THE STRUCTURE OF LINEAR PRESERVERS OF LEFT MATRIX
MAJORIZATION ON \(\mathbb{R}^p \)

FATEMEH KHALOOEI† AND ABBAS SALEMI†

Abstract. For vectors \(X, Y \in \mathbb{R}^n \), \(Y \) is said to be left matrix majorized by \(X \) (\(Y \prec_\ell X \)) if for some row stochastic matrix \(R \), \(Y = RX \). A linear operator \(T: \mathbb{R}^p \to \mathbb{R}^n \) is said to be a linear preserver of \(\prec_\ell \) if \(Y \prec_\ell X \) on \(\mathbb{R}^p \) implies that \(TY \prec_\ell TX \) on \(\mathbb{R}^n \). The linear operators \(T: \mathbb{R}^p \to \mathbb{R}^n \) (\(n < p(p-1) \)) which preserve \(\prec_\ell \) have been characterized. In this paper, linear operators \(T: \mathbb{R}^p \to \mathbb{R}^n \) which preserve \(\prec_\ell \) are characterized without any condition on \(n \) and \(p \).

Key words. Row stochastic matrix, Doubly stochastic matrix, Matrix majorization, Weak matrix majorization, Left (right) multivariate majorization, Linear preserver.

AMS subject classifications. 15A04, 15A21, 15A51.

1. Introduction. Let \(M_{nm} \) be the algebra of all \(n \times m \) real matrices. A matrix \(R = [r_{ij}] \in M_{nm} \) is called a row stochastic (resp., row substochastic) matrix if \(r_{ij} \geq 0 \) and \(\sum_{k=1}^m r_{ik} = 1 \) (resp., \(\leq 1 \)) for all \(i, j \). For \(A, B \) in \(M_{nm} \), \(A \) is said to be left matrix majorized by \(B \) (\(A \prec_\ell B \)), if \(A = RB \) for some \(n \times n \) row stochastic matrix \(R \). These notions were introduced in [11]. If \(A \prec_\ell B \prec_\ell A \), we write \(A \sim_\ell B \). Let \(T: \mathbb{R}^p \to \mathbb{R}^n \) be a linear operator. \(T \) is said to be a linear preserver of \(\prec_\ell \) if \(Y \prec_\ell X \) on \(\mathbb{R}^p \) implies that \(TY \prec_\ell TX \) on \(\mathbb{R}^n \). For more information about types of majorization see [1], [5] and [10]; for their preservers see [2]-[4], [6] and [9].

We shall use the following conventions throughout the paper: Let \(T: \mathbb{R}^p \to \mathbb{R}^n \) be a nonzero linear operator and let \([T] = [t_{ij}] \) denote the matrix representation of \(T \) with respect to the standard bases \(\{e_1, e_2, \ldots, e_p\} \) of \(\mathbb{R}^p \) and \(\{f_1, f_2, \ldots, f_n\} \) of \(\mathbb{R}^n \). If \(p = 1 \), then all linear operators on \(\mathbb{R}^1 \) are preservers of \(\prec_\ell \). Thus, we assume \(p \geq 2 \). Let \(A_i \) be \(m_i \times p \) matrices, \(i = 1, \ldots, k \). We use the notation \([A_1/A_2/\ldots/A_k]\) to denote the corresponding \((m_1 + m_2 + \ldots + m_k) \times p \) matrix. We let \(e = (1,1,\ldots,1)^t \in \mathbb{R}^p \), and denote

\[
a := \max \{\max T(e_1), \ldots, \max T(e_p)\}, \\
b := \min \{\min T(e_1), \ldots, \min T(e_p)\}.
\]
Linear Preservers of Left Matrix Majorization

Theorem 1.1. ([9, Theorem 2.2]) Let $T: \mathbb{R}^p \rightarrow \mathbb{R}^n$ be a nonzero linear preserver of \prec_{ℓ} and suppose $p \geq 2$. Then $p \leq n$, $b \leq 0 \leq a$ and for each $i \in \{1, \ldots, p\}$, $a = \max T(e_i)$ and $b = \min T(e_i)$. In particular, every column of $[T]$ contains at least one entry equal to a and at least one entry equal to b.

Definition 1.2. Let $T: \mathbb{R}^p \rightarrow \mathbb{R}^n$ be a linear operator. We denote by P_i (resp., N_i) the sum of the nonnegative (resp., non positive) entries in the i^{th} row of $[T]$. If all the entries in the i^{th} row are positive (resp., negative), we define $N_i = 0$ (resp., $P_i = 0$).

We know that T is a linear preserver of \prec_{ℓ} if and only if αT is also a linear preserver of \prec_{ℓ} for some nonzero real number α. Without loss of generality we make the following assumption.

Assumption 1.3. Let $T: \mathbb{R}^p \rightarrow \mathbb{R}^n$ be a nonzero linear preserver of \prec_{ℓ}. Let a and b be as in (1.1). We assume that $0 \leq -b \leq 1 = a$.

Definition 1.4. Let P be the permutation matrix such that $P(e_i) = e_{i+1}$, $1 \leq i \leq p-1$, $P(e_p) = e_1$. Let I denote the $p \times p$ identity matrix, and let $r, s \in \mathbb{R}$ be such that $rs < 0$. Define the $p(p-1) \times p$ matrix $P_p(r, s) = [P_1/P_2/ \ldots /P_{p-1}]$, where $P_j = rI + sP^j$, for all $j = 1, 2, \ldots, p-1$. It is clear that up to a row permutation, the matrices $P_p(r, s)$ and $P_p(s, r)$ are equal. Also define $P_p(r, 0) := rI$, $P_p(0, s) := sI$ and $P_p(0, 0)$ as a zero row.

The structure of all linear operators $T: M_{nm} \rightarrow M_{nm}$ preserving matrix majorizations was considered in [6, 7, 8]. Also the linear operators T from \mathbb{R}^p to \mathbb{R}^n that preserve the left matrix majorization \prec_{ℓ} were characterized in [9] for $n < p(p-1)$. In the present paper, we will characterize all linear preservers of \prec_{ℓ} mapping \mathbb{R}^p to \mathbb{R}^n without any additional conditions.

2. Left matrix majorization. In this section we obtain a key condition that is necessary for $T: \mathbb{R}^p \rightarrow \mathbb{R}^n$ to be a linear preserver of \prec_{ℓ}. We first need the following.

Lemma 2.1. Let $T : \mathbb{R}^p \rightarrow \mathbb{R}^n$ be a linear operator such that $\min T(Y) \leq \min T(X)$ for all $X \prec_{\ell} Y$. Then T is a preserver of \prec_{ℓ}.

Proof. Let $X \prec_{\ell} Y$. It is enough to show that $\max T(X) \leq \max T(Y)$. Since $X \prec_{\ell} Y$, $-X \prec_{\ell} -Y$, and hence $\min T(-Y) \leq \min T(-X)$. This means that $\max T(X) \leq \max T(Y)$. Then T is a preserver of \prec_{ℓ}. \[QED\]

Remark 2.2. Let $T : \mathbb{R}^p \rightarrow \mathbb{R}^n$ be a linear preserver of \prec_{ℓ} and let a and b be as in Assumption 1.3. By Theorem 1.1 we know that in each column of $[T] = [t_{ij}]$ there is at least one entry equal to $a(= 1)$ and at least one entry equal to b. For $1 \leq k \leq p$, \[QED\]
we define

$$I_k = \{ i : 1 \leq i \leq n, t_{ik} = 1 \}, \quad J_k = \{ j : 1 \leq j \leq n, t_{jk} = b \}.$$

Next we state the key theorem of this paper.

Theorem 2.3. Let $T : \mathbb{R}^p \rightarrow \mathbb{R}^n$ be a linear preserver of $\prec _\ell$ and let a and b be as in Assumption 1.3. Then there exist $0 \leq \alpha \leq 1$ and $b \leq 0$ such that $\mathcal{P}_p(1, \beta)$ and $\mathcal{P}_p(\alpha, b)$ are submatrices of $[T]$, where $\mathcal{P}_p(r, s)$ is as in Definition 1.4.

Proof. Let $1 \leq k \leq p$ be a fixed number and let I_k and J_k be as in Remark 2.2. Since T is a linear preserver of $\prec _\ell$, it follows that I_k and J_k are nonempty sets. Also $e_k + e_l \prec _\ell e_k$, $l \neq k$. Thus, the other entries in the i^{th} row, $i \in I_k$ (resp., j^{th} row, $j \in J_k$) are non positive (resp., nonnegative). Hence, $t_{il} \leq 0$, $t_{jl} \geq 0$, $l \neq k$, $i \in I_k$, and $j \in J_k$. Let $\beta_k = \sum_{i \neq k} t_{il} \leq 0$, $i \in I_k$ and $\alpha_k = \sum_{i \neq k} t_{jl} \geq 0$, $j \in J_k$. Set

$$\beta_k := \min \{ \beta_k, i \in I_k \}, \quad \alpha_k := \max \{ \alpha_k, j \in J_k \}. \tag{2.1}$$

Define $X_k = -(N + 1)e_k + e$. Choose N_0 large enough such that for all $N \geq N_0$ and $1 \leq i \leq n$,

$$\min T(X_k) = -N + \beta_k \leq -N t_{ik} + \sum_{i \neq k} t_{il} \leq -N b + \alpha_k = \max T(X_k). \tag{2.2}$$

We know that $X_k \prec _\ell X_r = -(N + 1)e_r + e$, $1 \leq r \leq p$ and T is a linear preserver of $\prec _\ell$. Hence by (2.2), $\alpha := \alpha_k = \alpha_r$ and $\beta := \beta_k = \beta_r$, $1 \leq r \leq p$. Also, $X_k \prec _\ell -N e_i + e_j$, $i \neq j$. For each $N \geq N_0$, there exists $1 \leq h \leq n$ such that $-N t_{hi} + t_{hj} = \min T(-N e_i + e_j) = \min T(X_k) = -N + \beta$ and for each $1 \leq i \leq p$, $1 \leq j \leq p$ and $N \geq N_0$, there exists $1 \leq h \leq n$ such that $-N(1 - t_{hi}) = t_{hj} - \beta$. It follows that $t_{hi} = 1$, $t_{hj} = \beta$. Hence $\mathcal{P}_p(1, \beta)$ is a submatrix of $[T]$. Similarly, there exists N_1, such that for each $N \geq N_1$ there exists $1 \leq h \leq n$ so that $-N t_{hi} + t_{hj} = \max T(-N e_i + e_j) = \max T(X_k) = -N b + \alpha$ and $-N(b - t_{hi}) = t_{hj} - \alpha$. Thus, $t_{hi} = b$ and $t_{hj} = \alpha$. Since $1 \leq i \neq j \leq p$ was arbitrary, $\mathcal{P}_p(b, \alpha)$ is a submatrix of $[T]$. Therefore, $\mathcal{P}_p(1, \beta)$ and $\mathcal{P}_p(b, \alpha)$ are submatrices of $[T]$. □

Remark 2.4. Let $T : \mathbb{R}^p \rightarrow \mathbb{R}^n$ and $\tilde{T} : \mathbb{R}^p \rightarrow \mathbb{R}^m$ be two linear operators such that $[T] = [T_1, T_2, \ldots, T_n]$ and let $[\tilde{T}] = [\tilde{T}_1, \tilde{T}_2, \ldots, \tilde{T}_m]$ be the matrix representation of these operators with respect to the standard basis. Let $\mathcal{R}(T) = \{ T_1, T_2, \ldots, T_n \}$ be the set of all rows of $[T]$. If $\mathcal{R}(T) \subset \mathcal{R}(\tilde{T})$, then T preserves $\prec _\ell$ if and only if \tilde{T} preserves $\prec _\ell$.

Lemma 2.5. Let T be a linear operator on \mathbb{R}^p. If $[T] = \mathcal{P}_p(\alpha, \beta)$, $\alpha \beta \leq 0$, then T is a preserver of $\prec _\ell$.

Proof. Without loss of generality, let $\beta \leq 0 \leq \alpha$ and let $X = (x_1, \ldots, x_p)^t$, $Y = (y_1, \ldots, y_p)^t \in \mathbb{R}^p$ such that $X \prec_\ell Y$. Then $y_m = \min Y \leq x_i \leq \max Y = y_M$, for all $1 \leq i \leq p$. It is easy to check that $\alpha y_m + \beta y_M \leq \alpha x_i + \beta x_j$, for all $i \neq j \in \{1, \ldots, p\}$, which implies $\min TY \leq \min TX$. Hence by Lemma 2.1, $TX \prec_\ell TY$. \hfill \Box

3. Left matrix majorization on \mathbb{R}^2. Let $T : \mathbb{R}^2 \to \mathbb{R}^n$ be a linear operator and let a, b, be as in Assumption 1.3. We consider the square $S = [b, 1] \times [b, 1]$ in \mathbb{R}^2.

Definition 3.1. Let $T : \mathbb{R}^2 \to \mathbb{R}^n$ be a linear operator and let $[T] = [T_1/\ldots/T_n]$, where $T_i = (t_{i1}, t_{i2})$, $1 \leq i \leq n$. Define

$$\Delta := \text{Conv} \{ (t_{i1}, t_{i2}) | (t_{i1}, t_{i2}) \neq (t_{j1}, t_{j2}) \} \subseteq \mathbb{R}^2.$$

Also, let $C(T)$ denote the set of all corners of Δ.

Lemma 3.2. Let $T : \mathbb{R}^2 \to \mathbb{R}^n$ be a linear preserver of \prec_ℓ and $[T] = [T_1/\ldots/T_n]$, where $T_j = (t_{j1}, t_{j2})$, $1 \leq j \leq n$. If for some $1 \leq i \leq n$, $t_{i1}t_{i2} > 0$, then $T_i \notin C(T)$, where $C(T)$ is as in Definition 3.1.

Proof. Assume that, if possible, there exists $1 \leq i \leq n$ such that $T_i \in C(T)$ and $t_{i1}t_{i2} > 0$. By Remark 2.4 we can assume that $[T]$ has no identical rows. Without loss of generality, we assume that there exist $1 \leq i \leq n$ and real numbers $m \leq M$ such that $t_{i1} > 0, t_{i2} > 0$ and $m t_{i1} + M t_{i2} < m t_{j1} + M t_{j2}, j \neq i$. Choose $\varepsilon > 0$ small enough so that $m t_{i1} + (M + \varepsilon) t_{i2} < m t_{j1} + (M + \varepsilon) t_{j2}, j \neq i$. Since $(m, M)^t \lessdot_\ell (m, M + \varepsilon)^t, T(m, M)^t \lessdot_\ell T(m, M + \varepsilon)^t$. But $\min (T(m, M + \varepsilon)^t) = m t_{i1} + (M + \varepsilon) t_{i2} > m t_{i1} + M t_{i2} = \min (T(m, M)^t)$, a contradiction. \hfill \Box

Next we shall characterize all linear operators $T : \mathbb{R}^2 \to \mathbb{R}^n$ which preserve \prec_ℓ.

Theorem 3.3. Let $T : \mathbb{R}^2 \to \mathbb{R}^n$ be a linear operator. Then T is a linear preserver of \prec_ℓ if and only if $P_2(x, y)$ is a submatrix of $[T]$ and $xy \leq 0$ for all $(x, y) \in C(T)$.

Proof. Let T be a linear preserver of \prec_ℓ with $0 \leq -b \leq 1 = a$. Let $(x, y) \in C(T)$, then by Lemma 3.2, $xy \leq 0$. Without loss of generality, let $T_i = (t_{i1}, t_{i2}) \in C(T)$ and $t_{i1}t_{i2} \leq 0$. By Remark 2.4, we assume that $[T]$ has no identical rows. Then there exist real numbers $m, M \in \mathbb{R}$ such that $m t_{i1} + M t_{i2} < m t_{j1} + M t_{j2}, j \neq i$. Choose $\varepsilon_0 > 0$ small enough so that $m(- \varepsilon) t_{i1} + (M + \varepsilon) t_{i2} < m(- \varepsilon) t_{j1} + (M + \varepsilon) t_{j2}, j \neq i, 0 < \varepsilon \leq \varepsilon_0$. Since $(M + \varepsilon, m - \varepsilon)^t \lessdot_\ell (m - \varepsilon, M + \varepsilon)^t, T(M + \varepsilon, m - \varepsilon)^t \lessdot_\ell T(m - \varepsilon, M + \varepsilon)^t$.

Hence, for all $0 \leq \varepsilon \leq \varepsilon_0$, there exist $1 \leq k \leq n$ such that $T_k = (t_{k1}, t_{k2}) \in C(T)$ and $(m - \varepsilon) t_{i1} + (M + \varepsilon) t_{i2} = \min T(m - \varepsilon, M + \varepsilon)^t = \min (T(M + \varepsilon, m - \varepsilon)^t) = (M + \varepsilon) t_{k1} + (m - \varepsilon) t_{k2}$. Since $k \in \{1, 2, \ldots, n\}$ is a finite set, there exists k such that $t_{k1} = t_{i2}$ and $t_{k2} = t_{i1}$. Therefore, $P_2(t_{i1}, t_{i2})$ is a submatrix of $[T]$.

Conversely, let $P_2(x, y)$ be a submatrix of $[T]$ and suppose for all $(x, y) \in C(T)$,
Since $xy \leq 0$. Define the linear operator \hat{T} on \mathbb{R}^2 such that $[\hat{T}] = [P_2(x_1, y_1) / \cdots / P_2(x_r, y_r)]$, where $(x_i, y_i) \in C(T), 1 \leq i \leq r$. By elementary convex analysis, we know that $\max X = \max \hat{T}(X)$ and $\min X = \min \hat{T}(X)$ for all $X \in \mathbb{R}^2$. Hence it is enough to show that \hat{T} is a linear preserver of \prec_ℓ. By Lemma 2.5, each $P_2(x_i, y_i)$ is a linear preserver of \prec_ℓ. Thus, \hat{T} is a linear preserver of \prec_ℓ. \square

4. Left matrix majorization on \mathbb{R}^p. In this section we shall characterize all linear operators $T : \mathbb{R}^p \rightarrow \mathbb{R}^n$ which preserve \prec_ℓ. We shall prove several lemmas and prove the main theorem of this paper.

Definition 4.1. Let $T : \mathbb{R}^p \rightarrow \mathbb{R}^n$ be a linear operator and let $[T] = [T_1 / \cdots / T_n]$. Define

$$\Omega := \text{Conv}([T_i = (t_{i1}, \ldots, t_{ip}), 1 \leq i \leq n]) \subseteq \mathbb{R}^p.$$

Also, let $C(T)$ be the set of all corners of Ω.

Lemma 4.2. Let $T : \mathbb{R}^p \rightarrow \mathbb{R}^n$ be a linear preserver of \prec_ℓ and $[T] = [T_1 / \cdots / T_n]$, where $T_i = (t_{i1}, t_{i2}, \ldots, t_{ip}), 1 \leq i \leq n$. Suppose there exists $1 \leq i \leq n$ such that $t_{ij} > 0, \forall 1 \leq j \leq p$, or $t_{ij} < 0, \forall 1 \leq j \leq p$. Then $T_i \notin C(T)$, where $C(T)$ is as in Definition 4.1.

Proof. Assume that, if possible, there exists $1 \leq i \leq n$ such that $T_i \in C(T)$ and $t_{ij} > 0$, for all $1 \leq j \leq p$, or $t_{ij} < 0$, for all $1 \leq j \leq p$. By Remark 2.4, without loss of generality, we can assume that $[T]$ has no identical rows and there exists $1 \leq i \leq n$ such that $t_{ij} > 0$, for all $1 \leq j \leq p$. Since $T_i \in C(T)$, there exists $X = (x_1, \ldots, x_p)^T$ such that $x_1t_{i1} + x_2t_{i2} + \cdots + x_pl_{ip} < x_1t_{j1} + x_2t_{j2} + \cdots + x_pl_{jp}, 1 \neq i$. Let $x_k = \max \{x_i, 1 \leq i \leq p\}$. Choose $\varepsilon > 0$ small enough so that $x_1t_{i1} + \cdots + (x_k + \varepsilon)t_{ik} + \cdots + x_pl_{ip} < x_1t_{j1} + \cdots + (x_k + \varepsilon)t_{jk} + \cdots + x_pl_{jp}, 1 \neq i$. Define $\tilde{X} = (x_1, \ldots, x_k + \varepsilon, \ldots, x_p)^T$. Since $t_{ik} > 0$, hence $\min T(X) = x_1t_{i1} + x_2t_{i2} + \cdots + x_pl_{ip} < x_1t_{i1} + \cdots + (x_k + \varepsilon)t_{ik} + \cdots + x_pl_{ip} = \min T(\tilde{X})$. But $X \prec_\ell \tilde{X}$, a contradiction. \square

Let $T : \mathbb{R}^p \rightarrow \mathbb{R}^n$ be a linear operator. Without loss of generality, we assume that $[T] = [T^p/T^n/\bar{T}]$, where all entries of T^p (resp., T^n) are positive (resp., negative) and each row of \bar{T} has nonnegative and non positive entries.

Corollary 4.3. Let T and \bar{T} be as above. Then T preserves \prec_ℓ if and only if $C(T) = C(\bar{T})$ and \bar{T} preserves \prec_ℓ, where $C(T)$ is as in Definition 4.1.

Proof. Let T preserve \prec_ℓ. By Lemma 4.2, $C(T) = C(\bar{T})$. Thus, if $X \in \mathbb{R}^p$, then $\max T(X) = \max \bar{T}(X)$ and $\min T(X) = \min \bar{T}(X)$. Therefore \bar{T} preserves \prec_ℓ. Conversely, let $C(T) = C(\bar{T})$. Then $\max T(X) = \max \bar{T}(X)$ and $\min T(X) = \min \bar{T}(X)$. Since \bar{T} preserves \prec_ℓ, T preserves \prec_ℓ. \square
Definition 4.4. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator. Define

$$\Delta = \text{Conv} \{ (P_i, N_i), (N_i, P_i) : 1 \leq i \leq n \},$$

where P_i, N_i be as in (1.2). Let $E(T) = \{ (P_i, N_i) : (P_i, N_i) \text{ is a corner of } \Delta \}$. Let $1 \leq i \leq n$, define $[i] = \{ j : 1 \leq j \leq n, P_i = P_j \text{ and } N_i = N_j \}$.

Lemma 4.5. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear preserver of \prec_ℓ and let $C(T), E(T)$ be as in Definitions 4.1, 4.4, respectively. If $(P_r, N_r) \in E(T)$ for some $1 \leq r \leq n$, then there exists $k \in [r]$ such that $T_k \in C(T)$.

Proof. Suppose there exist $1 \leq r \leq n$ such that $(P_r, N_r) \in E(T)$. Then there exists $m \leq M$ such that

$$P_r m + N_r M < P_j m + N_j M, \quad j \notin [r]. \quad (4.1)$$

Let $X \in \mathbb{R}^p$ such that $\min(X) = m$ and $\max(X) = M$. Then there exists $1 \leq k \leq n$ such that $\min TX = \sum_{l=1}^p t_{kl} x_l$. Hence

$$P_r m + N_r M \leq P_k m + N_k M \leq \sum_{l=1}^p t_{kl} x_l = \min T X. \quad (4.2)$$

Define $Y \in \mathbb{R}^p$ by $y_l = m$, if $t_{rl} > 0$ and $y_l = M$, if $t_{rl} \leq 0$. Obviously $Y \prec_\ell X$. Since T preserves \prec_ℓ, $TY \prec_\ell TX$ which implies that

$$P_k m + N_k M \leq \sum_{l=1}^p t_{kl} x_l = \min T X \leq \min T Y \leq P_r m + N_r M. \quad (4.3)$$

Now, by (4.2) and (4.3), we have $P_r m + N_r M = P_k m + N_k M$. Thus by (4.1), $k \in [r]$ and $\min TX = \sum_{l=1}^p t_{kl} x_l$. Hence $T_k \in C(T)$ for some $k \in [r]$.

Next we state the main result in this paper.

Theorem 4.6. Let T and $E(T)$ be as in Definition 4.4. Then T preserves \prec_ℓ if and only if $P_\ell (\alpha, \beta)$ is a submatrix of $[T]$ for all $(\alpha, \beta) \in E(T)$.

Proof. Let T be a preserver of \prec_ℓ and let $(P_r, N_r) \in E(T)$. Then there exists $m \leq M$ such that $P_r m + N_r M < P_j m + N_j M, \quad j \notin [r]$. Choose ε_0 small enough so that for all $0 < \varepsilon < \varepsilon_0$,

$$P_r (m - \varepsilon) + N_r (M + \varepsilon) < P_j (m - \varepsilon) + N_j (M + \varepsilon), \quad j \notin [r], \quad (4.4)$$

If $j \in [r]$, then $P_j = P_r$ and $N_j = N_r$. Thus

$$P_r (m - \varepsilon) + N_r (M + \varepsilon) \leq P_j (m - \varepsilon) + N_j (M + \varepsilon), \quad 1 \leq j \leq n.$$

Let $0 < \varepsilon < \varepsilon_0$, be fixed and let $X^\varepsilon = (x_1^\varepsilon, \ldots, x_p^\varepsilon)^t \in \mathbb{R}^p$ with $\min X^\varepsilon = m - \varepsilon$ and $\max X^\varepsilon = M + \varepsilon$. As in the proof of Lemma 4.5, there exists $k \in [r]$ such that

$$P_r(m - \varepsilon) + N_r(M + \varepsilon) = \min T(X^\varepsilon) = \sum_{l=1}^p t_{kl}x_l^\varepsilon.$$

Fix $i \neq j \in \{1, \ldots, p\}$ and define $Y^\varepsilon = (y_1^\varepsilon, \ldots, y_p^\varepsilon)^t \in \mathbb{R}^p$ such that $y_i^\varepsilon = m - \varepsilon$, $y_j^\varepsilon = M + \varepsilon$ and $y_l^\varepsilon = \gamma_l$, $m - \varepsilon < \gamma_l < M + \varepsilon$, $l \neq i, j$. Since $X^\varepsilon \sim_T Y^\varepsilon$, $TX^\varepsilon \sim_T TY^\varepsilon$, there exists $q \in [r]$ such that $t_{qi}(m - \varepsilon) + t_{qj}(M + \varepsilon) + \sum_{l\neq i,j} \gamma_l t_{ql} = P_r(m - \varepsilon) + N_r(M + \varepsilon)$. Since $0 < \varepsilon < \varepsilon_0$ and $m - \varepsilon < \gamma_l \leq M + \varepsilon$, $l \neq r, s$ are arbitrary, it is easy to show that there exists $s \in [r]$ such that $t_{si} = P_r$ and $t_{sj} = N_r$ and $t_{st} = 0, l \neq i, j$. Therefore $[T]$ has $P_r(P_r, N_r)$ as a submatrix.

Conversely, Let $E(T) = \{(P_{i_1}, N_{i_1}), \ldots, (P_{i_s}, N_{i_s})\}$. Then up to a row permutation $[T] = [P_p(P_{i_1}, N_{i_1})/ \ldots / P_p(P_{i_s}, N_{i_s})]/Q]$. Let $T_i \in Q$ and suppose there exists $X \in \mathbb{R}^p$ such that

$$\min T(X) = \sum_{i=1}^p t_{il}x_i \leq \sum_{l=1}^p t_{ij}x_l, 1 \leq j \leq n.$$

Obviously, $P_im + N_iM \leq \sum_{l=1}^p t_{il}x_i \leq \sum_{l=1}^p t_{jl}x_l, 1 \leq j \leq n$, where $m = \min X$ and $M = \max X$. We know that $(P_i, N_i) \in \Delta$ and Δ is convex. Hence there is $1 \leq k \leq n$ such that $(P_k, N_k) \in E(T)$ and $P_km + N_kM \leq P_im + N_iM$. As in the proof of Lemma 4.5, $\min TX = P_km + N_kM$. Then $\min \tilde{T}X \leq \min TX$. But we know that $\min T(X) \leq \min T\tilde{T}X$ and thus $\min T\tilde{T}X = \min TX$. Similarly, $\max T\tilde{T}X = \max TX$. Therefore, T is a preserver of \prec_ε if and only if T preserves \prec_ε. By Lemma 2.5 each $P_p(P_{i_1}, N_{i_1})$ is a preserver of \prec_ε, $1 \leq l \leq k$. Hence \tilde{T} is a preserver of \prec_ε and the theorem is proved.

Next we state necessary conditions for $T : \mathbb{R}^p \rightarrow \mathbb{R}^n$ to be a linear preserver of \prec_ε. We use the notation of Theorem 2.3 in the following corollary.

Corollary 4.7. Let $T : \mathbb{R}^p \rightarrow \mathbb{R}^n$ be a linear operator and let a and b be as given in (1.1). If the following conditions hold, then T is a linear preserver of \prec_ε.

1. $[T]$ has $[P_p(a, 0)/P_p(0, b)/P_p(a, b)]$ as a submatrix.
2. $0 \leq P_i \leq a$ and $b \leq N_i \leq 0, \ 1 \leq i \leq n$.

where P_i and N_i, $1 \leq i \leq n$ are as in Definition 1.2.

Proof. It is clear that $E(T) = \{(a, 0), (0, b), (a, b)\}$. Since $[T]$ has $P_p(a, 0), P_p(0, b)$ and $P_p(a, b)$ as submatrices, it follows by Theorem 4.6 that T is a linear preserver of \prec_ε.

Linear Preservers of Left Matrix Majorization

Let \(T : \mathbb{R}^p \to \mathbb{R}^n \) be a linear preserver of \(\prec_\ell \), and let \([T] = [T^1|T^2|\ldots|T^p]\), where \(T^i \) is the \(i^{th} \) column of \([T]\). For \(i \neq j \in \{1, \ldots, p\} \) define \(T^{ij} : \mathbb{R}^2 \to \mathbb{R}^n \) such that \([T^{ij}] = [T^i|T^j]\).

Lemma 4.8. Let \(T : \mathbb{R}^p \to \mathbb{R}^n \) be a linear preserver of \(\prec_\ell \), and let \(T^{ij} \) be as above. Then \(T^{ij} \) is a linear preserver of \(\prec_\ell \) for all \(i \neq j \in \{1, \ldots, p\} \).

Proof. Let \(i \neq j \in \{1, \ldots, p\} \) and let \(x = (x_1, x_2)^t \), \(y = (y_1, y_2)^t \in \mathbb{R}^2 \) such that \(x \prec_\ell y \). Define \(X, Y \in \mathbb{R}^p \) such that \(X_i = x_1, X_j = x_2, Y_i = y_1, Y_j = y_2 \) and \(X_k = Y_k = 0 \), for all \(k \neq i, j \). It is obvious that \(X \prec_\ell Y \) in \(\mathbb{R}^p \) and hence \(TX \prec_\ell TY \) in \(\mathbb{R}^n \). But \(T^{ij}x = x_1T^i + x_2T^j = TX \prec_\ell TY = y_1T^i + y_2T^j = T^{ij}y \). Therefore, \(T^{ij} \) is a linear preserver of \(\prec_\ell \). \(\square \)

The following example shows that the converse of Lemma 4.8 is not necessarily true.

Example 4.9. Assume \([T] = [P_3(1,-0.5)/0.25 0.25 0.25]\). Consider \(X = (-1,-1,-1)^t \) and \(Y = (-1,-1,-0.75)^t \), we know that \(X \prec_\ell Y \) and \(\min TX < \min TY \). Thus \(T \) is not a linear preserver of \(\prec_\ell \). However, by Corollary 4.7, for all \(i \neq j \in \{1,2,3\} \), \(T^{ij} \) preserves \(\prec_\ell \).

5. Additional results. In this section we give short proofs of some Theorems from [6, 9].

Theorem 5.1. [6] Let \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) be a linear operator. Then \(T \) preserves \(\prec_\ell \) if and only if \(T \) has the form \(T(X) = (aI + bP)X \) for all \(X \in \mathbb{R}^2 \), where \(P \) is the \(2 \times 2 \) permutation matrix not equal to \(I \), and \(ab \leq 0 \).

Proof. Let \(T \) be a preserver of \(\prec_\ell \). By Assumption 1.3, \(a = 1 \). By Theorem 2.3, there exist \(0 \leq \alpha \leq 1 \) and \(b \leq \beta \leq 0 \) such that \(P(1, \beta) \) and \(P(b, \alpha) \) are submatrices of \([T]\). Since \([T]\) is a \(2 \times 2 \) matrix, \(\beta = b \) and \(\alpha = 1 \). Therefore, \([T] = \begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix} \) and hence \(T(X) = (I + bP)X \), for all \(X \in \mathbb{R}^2 \). Conversely, up to a row permutation, \([T] = P_2(1, b)\) and by Lemma 2.5, \(T \) preserves \(\prec_\ell \). \(\square \)

Theorem 5.2. [6] Let \(p \geq 3 \). Then \(T : \mathbb{R}^p \to \mathbb{R}^p \) is a linear preserver of left matrix majorization if and only if \(T \) is of the form \(X \mapsto aPX \) for some \(a \in \mathbb{R} \) and some permutation matrix \(P \).

Proof. By Assumption 1.3, we have \(a = 1 \). Let \(T \) be a preserver of \(\prec_\ell \). By Theorem 2.3, \(b = 0 \) and \([T] \) has \(P_p(1, 0) \) as a submatrix; hence, up to a row permutation, \([T] = P_p(1, 0) = I \). Conversely, by a row permutation, \([T] = P_p(1, 0)\); hence by Lemma 2.5, \(T \) preserves \(\prec_\ell \). \(\square \)
Theorem 5.3. ([9, Theorem 3.1]) For a linear preserver T of \mathbb{R}^p to \mathbb{R}^n the following assertions hold.

(a) If $n < 2p$ and $p \geq 3$, then T is nonnegative.

(b) If T is nonnegative, then there exists an $n \times n$ permutation matrix Q such that $[T] = Q[I/W]$, where W is a (possibly vacuous) $(n - p) \times p$ matrix of one of the following forms (i), (ii) or (iii):

(i) W is row stochastic;

(ii) W is row substochastic and has a zero row;

(iii) $W = [(cI)/B]$, where $0 < c < 1$ and B is an $(n - 2p) \times p$ row substochastic matrix with row sums at least c.

(c) Let Q be an $n \times n$ permutation matrix, and let W be an $(n - p) \times p$ matrix of the form (i), (ii), or (iii) in part (b). Then the operator $X \mapsto Q[X/(WX)]$ from \mathbb{R}^p into \mathbb{R}^n is a nonnegative linear preserver of \prec_e.

Proof.

(a) Assume that, if possible, $b < 0$. By Theorem 2.3 $n \geq p(p - 1)$. Since $p \geq 3$, $n \geq 2p$, a contradiction.

(b) Since T is nonnegative, $N_i = 0, 1 \leq i \leq n$, and $0 \leq P_i \leq 1$. By Theorem 2.3, $[T]$ has $P_p(1, 0)$ as its submatrix and therefore up to a row permutation $[T] = [I/W]$. Let $c = \min\{P_i, 1 \leq i \leq n\}$. Then $E(T) = \{(1, 0), (c, 0)\}$. By Theorem 4.6, $P_p(c, 0)$ is a submatrix of $[T]$. If $c = 1$ then (i) holds; if $c = 0$ then (ii) holds and if $0 < c < 1$, then (iii) holds.

(c) Let $[T] = [I/W]$, where W is an $(n - p) \times p$ matrix of the form (i), (ii), or (iii) in part (b). Then $E(T) = \{(1, 0), (c, 0)\}$. By Theorem 4.6, T is a nonnegative linear preserver of \prec_e.

Theorem 5.4. ([9, Theorem 4.5]) Assume $T : \mathbb{R}^p \to \mathbb{R}^n$ is a linear preserver of \prec_e, $b < 0$ and $2p \leq n < p(p - 1)$. Let P_i (resp., N_i) denote the sum of the positive (resp., negative) entries of the ith row of $[T]$. Then, up to a row permutation, $[T] = [I/bI/B]$ and $\min(N_i + bP_i) = b$, $(i = 1, 2, \ldots, n)$.

Proof. By Theorem 2.3, $P_p(1, \beta)$ and $P_p(\alpha, b)$ are submatrices of $[T]$. Since $n < p(p - 1)$, $\beta = \alpha = 0$ and $E(T) = \{(1, 0), (0, b)\}$, where $E(T)$ is as in Definition 4.4. Then up to a row permutation, $[T] = [I/bI/B]$ and $\min\{(bx + y) : (x, y) \in \Delta\} = \min\{(bx + y) : (x, y) \in E(T)\} = b$. Therefore, $\min(N_i + bP_i) = b$, $(i = 1, 2, \ldots, n)$.

Acknowledgment. This research has been supported by the Mahani Mathematical Research Center and the Linear Algebra and Optimization Center of Excellence of the Shahid Bahonar University of Kerman.

REFERENCES