m ≥ n2

4 , then

||LI(G)||Fk
≤ 2m

n
+

√
(k − 1)

(
2m+ Z1 −

4m2

n
− 4m2

n2

)
. (4.2)

The equality holds in (4.2) if and only if G is a graph satisfying

{
σ2(LI(G)) = σ3(LI(G)) = · · · = σk(LI(G)),

σk+1(LI(G)) = σk+2(LI(G)) = · · · = σn(LI(G)) = 0.

Proof. Since m ≥ n2

4 , by Theorem 3.1, we have σ1(LI(G)) = 2m
n . Since

∑n
i=1 σ

2
i (LI(G)) = 2m+ Z1 −

4m2

n , by the Cauchy–Schwarz inequality, we have

||LI(G)||Fk
=

k∑
i=1

σi(LI(G))

≤ 2m

n
+

√√√√(k − 1)

k∑
i=2

σ2
i (LI(G))

≤ 2m

n
+

√√√√(k − 1)

n∑
i=2

σ2
i (LI(G))

=
2m

n
+

√
(k − 1)

(
2m+ Z1 −

4m2

n
− 4m2

n2

)
.

Hence, the equality holds in (4.2) if and only if G is a graph satisfying

{
σ2(LI(G)) = σ3(LI(G)) = · · · = σk(LI(G)),

σk+1(LI(G)) = σk+2(LI(G)) = · · · = σn(LI(G)) = 0.

The proof is completed.

Remark 4.7. For a fixed k, we can use complete regular r-partite graphs or threshold graphs to construct

graphs such that the equality holds in (4.2). However, it is an open problem to find all the graphs such that

the equality holds in (4.2).

Theorem 4.8. Let G be a graph with n vertices and m > 1 edges, and let d2 be the second largest degree

of G. If d2 ≥ 4m
n , then

||LI(G)||Fk
≤ kn− 2km

n
. (4.3)
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Proof. Since d2 ≥ 4m
n , by Lemma 2.4, we have |µ2 − 2m

n | ≥ |µi − 2m
n | for i = 3, 4, . . . , n. By Lemma 2.1,

we have

||LI(G)||Fk
=

k∑
i=1

σi(LI(G))

≤ µ1(G)− 2m

n
+ (k − 1)

(
µ2(G)− 2m

n

)
= µ1(G) + (k − 1)µ2(G)− 2km

n

≤ kn− 2km

n
.

This completes the proof.

Remark 4.9. If G is a complete split graph Kk ∨ (n − k)K1 with k ≤ ⌊ 2n−1−
√
2n2−2n+1
2 ⌋, then the

equality in (4.3) holds.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two nonincreasing sequences of real numbers. If∑j
i=1 xi ≤

∑j
i=1 yi for j = 1, 2, . . . , n, then we say that x is weakly majorized by y and denote x ≺w y. If in

addition to x ≺w y,
∑n

i=1 xi =
∑n

i=1 yi holds, then we say that x is majorized by y and denote x ≺ y. From

[30], if f(t) is a convex function, then x ≺ y implies (f(x1), f(x2), . . . , f(xn)) ≺w (f(y1), f(y2), . . . , f(yn)).

Theorem 4.10. Let G be a graph with n vertices and m edges. If m ≥ n2

4 and there is α such that

µ1(G) ≥ α ≥ 2m
n−1 , then

||LI(G)||Fk
≥ 2m

n
+

∣∣∣∣α− 2m

n

∣∣∣∣+ (k − 2)

∣∣∣∣2m− α

n− 2
− 2m

n

∣∣∣∣ ,
for k ≥ 2.

Proof. Let x = (α, 2m−α
n−2 , . . . , 2m−α

n−2 , 0), y = (µ1(G), µ2(G), . . . , µn−1(G), 0) ∈ Rn. Then, x ≺ y. By

Theorem 3.1, we have σ1(LI(G)) = 2m
n for m ≥ n2

4 . Since f(t) = |t− 2m
n | is a convex function, we have

||LI(G)||Fk
= σ1(LI(G)) + σ2(LI(G)) + · · ·+ σk(LI(G))

≥ 2m

n
+

∣∣∣∣µ1(G)− 2m

n

∣∣∣∣+ · · ·+
∣∣∣∣µk−1(G)− 2m

n

∣∣∣∣
≥ 2m

n
+

∣∣∣∣α− 2m

n

∣∣∣∣+ (k − 2)

∣∣∣∣2m− α

n− 2
− 2m

n

∣∣∣∣ ,
for k ≥ 2. This completes the proof.

Corollary 4.11. Let G be a graph with n vertices and m edges. If m ≥ n2

4 , then

||LI(G)||Fk
≥ ∆+ 1 + (k − 2)

∣∣∣∣2m−∆− 1

n− 2
− 2m

n

∣∣∣∣ ,
for k ≥ 2.

Proof. By Lemma 2.1 and Theorem 4.10, we have the proof.
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5. On the ||LI||Fk
of c-cyclic graphs.

Theorem 5.1. Let Tn be a tree with n vertices. Then,

σ1(LI(Pn)) < σ1(LI(Tn)) < σ1(LI(S3, n−5)) < σ1(LI(T
4
n)) < σ1(LI(T

3
n))

< σ1(LI(S2, n−4)) < σ1(LI(S1, n−3)) < σ1(LI(K1, n−1)),

for Tn ∈ Tn \ {K1, n−1, S1, n−3, S2, n−4, T
3
n , T

4
n , S3, n−5, Pn}.

Proof. By Theorems 3.1, we have ||LI(Tn)||F1 = ||QI(Tn)||F1 = µ1(Tn) − 2 + 2
n . It is well known that

µ1(Pn) ≤ µ1(Tn) for all trees with n vertices (see, e.g. [37]). By Lemma 2.6, we have

σ1(LI(Pn)) < σ1(LI(Tn)) < σ1(LI(S3, n−5)) < σ1(LI(T
4
n)) < σ1(LI(T

3
n))

< σ1(LI(S2, n−4)) < σ1(LI(S1, n−3)) < σ1(LI(K1, n−1)),

for Tn ∈ Tn \ {K1, n−1, S1, n−3, S2, n−4, T
3
n , T

4
n , S3, n−5, Pn}. This completes the proof.

Theorem 5.2. Let Tn be a tree with n ≥ 12 vertices. Then,

||LI(Pn)||F2 < ||LI(Tn)||F2 < ||LI(S⌈n−2
2 ⌉, ⌊n−2

2 ⌋)||F2 < ||LI(S1, n−3)||F2 < ||LI(K1, n−1)||F2

for Tn ∈ Tn \ {K1, n−1, S1, n−3, S⌈n−2
2 ⌉, ⌊n−2

2 ⌋, Pn}.

Proof. For the upper bounds, we consider two cases depending on σ2(LI(Tn)).

Case 1. σ2(LI(Tn)) = µ2(Tn)− 2 + 2
n . Then ||LI(Tn)||F2

= µ1(Tn) + µ2(Tn)− 4 + 4
n . By Lemma 2.7,

we have

||LI(Tn)||F2 ≤ S2(L(S⌈n−2
2 ⌉, ⌊n−2

2 ⌋))− 4 +
4

n
.

Case 2. σ2(LI(Tn)) = 2 − 2
n . Then, ||LI(Tn)||F2 = µ1(Tn). Let d2(Tn) be the second largest degree

of Tn. If d2(Tn) ≥ 4, by Lemma 2.4, then
∣∣µ2(Tn)− 2m

n

∣∣ ≥
∣∣µi(Tn)− 2m

n

∣∣ for i = 3, 4, . . . , n, that is,

σ2(LI(Tn)) = µ2(Tn)− 2 + 2
n , a contradiction. Thus, d2(Tn) ≤ 3. By Lemma 2.6, we have

µ1(Tn) < µ1(S3, n−5) < µ1(T
4
n) < µ1(T

3
n) < µ1(S2, n−4) < µ1(S1, n−3) < µ1(K1, n−1),

for Tn ∈ Tn \ {K1, n−1, S1, n−3, S2, n−4, T
3
n , T

4
n , S3, n−5} and T i

n (i = 3, 4) shown in Fig. 1, where µ1(S1, n−3),

µ1(S2, n−4), respectively, are the largest root of the following polynomials:

f1(x) = x3 − (n+ 2)x2 + (3n− 2)x− n,

f2(x) = x3 − (n+ 2)x2 + (4n− 7)x− n.

By derivative, we know that f ′
1(x) > 0 for x ∈ (n − 1,+∞). Therefore, f1(x) is strictly increasing on

(n−1,+∞). Since f1(n−1) = −1 < 0 and f1(n) = n(n−3) > 0 for n ≥ 10, we have n−1 < µ1(S1, n−3) < n.

By derivative, we know that f ′
2(x) > 0 for x ∈ (n − 2,+∞). Therefore, f2(x) is strictly increasing on

(n− 2,+∞). Since f2(n− 2) = −2 < 0 and f2(n− 2 + 1
n ) =

1
n3 (n

4 − 10n3 + 15n2 − 8n+ 1) > 0 for n ≥ 10,

we have n− 2 < µ1(S2, n−4) < n− 2 + 1
n .
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By direct calculation, the Laplacian characteristic polynomial of S⌈n−2
2 ⌉, ⌊n−2

2 ⌋ is

ϕ(x) = x(x− 1)n−4[x3 − (n+ 2)x2 + (2n+ ⌈n− 2

2
⌉⌊n− 2

2
⌋+ 1)x− n].

It is well known that µn−1(Tn) ≤ δ(Tn) = 1 (see, e.g. [9]). By Lemma 2.3, we have µ2(S⌈n−2
2 ⌉, ⌊n−2

2 ⌋) ≥ 2.

Thus, µ1(S⌈n−2
2 ⌉, ⌊n−2

2 ⌋), µ2(S⌈n−2
2 ⌉, ⌊n−2

2 ⌋) and µn−1(S⌈n−2
2 ⌉, ⌊n−2

2 ⌋) are roots of the following polynomial

g(x) = x3 − (n+ 2)x2 + (2n+ ⌈n− 2

2
⌉⌊n− 2

2
⌋+ 1)x− n.

Since µn−1(G) = n− µ1(G) (see, e.g. [28]), by the Vieta Theorem, we have

µ1(S⌈n−2
2 ⌉, ⌊n−2

2 ⌋) + µ2(S⌈n−2
2 ⌉, ⌊n−2

2 ⌋) = n+ 2− µn−1(S⌈n−2
2 ⌉, ⌊n−2

2 ⌋) = µ1(S⌈n−2
2 ⌉, ⌊n−2

2 ⌋) + 2.

Thus,

||LI(S⌈n−2
2 ⌉, ⌊n−2

2 ⌋)||F2
= µ1(S⌈n−2

2 ⌉, ⌊n−2
2 ⌋)− 2 +

4

n
< n− 2 +

4

n
< µ1(S1, n−3).

If n is an odd number, by direct calculation, we have that the Laplacian characteristic polynomial of

Sn−1
2 , n−3

2
is

φ(x) =
1

4
x(x− n+ 1)n−4[4x3 − 8(n− 1)x2 + (5n2 − 12n+ 7)x− n3 + 4n2 − 3n].

It follows that µ1(Sn−1
2 , n−3

2
) is the largest root of the following polynomial

h1(x) = 4x3 − 8(n− 1)x2 + (5n2 − 12n+ 7)x− n3 + 4n2 − 3n.

Thus, ||LI(Sn−1
2 , n−3

2
)||F2 is the largest root of the polynomial h1(x+ 2− 4

n ). Noting that f2(x) and h1(x+

2− 4
n ) are strictly increasing on (n− 2,+∞). Since

h1(x+ 2− 4

n
)− f2(x) = 3x3 − (7n+

48

n
− 34)x2 + (5n2 − 48n− 256

n

+
192

n2
+ 158)x− n3 + 14n2 − 78n− 476

n

+
512

n2
− 256

n3
+ 254

< 0,

for x ∈ (n− 2, n− 2 + 1/n), we have ||LI(Sn−1
2 , n−3

2
)||F2

> µ1(S2, n−4).

If n is an even number, by a similar reasoning as the above, we can conclude that ||LI(Sn−2
2 , n−2

2
)||F2

>

µ1(S2, n−4). Therefore, ||LI(S⌈n−2
2 ⌉, ⌊n−2

2 ⌋)||F2
> µ1(S2, n−4).

It is easy to see that ||LI(K1, n−1)||F2
= µ1(K1, n−1), ||LI(S1, n−3)||F2

= µ1(S1, n−3) and ||LI(S2, n−4)||F2

= µ1(S2, n−4). Combining the above arguments, we have

||LI(Tn)||F2 < ||LI(S⌈n−2
2 ⌉, ⌊n−2

2 ⌋)||F2 < ||LI(S1, n−3)||F2 < ||LI(K1, n−1)||F2 ,

for Tn ∈ Tn \ {K1, n−1, S1, n−3, S⌈n−2
2 ⌉, ⌊n−2

2 ⌋}.
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Now we will show that ||LI(Pn)||F2 < ||LI(Tn)||F2 for Tn ∈ Tn \ {Pn}. By Lemma 2.8, we have

S2(L(Pn)) ≤ S2(L(Tn)). Since µ1(Pn) ≤ µ1(Tn), we have

||LI(Tn)||F2
= σ1(LI(Tn)) + σ2(LI(Tn))

= max{µ1(Tn) + µ2(Tn)− 4 +
4

n
, µ1(Tn)}

= max{S2(L(Tn))− 4 +
4

n
, µ1(Tn)}

≥ ||LI(Pn)||F2
,

with equality if and only if Tn
∼= Pn. This completes the proof.

Theorem 5.3. Let Tn be a tree with n ≥ 5 vertices. Then,

||LI(Tn)||F3
≤ n+ 1− 2

n
,

with equality if and only if Tn
∼= K1, n−1.

Proof. From Theorem 1.1 in [10], we have S2(L(Tn)) < n+2− 2
n and S3(L(Tn)) < n+4− 4

n . By Lemma

2.9, we have spr(L(Tn)) < spr(L(K1, n−1)) = n− 1 for Tn ∈ Tn \ {K1, n−1}. Thus,

||LI(Tn)||F3
= σ1(LI(Tn)) + σ2(LI(Tn)) + σ3(LI(Tn))

= max{S2(L(Tn))− 2 +
2

n
, S3(L(Tn))− 6 +

6

n
, spr(L(Tn)) + 2− 2

n
}

≤ max{n, n− 2 +
2

n
, spr(L(Tn)) + 2− 2

n
}

≤ ||LI(K1, n−1)||F3

= n+ 1− 2

n
,

with equality if and only if Tn
∼= K1, n−1. This completes the proof.

Conjecture 5.4. Let Tn be a tree with n ≥ 12 vertices. Then,

||LI(Pn)||Fk
≤ ||LI(Tn)||Fk

≤ ||LI(K1, n−1)||Fk
.

The equality in the left-hand side holds if and only if Tn
∼= Pn, and the equality in the right-hand side holds

if and only if Tn
∼= K1, n−1.

Theorem 5.5. Let Un be a unicyclic graph with n ≥ 5 vertices. Then,

σ1(LI(Cn)) ≤ σ1(LI(Un)) ≤ n− 2.

The equality in the left-hand side holds if and only if Un
∼= Cn, and the equality in the right-hand side holds

if and only if Un
∼= Gn, n.

Proof. If ∆(Un) ≥ 3, by Lemma 2.1, we have µ1(Un) ≥ ∆(Un)+1 ≥ 4. Thus, σ1(LI(Un)) = µ1(Un)−2.

By Lemma 2.10, we have σ1(LI(Un)) ≤ σ1(LI(Gn, n)) with equality if and only if Un
∼= Gn, n. From [39],

it follows that U2
n, shown in Fig. 5.1, is the smallest Laplacian spectral radii among all unicyclic graphs

with ∆(Un) ≥ 3. Hence, σ1(LI(Un)) ≥ σ1(LI(U
2
n)). By Lemma 2.3, we have σ1(LI(U

2
n)) = µ1(U

2
n) − 2 ≥

µ1(U
2
5 )− 2 > 2.17008. Thus, σ1(LI(Un)) > 2.17008.

If ∆(Un) = 2, then Un = Cn. Thus,σ1(LI(Un)) = σ1(LI(Cn)) = 2.

Combining the above arguments, we have the proof.
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Theorem 5.6. Let Un be a unicyclic graph with n ≥ 12 vertices. Then,

||LI(Cn)||F2
≤ ||LI(Un)||F2

≤ n.

The equality in the left-hand side holds if and only if Un
∼= Cn, and the equality in the right-hand side holds

if and only if Un
∼= Gn, n.

Proof. Since ||LI(Un)||F2
= max{µ1(Un), S2(L(Un)) − 4}, by Lemma 2.10, we have ||LI(Un)||F2

≤
||LI(Gn, n)||F2

with equality if and only if Un
∼= Gn, n. It is well known that S2(L(Cn)) = 6 + 2 cos 2π

n for

even cycle and S2(L(Cn)) = 4 + 4 cos π
n for odd cycle. Thus, S2(L(Cn)) < 8. From the proof of Lemma

4.4 in [24], it follows that µ1(Tn) + µ2(Tn) = q1(Tn) + q2(Tn) ≥ 8 for n ≥ 12. By Lemma 2.3, we have

S2(L(Un)) = µ1(Un) + µ2(Un) ≥ 8 for n ≥ 12. Hence, S2(L(Un)) > S2(L(Cn)) for Un \ {Cn}. By the proof

of Theorem 5.5, we have µ1(Un) > µ1(Cn) for Un\{Cn}. Therefore, ||LI(Un)||F2
= max{µ1(Un), S2(L(Un))−

4} ≥ ||LI(Cn)||F2 with equality if and only if Un
∼= Cn. This completes the proof.

Theorem 5.7. Let Un be a unicyclic graph with n ≥ 12 vertices. Then,

||LI(Un)||F3
≤ n+ 1,

with equality if and only if Un
∼= Gn, n.

Proof. From Corollary 4.1 in [7], we have S3(L(Un)) ≤ n + 6. By Lemmas 2.10 and 2.11, we have

S2(L(Un)) < S2(L(Gn, n)) and spr(L(Un)) < spr(L(Gn, n)) = n− 1 for Un ∈ Un \ {Gn, n}. Thus,

||LI(Un)||F2
= σ1(LI(Un)) + σ2(LI(Un)) + σ3(LI(Un))

= max{S2(L(Un))− 2, S3(L(Un))− 6, spr(L(Un)) + 2}
≤ ||LI(Gn, n)||F3

= n+ 1

with equality if and only if Un
∼= Gn, n. This completes the proof.

Theorem 5.8. Let Bn be a bicyclic graph with n ≥ 17 vertices. Then,

σ1(LI(B
1
n)) ≤ σ1(LI(Bn)) ≤ σ1(LI(B

∗
n)).

The equality in the left-hand side holds if and only if Bn
∼= B1

n, and the equality in the right-hand side holds

if and only if Bn
∼= B∗

n.

Proof. Since B1
n = U2

n + e, by Lemma 2.3, we have

µ1(B
1
n)− 2− 2

n
≥ µ1(U

2
n)− 2− 2

n
≥ µ1(U

2
10)− 2− 2

n
> 2.23566− 2

n
> 2 +

2

n

for n ≥ 17. From [39], we know that B1
n, shown in Fig. 5.1, is the smallest Laplacian spectral radii among all

bicyclic graphs. Thus, σ1(LI(Bn)) = µ1(Bn)− 2− 2
n ≥ µ1(B

1
n)− 2− 2

n with equality if and only if G ∼= B1
n.

By Lemma 2.12, we have σ1(LI(Bn)) = µ1(Bn) − 2 − 2
n ≤ µ1(B

∗
n) − 2 − 2

n = σ1(LI(B
∗
n)) with equality if

and only if Bn
∼= B∗

n. This completes the proof.

Theorem 5.9. Let Bn be a bicyclic graph with n vertices. Then,

||LI(Bn)||F2
≤ ||LI(Gn+1, n)||F2

,

with equality if and only if Bn
∼= Gn+1, n.
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Figure 5.1. Graphs U2
n and B1

n.

Proof. Since ||LI(Bn)||F2 = max{µ1(Bn), S2(L(Bn))− 4− 4
n}, by Lemma 2.12, we have the proof.

Theorem 5.10. Let Bn be a bicyclic graph with n vertices. Then

||LI(Bn)||F3 ≤ n+ 2− 2

n
,

with equality if and only if Bn
∼= Gn+1, n.

Proof. From Corollary 4.2 in [7], we have S3(L(Bn)) ≤ n+ 7. By Lemma 2.12, we have

||LI(Bn)||F2
= σ1(LI(Un)) + σ2(LI(Un)) + σ3(LI(Un))

= max{S2(L(Bn))− 2− 2

n
, S3(L(Bn))− 6− 6

n
, spr(L(Bn)) + 2 +

2

n
}

≤ ||LI(Gn+1, n)||F3

= n+ 2− 2

n

with equality if and only if Bn
∼= Gn+1, n. This completes the proof.

Based on the conjecture of Guan et al. [18], we present the following conjecture on the uniqueness of

the extremal graph.

Conjecture 5.11. Among all connected graphs with n and m edges n ≤ m ≤ 2n − 3, the Gm,n is the

unique graph with maximal value of ||LI(G)||F2 and ||LI(G)||F3 .
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[1] E. Andrade, H. Gomes, M. Robbiano, and J. Rodŕıguez. Upper bounds on the Laplacian spread of graphs. Linear Algebra

Appl., 492:26–37, 2016.

[2] A.E. Brouwer and W.H. Haemers. Spectra of Graphs. Springer, 2012.

[3] A.E. Brouwer and W.H. Haemers. A lower bound for the Laplacian eigenvalues of a graph–Proof of a conjecture by Guo.

Linear Algebra Appl., 429:2131–2135, 2008.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 680-696, September 2022.

695 On the Ky Fan k-norm of the LI-matrix of graphs

[4] Y. Bao, Y. Tan, and Y. Fan. The Laplacian Spread of Unicyclic Graphs. Appl. Math. Lett., 22:1011–1015, 2009.

[5] K.Ch. Das and I. Gutman. On Laplacian energy, Laplacian-energy-like invariant and Kirchhoff index of graphs. Linear

Algebra Appl., 554:170–184, 2018.

[6] K.Ch. Das, S.A. Mojallal, and I. Gutman. On Laplacian energy in terms of graph invariants. Appl. Math. Comput.,

268:83–92, 2015.

[7] Z. Du and B. Zhou. Upper bounds for the sum of Laplacian eigenvalues of graphs. Linear Algebra Appl., 436:3672–3683,

2012.

[8] M. Einollahzadeh and M.M. Karkhaneei. On the lower bound of the sum of the algebraic connectivity of a graph and its

complement. J. Combin. Theory Ser. B, 151:235–249, 2021.

[9] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J., 23:298–305, 1973.

[10] E. Fritscher, C. Hoppen, I. Rocha, and V. Trevisan. On the sum of the Laplacian eigenvalues of a tree. Linear Algebra

Appl., 435:371–399, 2011.

[11] Y. Fan, S. Li, and Y. Tan. The Laplacian spread of bicyclic graphs. J. Math. Res. Exposition, 30:17–28, 2010.

[12] Y. Fan, J. Xu, Y. Wang and D. Liang. The Laplacian spread of a tree. Discrete Math. Theor. Comput. Sci., 10:79–86,

2008.

[13] S. Guo. The largest Laplacian spectral radius of unicyclic graph. Appl. Math. J. Chinese Univ. Ser. A., 16:131–135, 2001.

[14] J. Guo, J. Li, and W.C. Shiu. A note on the upper bounds for the Laplacian spectral radius of graphs. Linear Algebra

Appl., 439:1657–1661, 2013.

[15] R. Grone and R. Merris. The Laplacian spectrum of a graph II. SIAM J. Discrete Math., 7:229–237, 1994.

[16] H.A. Ganie, S. Pirzada, B.A. Rather, and V. Trevisan. Further developments on Brouwer’s conjecture for the sum of

Laplacian eigenvalues of graphs. Linear Algebra Appl., 588:1–18, 2020.

[17] I. Gutman and B. Zhou. Laplacian energy of a graph. Linear Algebra Appl., 414:29–37, 2006.

[18] M. Guan, M. Zhai, and Y. Wu. On the sum of the two largest Laplacian eigenvalues of trees. J. Inequal. Appl., 2014:242,

2014.

[19] Y. Hong. On the least eigenvalue of a graph. Systems Sci. Math. Sci., 6:269–272, 1993.

[20] W.H. Haemers, A. Mohammadian, and B. Tayfeh-Rezaie. On the sum of Laplacian eigenvalues of graphs. Linear Algebra

Appl., 432:2214–2221, 2010.

[21] C. He, J. Shao, and J. He. On the Laplacian spectral radii of bicyclic graphs. Discrete Math., 308:5981–5995, 2008.

[22] D.P. Jacobs, E.R. Oliveira, and V. Trevisan. Most Laplacian eigenvalues of a tree are small. J. Combin. Theory Ser. B,

146:1–33, 2021.

[23] A.K. Kelmans. The properties of the characteristic polynomial of a graph. Cybernetics-in the service of Communism,

4:27–41, 1967 (in Russian).

[24] H. Lin, Y. Hong, and J. Shu. Some relations between the eigenvalues of adjacency, Laplacian and signless Laplacian matrix

of a graph. Graphs Combin., 31:669–677, 2015.

[25] M. Liu and F. Li. A note on the algebraic connectivity. Journal of Mathematical Study , 46:206–208, 2013 (in Chinese).

[26] J. Li and Y. Pan. A note on the third second largest eigenvalue of the Laplacian matrix of a graph. Linear Multilinear

Algebra, 48:117–121, 2000.

[27] X. Li, Y. Shi, and I. Gutman. Graph Energy. Springer, 2012.

[28] R. Merris. Laplacian matrices of graphs: a survey. Linear Algebra Appl., 197-198:143–176, 1994.

[29] R. Merris. Degree maximal graphs are Laplacian integral. Linear Algebra Appl., 199:381–389, 1994.

[30] A.W. Marshall and I. Olkin. Inequalities: Theory of Majorization and Its Applications. Academic Press, 1979.

[31] V. Nikiforov. On the sum of k largest singular values of graphs and matrices. Linear Algebra Appl., 435:2394–2401, 2011.

[32] V. Nikiforov. Extremal norms of graphs and matrices. Translated from Sovrem. Mat. Prilozh., Vol. 71, 2011. J. Math. Sci.

(N.Y.), 182:164–174, 2012.

[33] V. Nikiforov. Extrema of graph eigenvalues. Linear Algebra Appl., 482:158–190, 2015.

[34] V. Nikiforov. Beyond graph energy: Norms of graphs and matrices. Linear Algebra Appl., 506:82–138, 2016.

[35] W. Ning, H. Li, and M. Lu. On the signless Laplacian spectral radius of irregular graphs. Linear Algebra Appl., 438:2280–

2288, 2013.

[36] V. Nikiforov and X. Yuan. Maximum norms of graphs and matrices, and their complements. Linear Algebra Appl.,

439:1538–1549, 2013.

[37] M. Petrovic and I. Gutman. The path is the tree with smallest greatest Laplacian eigenvalue. Kragujevac J. Math.,

24:67–70, 2002.

[38] K.L. Patra and B.K. Sahoo. Bounds for the Laplacian spectral radius of graphs. Electron. J. Graph Theory Appl.,

5:276–303, 2017.

[39] L. Shen, J. Shao, and J. Guo. Ordering connected graphs with the smallest Laplacian spectral radii. Chinese Ann. Math.

Ser. A, 29:273–282, 2008.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 680-696, September 2022.

Z. Lin et al. 696

[40] R.C. Thompson. Principal submatrices. IX. Interlacing inequalities for singular values of submatrices. Linear Algebra

Appl., 5:1–12, 1972.

[41] Z. You and B. Liu. The minimum Laplacian spread of unicyclic graphs. Linear Algebra Appl., 432:499–504, 2010.

[42] A. Yu, M. Lu, and F. Tian. Ordering trees by their Laplacian spectral radii. Linear Algebra Appl., 405:45–59, 2005.

[43] Y. Zheng, A. Chang, and J. Li. On the sum of the two largest Laplacian eigenvalues of unicyclic graphs. J. Inequal. Appl.,

2015:275, 2015.

[44] Y. Zheng, A. Chang, J. Li, and S. Rula. Bicyclic graphs with maximum sum of the two largest Laplacian eigenvalues. J.

Inequal. Appl., 2016:287, 2016.

[45] M. Zhai, J. Shu, and Y. Hong. On the Laplacian spread of graphs. Appl. Math. Lett., 24:2097–2101, 2011.


	Introduction
	Preliminaries
	Some properties on 1(LI), n(LI) and ||LI||F2 of a graph
	Bounds on ||LI||Fk of a graph
	On the ||LI||Fk of c-cyclic graphs
	References

