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FAMILIES OF GRAPHS WITH TWIN PENDENT PATHS AND THE BRAESS EDGE*

SOOYEONG KIMT

Abstract. In the context of a random walk on an undirected graph, Kemeny’s constant can measure the average travel
time for a random walk between two randomly chosen vertices. We are interested in graphs that behave counter-intuitively in
regard to Kemeny’s constant: in particular, we examine graphs with a cut-vertex at which at least two branches are paths,
regarding whether the insertion of a particular edge into a graph results in an increase of Kemeny’s constant. We provide
several tools for identifying such an edge in a family of graphs and for analysing asymptotic behaviour of the family regarding
the tendency to have that edge; and classes of particular graphs are given as examples. Furthermore, asymptotic behaviours of
families of trees are described.
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1. Introduction. Imagine a situation that adding roads to a road network in order to reduce traffic
congestion results in, on contrary to one’s expectation, slowing down overall traffic flow (called Braess’s
paradox [3]). Random walks on graphs can also exhibit a version of this paradox. The family of random
walks on undirected graphs is a special type of Markov chain: the transition probability from an initial
state to another is given by the inverse of the degree of the vertex corresponding to the initial state. The
parameter known as Kemeny’s constant can be used to measure the average time for travel of a Markov
chain between two randomly chosen states; so, in the context of random walks, it can be interpreted as a
measure of how well connected the vertices of a graph are. Related applications can be found in [18] for
detecting potential super-spreaders of COVID-19, and in [9] for determining ‘critical’ roads in vehicle traffic
networks based on Markov chains.

Kemeny’s constant can serve as a proxy for identifying an edge exhibiting the version of the paradox [13],
by examining an edge whose insertion into an undirected graph corresponding to a road network increases
Kemeny’s constant for random walks on the graph (such an edge is called a Braess edge) that corresponds
to travel times on the network. In the present paper, we study under what circumstances graphs can have
a Braess edge in order to see what type of graphs exhibit the version of the paradox.

The term ‘Braess edge’ is introduced in [13] and acknowledges Dietrich Braess who studies Braess’s
paradox for traffic networks [3]. Kirkland and Zeng [13] provides a particular family of trees, with a vertex
adjacent to two pendent vertices (such two vertices are called twin pendent vertices), such that inserting
an edge between the twin pendent vertices causes Kemeny’s constant to increase. Furthermore, Ciardo [8]
extends the result to all connected graphs with twin pendent vertices. Unlike the works [13] and [§], Hu and
Kirkland [11] establishes equivalent conditions for complete multipartite graphs and complete split graphs
to have every non-edge as a Braess edge.
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Our work is to generalise the circumstances in [8, 13] where graphs have a pair of twin pendent vertices;
so, we consider graphs that can be constructed from a connected graph and two paths by identifying a
vertex of the graph and a pendent vertex of each path. We call the two paths twin pendent paths in the
constructed graph. In Section 3, a formula is derived that identifies a graph with twin pendent paths in
which the non-edge between the pendent vertices of the twin pendent paths is a Braess edge. In Section 4, a
combinatorial expression is provided in order to investigate asymptotic behaviour of a family of graphs with
twin pendent paths regarding the tendency to have the non-edge, between the pendent vertices of the twin
pendent paths, as a Braess edge. Furthermore, several families of graphs are discussed throughout Sections
3, 4 and 5. In particular, asymptotic behaviours of families of trees are characterised in Section 5.

2. Preliminaries. Throughout the paper, we assume all graphs to be simple and undirected.

We shall introduce necessary terminology and notation in graph theory. Let G be a graph of order
n with vertex set V(G) and edge set E(G) where n = |[V(G)|. An edge joining vertices v and w of G is
denoted by v ~ w. Let mg be defined as |E(G)|. The subgraph of G induced by a subset S of V(G) is
the graph with vertex set S, where two vertices in S are adjacent if and only if they are adjacent in G.
For v € V(G), we denote by degq(v) the degree of v. A vertex v of a graph G is said to be pendent if
degs(v) = 1. Given a labelling of V(G), we define dg to be the column vector whose i component is
deg (v;) for 1 < i < n, where v; is the i*® vertex in V(G). For v,w € V(G), the distance between v and w
in G is denoted by distg (v, w). For a connected graph G with a vertex v, the eccentricity eq(v) of v in G is
ec(v) = max{distg (v, w)|w € V(G)}. The diameter, denoted diam(G), of G is diam(G) = max{eg(v)|v €
V(G)}.

The trivial graph is the graph of order 1. A tree is a connected graph that has no cycles. A forest is a
graph whose connected components are trees. A spanning tree (resp. a spanning forest) of G is a subgraph
that is a tree (resp. a forest) and includes all of the vertices of G. A k-tree spanning forest of G is a spanning
forest that consists of k trees. For v € V(G), we use G — v to denote the graph obtained from G by the
deletion of v. A vertex v of a connected graph G is called a cut-verter of G if G — v is disconnected. If
G — v has k connected components Gy, ..., Gy for some k > 2, then the subgraph induced by V(G;) U {v}
for 1 <4 <k is called a branch of G at v.

Let us introduce several types of connected graphs. We denote the complete graph of order n by K,
the cycle of length n by C,,, and the path on n vertices by P,. If we need to specify the ordering of vertices

of a cycle or a path, then we use C,, = (v1,va,...,v,,v1) to denote the cycle whose vertices are labelled by
v1,...,Un, and whose edges are v; ~ v, and v; ~ v,y for ¢ = 1,...,n — 1; similarly, P, = (v1,v2,...,v0y)
denotes the path whose vertices are labelled by vy, ..., v, and whose edges are v; ~ v;41 fori=1,...,n—1.

A star S, is a tree on n vertices with one vertex of degree n — 1. For n > 3, v is called the centre vertex of
Sy if degg, (v) =n — 1. For n > k > 1, a broom B, is a tree constructed from the path on k vertices by
adding n — k pendent vertices to one pendent vertex on the path.

Let k > 2, and let G; be a graph with v; € V(G;) for ¢ = 1,...,k. Suppose that V(Gi),...,V(Gy)
are disjoint. Let v ¢ V(G;) for ¢ = 1,...,k. We consider a graph G with vertex set V(G) = {v} U
(Ule V(G;) — vi)), where two vertices  and y in G are adjacent if and only if it satisfies one of the
following: (i) x ~y € Ule E(G;); and (ii) one of  and y is v, and the other is a vertex adjacent to v; in
G; for some 1 < j < k. Then, we say that the graph G is obtained from G, ..., Gy by identifying vertices
V1y..., V) a8 v.
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FIGURE 1. An illustration of twin pendent paths in G.

Let G be a graph. Let Py, 11 = (v1,...,05,+1) and Py,11 = (w1, ..., Wk,+1) where k; and ko are non-
negative integers with k; + ko > 2. Suppose that G is the graph obtained from G, Py, 41, and Pj,4+1 by
identifying a vertex v of G, vy, and wy as v. We say that the paths (v, va,..., vk, +1) and (v, wa ..., Wk,+1)
in G are twin pendent paths (see Figure 1 for illustration). Then, the pendent vertices of the twin pendent
paths in G are Vi, 41 and wg,+1. We remark that considering the construction of é, it is reasonable to
assume that k; and ko are permitted to be 0 (we consider it throughout this paper), as opposed to one’s
anticipation from the word ‘twin pendent paths’, in that Py, +; and Pj,4+1 both are of length at least 1.

Consider a discrete, finite, time-homogeneous Markov chain whose finite state space is {1,...,n}. The
Markov chain can be represented by the transition matrix M. (We refer the interested reader to [17] for the
necessary background for Markov chains.) Then, Kemeny’s constant «(M) is defined as Z;l 2 i jw;, where
m; ; is the mean first passage time from state 7 to state j, and wy is the 4t entry of the stationary distribution.
Note that Kemeny’s constant is independent of i. It is found in [16] that k(M) +1= >, Z;L:1 WMy W, .
This admits the interpretation of Kemeny’s constant in terms of the expected number of steps from a
randomly chosen initial state to a randomly chosen final state. Alternatively, k(M) can be expressed as
k(M) = 2?22 ﬁ where 1, Ao, ..., \, are the eigenvalues of M. For the details, the reader may refer to
[12].

For our work, we use the combinatorial expression for Kemeny’s constant for a random walk on a
connected graph in [13]. In order to emphasise that we are dealing with random walks on connected graphs,
given a connected graph G, we use k(G) to denote Kemeny’s constant for the transition matrix of the random
walk on G. We denote by 7¢ the number of spanning trees of G, and by F¢(i;5) the set of 2-tree spanning
forests of G such that one of the two trees contains a vertex i of G, and the other has a vertex j of G. We
ZG;] where f; = |Fa(i;j)]. Note that f& = 0, that is, the
diagonal entries of Fg are zero. Recall that mg is the number of edges of G. Then, Kemeny’s constant for

define F to be the matrix given by Fg = |

the transition matrix of the random walk on G is given by:

dLFqd
K(G) = —C-C5¢
4mgTG
A non-edge e of G is said to be a Braess edge for G if k(G) < k(G U e) where G U e is the graph obtained
from G by adding e to G. A connected graph G is said to be paradoxical [8] if there exists a Braess edge
for G.

We also introduce some useful notation. We denote by 1, the all 1’s vector of size k, by 0j the all 0’s
vector of size k, and by J, , the all 1’s matrix of size p x ¢. If k = p = ¢, we write J, , as Ji. The subscripts
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k and a pair of p and ¢ are omitted if their sizes are clear from the context. We denote by e, the column
vector whose component in vth position is 1 and 0’s elsewhere, and denote by f# the v column of Fg.
Then, the i*® entry of f2 is . Moreover, f¢ can be written as f¥ if G is clear from the context.

We assume familiarity with basic material on graph theory. We refer the reader to [6] for the necessary
background. In what follows, we omit G that is a subscript or a superscript in the notation described in this
section when no confusion arises, and we use boldface lowercase letters to denote column vectors.

3. Graphs with twin pendent paths and the Braess edge. In this section, for a connected graph
with twin pendent paths, we provide an equivalent condition for the non-edge between the pendent vertices
of the twin pendent paths to be a Braess edge. Moreover, we examine several families of graphs through the
equivalent condition.

We begin with investigating the components in the expression for Kemeny’s constant x(G) where G is
a connected graph with a cut-vertex—a connected graph with twin pendent paths has a cut-vertex.

PROPOSITION 3.1. Let Hy and Hs be connected graphs, and let vi € V(Hy) and vy € V(Hsy). Assume
that G is obtained from Hy and Hy by identifying v1 and ve as a vertex v. Suppose that Hy = Hy — vy and
Hy = Hy —vy. Then, labelling the vertices of G in order of V(Hy), v and V (Hs), we have

A& = i, Oy i,y ) + Oy 1,y i)
mg = My, +MH,,
TG = TH,TH>)»
TH, Fﬁl T8 | T, 6117 + T, 16T
(3.1) e = T, fi 0 T, £ ,
7o, £ 17 + 7, 1| 7, £ TH, Fﬁ2

where f1 and f5 are the column vectors obtained from £, and £, by deleting the v component (which is
0), respectively. Furthermore, we obtain

(3.2) diFedg = tp,dfy, Fuydpy, + maydpy, Fr,d, + Atg,mp,dyy £, + Amgymp, d i, £l

Pmof The conclusions for dg and mq are readily established. We shall consider Fg and 7. Since

= f for all 4,5 € V(G), Fg is symmetric. Hence, we only need to verify the entries above the main
dlagonal Note that v is a cut-vertex of GG. Since all spanning trees of G can be obtained from spanning trees
of Hy and of Hy by identifying v; and vy as v, we have 7¢ = 7, 7H,. Let i,j € V(Hy). For each spanning
forest of Hy in Fpy, (4; ), we can obtain 7p, spanning forests of G in Fg(4;j) from the forest of Hy and each
of 7, spanning trees of Hy by identifying v; and vy. Therefore, ffj = TH, ffjl for 4,5 € V(Hy). Similarly,
for 4,5 € V(Hs), we have fi7 = TH, fiz. Let i € V(Hy) and j € V(Hy). The set Fq(i;j) is a disjoint
union of A; and A;, where A; is the set of spanning forests of G in F¢(4;j) such that the tree having the
vertex i among the two trees contains v, and A; = F(i;7)\A;. Since for each spanning forest in A; the tree
with 4 has v, the tree contains a spanning tree of H; as a subtree. So, any forest in A; can be constructed
from a spanning tree of H; and a spanning forest in Fpy,(ve;j) with vy and vy identified as v. Hence, we
have |A;| = h, 22 Note that f1 Applying an analogous argument to the case |4;|, we have

V2,7 " zvlf vlz

|Aj| = 7o, £ v, Thus, f = 7o, [ Wt 7o, S22 for i € V(Hy) and j € V(Hy). Therefore, our desired results

v,J
for Fg and 7¢ are obtalned
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Now, we shall prove (3.2). Labelling the vertices of Hy (resp. Hs) in order of V(H;) and v (resp. v and
V(Hs)), we have

THQFHI =

T

7'11121*—’1?{1 THQfl F o 0 TH1f2
£T 0 » THiU'Hy = f -
THo I TH,2 TH, 'R,

Note that (£5,)7 = [ff 0] and (f,)” = [0 £]']. Then,

(7P ST ON BRSNS SO K v v
[ 0 e WO = a8, 1y + 7o Ly o (B) T
172
Considering df; = [dF;, O\T\/(ﬁz)l] + [Olq;/(ﬁl)l dj;,] with Fg in (3.1), we have

dLFgsdg

61 T, 61T + T, 1E]

= TH2dglFHldHl +TH1dZF}2FH2dH2 + 2d71j[1 [ 0 TH sz
1

o

= 71,y Frr, dpr, + 7, d iy, Fr,d g, + 2dy, (THzf}}l 1y (g1, + TH11|V(H1)|(f}}2)T) dmu,

= 7'].12(17[_:(1P’1qldH1 +TH1d22FszH2 —|—4TH2mszglf}fll —|—4TH1mHld§2f}fI2. O

We can see from Proposition 3.1 that given my, and 7, for i = 1,2, dch;dG can be computed from
d}; Fu,dp, and df, f}; for i = 1,2. The following examples regarding K, Cy, P, and S, present the
corresponding quantities d” Fid and d”f¥ and assist us later to obtain several results and related examples.

ExAMPLE 3.2. Consider a complete graph K,, on n vertices. Then, m = (g) and 7 = n"~? by Cayley’s
formula (see [6]). Note that K, is symmetric (see [10]), that is, for any pair of edges of K, there is an

automorphism that maps one edge to the other. So, Fx, = a(J — I) where a = ffg" for all i,j € V(K,).

Then, « is the determinant of the submatrix obtained from the Laplacian matrix of K, by deleting i** and

j*® rows and columns where i # j (see [5]). It can be seen that a = 2n"~3. Therefore, for any vertex v in

K,,, we have

dTFd = a(n —1)217(J - )1 =2n""%(n — 1)3,
dTf" =a(n - 1171 —e,) =2n"3(n — 1)

ExaMPLE 3.3. Consider the cycle C,, = (1,2,...,n,1) where n > 3. For 1 < v < n, we obtain

Fg, = [dist(,j)(n — dist(i,j))]lgmgn ,d=21,
(f”)T: [(U—l)(n—(v—l)) oo 1-(n—=1) 0 1-(n—=1) --- (n—v)v].

It can be checked that for v =1,...,n,

2 1
dTFd = g(n —1)n*(n+1)and dTfY = g(n — Dn(n+1).

Note that for any tree T, Fr is the distance matrix of 7 (see [13]), which is the matrix whose (i, j)-entry
is the distance between 7 and j.
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ExXAMPLE 3.4. Consider the path P, = (1,2,...,n) where n > 2. Let v be a vertex of P,. For 1 < v <mn,
we have

Fp, = [|i_j|]1§i,j§n’ d=21, —e; —e,,
f)'=w-1 - 101 -+ n—v].
One can verify that forv=1,... n,

4 2
dTFd = 417F1 — 417 Fe, — 417 Fe,, + 2el Fe, = g(n — 12+ g(n —1),
dTf" = (v —1)2 + (n —v)*.

ExXAMPLE 3.5. Consider a star S,, of order n where n > 3. Suppose that n is the centre vertex. Then,
we have

dT = []'Zfl 0] + (n - l)en7 an = |:2<J B I) 1n—1:| )

17 0

n

Hence, we have that forv=1,...,n,

d"Fd=217_(J - 1)1,_1 +2(n—1)*>=2(n—1)(2n — 3),

q7g — n—1, ifv=n
B 3n—>5, ifv#n.

We consider the following definition for clarity of exposition regarding our work in this paper.

DEFINITION 3.6. Let G be a connected graph on n vertices, and v € V(G). Fix two non-negative integers
ki,ko with k1 + ko > 2. Let é(mkl, k2) denote the graph obtained from G, Py, 11 = (v1,..., U5 +1) and
Pr,t1 = (w1,...,Wgy41) by identifying the vertices v, v; and w;. Also, we denote by @(v, k1, k2) the graph
obtained from G(v, ki,k2) by inserting the edge vk, 41 ~ wy,+1. We say that G is (v, k1, k2)-paradoical if

K(G(v, k1, k2)) > k(G(v, k1, k2)). If G is (v, k1, k2)-paradoxical for every v € V(G), then we say that G is
(K1, k2)-paradozical.

Our main goal stated in the beginning of this section can be rephrased in terms of Definition 3.6: given a
connected graph G with a vertex v, we shall find an equivalent condition for G to be (v, k1, ks )-paradoxical.

ExAMPLE 3.7. Consider the following graphs:

G G(v,1,2) G(v,1,2)

With the aid of MATLAB®, /ﬁ(é(’l}7 1,2)) — /f(é(v, 1,2)) & 0.1667. Further, it is shown in Example 3.19
that G is (v, 1,2)-paradoxical.

Let us continue with the hypothesis and notation of Definition 3.6. To see if G is (v, k1, ko )-paradoxical,

~ ~

we need to investigate k(G (v, k1, k2)) — (G (v, k1, k2)). So, we shall find formulae for dgF@dé and dgF@dé
in Lemmas 3.8 and 3.9, respectively.
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LeEMMA 3.8. Let Py be a path with two pendent vertices x and y where k > 2, and H be a connected
graph. Suppose that G is the graph obtained from P, and H by identifying a verter of Py and a vertex of H,
say v. Let distg(v,x) = k1 and distg(v,y) = ko. Then,

4 2
diFedg = d Fpdy + 4(k — 1)d5L 5 + 1 (3(k —1)* + =1+ dmp (k2 + kg)) :
Proof. The conclusion is straightforward from (3.2) and Example 3.4. d

LEMMA 3.9. Let C be a cycle of length k where k > 3, and H be a connected graph. Suppose that G is
the graph obtained from Cy and H by identifying a vertex of Cy and a vertex of H, say v. Then,

2
dLFgdg = kdh Fydy + 4k2d5 £ + %(k + 2m) (k — Dk(k + 1).

Proof. The conclusion is readily established from (3.2) and Example 3.3. ]

Using Lemmas 3.8 and 3.9, we establish our desired equivalent condition as follows.

THEOREM 3.10. Let G be a connected graph with a vertex v. Suppose that ky,ko > 0, k1 + ko > 2 and
k—1=ky +ka. Then, G is (v, k1, ka)-paradozical if and only if

2
kdg(?fng — Fg)dG + 4méTGk (—3(k1 + kg)(kl + ko — 1) + 2k1k2)>

(3.3) 4 ZmaTek
3
27‘(;]{1

3

Proof. Evidently, mz = mg +k — 1, mg = mg + k and 75 = 7. Since v is a cut-vertex in é, we have

(=5(k1 + k2)® + (k1 + k2)® + (k1 + ka) + 12k1ka (k1 + ko + 1))

(kl + ko + 1)(]{11 + kg)(kl + ko — 1)2 > 0.

Ta = kTg. Then,
dgF@d@ B dgFédé
dmaTs dmaTa
(mg+k— 1)dgF§dé — k(mg + k)dgFédé
dk(mag + k)(mg + k — 1)7¢ '

(G (v, ky, k) — K(G (v, ky, k) =

(3.4) -

Then, G is (v, k1, ko )-paradoxical if and only if
(ma +k —1)d5Fgdg — k(mg + k)d5Fgdg > 0.
For simplicity, let d = dg, f* = {4, F = Fg, m = mg and 7 = 7¢. Using Lemmas 3.8 and 3.9, we have

(m+k—1)d5Fgdg — k(m + k)d5Fadg

2
=(m+k—1) (deFd + 4k2dTfY + g(k +2m)(k — D)k(k + 1))
—k(m+ k) <dTFd +4(k —1)d"fv + gT(k‘ —1)3+ ;7’(]6 — 1) + 4m7 (k3 + k§)>

= —kdTFd + 4mkd™f° + 4m>7k <:1))(k —D(k+1)—k? — /.:5)
2mtk
3
27k 9 3
+ - (k= 1)k(k+1) —2k(k —1)° — k(k—1)) .

((k—Dk(k+1)+2(k—1)*(k+1) —2(k — 1)* — (k — 1) — 6k(ki + k3))
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Since 17d = 2m, we have 4mkd”Tf¥ = 2kdTf?17d. Then, one can check from k — 1 = k; + k» that the last
expression in (3.5) can be recast as the left side of the inequality (3.3). O

Now, we shall introduce the following notation to easily analyse the expression in (3.3). Let G be a
connected graph of order n with V(G) = {1,...,n}, and let

pc(v) = dT(sz1T Fg)dg,
¢1(k1, ke) := —g(lﬁ+k2)(k1+k2—1)+2/€1k2,
(kl, ko) := —(ky + ko) (5(ky + ko)? — (k1 + ko) — 1) + 12k ko (k1 + ko + 1),
) 1= —(k1 + ko + 1) (k1 + ko) (k1 + ko — 1)2,
where v, k1 and ko are integers such that 1 < v < n, ki,ko > 0 and k1 4+ ko > 2. Furthermore, let

ngTGk 27’@]6

3
By Theorem 3.10, G is (v, k1, ko)-paradoxical if and only if ®¢ (v, k1, ko) > 0. We simply write @ (v, k1, k2)
and ¢g(v) as (v, ki, k) and ¢(v), respectively, if G is clear from the context. Note that ¢;(ki, k2) =
@i(ka, k1) for i =1,2,3. So, P (v, k1, ka) = Pi(v, ko, k1).

REMARK 3.11. A connected graph G is (v, k1, ko)-paradoxical if and only if G is (v, k2, k1 )-paradoxical.
Furthermore, G is (k1, ka)-paradoxical if and only if G is (ks, k1)-paradoxical.

(36) (I)G(’U,kl,kg) = k(bg(’U) +4mé7‘gk¢1(/€1,k2) + ¢2(k1,/€2)

¢3(k1, k2).

Signs of ¢;(ki,ks) for i = 1,2,3 and ¢g(v). We shall consider the signs of ¢;(k1, k) for i = 1,2,3
in terms of k; and ko and consider an upper bound for each ¢;(k1,k2). Evidently, ¢3(k1,ks) decreases as
k1 + ko increases, and so

(37) ¢3(/€17 kg) < —6 for any ki, ks > 0 where ky + ko > 2,

with equality if and only if k1 + ko = 2. Next, ¢1(k1, k2) can be written as:
2.9 2
o1 (k1, ko) = —g(kl — (ko + Dk1 + k5 — ko).

Setting ¢ (k1, k2) = 0, we have

1
k1:2((k’z-‘rl)ﬂ:\/—:yﬂ%-l-ﬁkz—f—l).

Since ¢1 (k1, ko) is symmetric, without loss of generality, we shall fix ko first. It follows from —3k2+6ky+1 < 0
that if ko <1 — % <0Qorky>1+ QT*/g > 2, then ¢1(k1,k2) < 0 for any k1 > 0. Furthermore, if ko = 1
then ¢1(1,1) = 2, ¢1(2,1) = 0 and ¢1(k1,1) < 0 for ky > 2. Finally, for k; = 2, we have ¢(0,2) = —3,
$1(1,2) = $1(2,2) = 0 and ¢1(k1,2) < 0 for ky > 2. Therefore, ¢1(k1,k2) > 0 if and only if (k1, ke) = (1,1);
¢1(k1,]€2) = 0 if and only if (k‘l,k’g) S {(1,2),(2, 1),(2,2)}; and qf)l(k'l,k‘g) < 0 for any ki,ko > 0 with
k1 + ko > 2 and (k, ko) ¢ {(1,1),(1,2),(2,1),(2,2)}.

REMARK 3.12. We have gﬁl = —%ki + 2(k2 + 1). Then, ¢1(2,0) = —3 and ‘%1 < 0 for ky >
2; ¢1(3,1) = —2 and % . < 0 for k1 > 3; ¢1(3,2) = —% and 8451 . <0 for ki1 > 3; finally,
2=1 =2

¢1(ka, ko) = —%(k% — 2kg) < —2 for ko > 3 and ad’l < 0 for k:1 > ko > 3. Hence, since ¢q(ky,k2) is
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symmetric, ¢1(k1, ko) < —3 for integers ky, ko > 0 with k1 +ky > 2 and (k1, k2) ¢ {(1,1),(1,2),(2,1),(2,2)}.
Furthermore, by computation, we have ¢1(3,0) = ¢1(4,2) = —4. Therefore, ¢ (k1,k2) < —2 for integers

klv k? Z 0 with kl + k2 Z 2 and (kla k?) é {(Oa 2)7 (27 O)a (17 1)v (17 2)7 (2a 1)) (27 2)v (273) (3 )}
Putting k — 1 = k1 + k2 > 2, ¢a(kq, k2) can be written as:
Go(ky, ky) = —12kk? + 12k(k — 1)ky — (k — 1)(5k?® — 11k +5).

Setting ¢a(k1, k2) = 0, we have

ky = <6k(k 1)+ 12Kk — 1)(2k2 — 8k + 5)) .

12k
Since 2k% — 8k +5 > 0 for all k > 4, oda(k1, k) < 0 for any ki, ke > 0 with k; + ks > 3. For k = 3, we have
$2(1,1) = 2 > 0 and ¢2(2,0) = —34 < 0. Let f(t) = —(t — 1)(2t> — 8t + 5) where ¢ is real number. Then,
for fixed ¢t > 3, the maximum of ¢2 (1, ¢2) for nonnegative numbers ¢; and to with ¢; +to =t — 1 is attained
as f(t) at t; = 51, We can find that f(3) >0, f(4) = —15 and f’(t) < 0 for ¢t > 4. From computation, we
have ¢2(0,3) = —123 and ¢»(1,2) = —27. Hence,

(38) (j)g(kl, kg) < —15 for any kl,kg > 0 with k1 + ko > 2 and (kl, k2) # (1, 1)

We claim that for a non-trivial connected graph G, ¢p(v) =dT(2f*1T —F)d >0forv=1,...,n. In
order to establish our claim, we first show that f;=. ib a metric on the vertex set of G by using the resistance
distance (see [14] for an introduction). Let L be the Laplacian matrix of G, and let LT = [6 jlnxn be the
Moore-Penrose inverse of L. Then, the resistance distance §); ; between vertices ¢ and j of G i 1s represented
(see [15]) as

Q=0+, -0,

VA
Moreover, the resistance distance is a metric on V(G) (see [2]). As proved in [7], the number f; j of 2-tree
spanning forests of G having i and j in different trees is

5 =16
Therefore, we have the following properties endowed by the metric €; ;:

(i) f > 0, with equality if and only if ¢ = j;

(ii) £ = fg; for all 4, j;
(iii) for any i,j, k, £ 5 < <fe + fkcf ;» with equality [4] if and only if either all paths in G from ¢ to j pass
through k or k is one of 7 and j.

Let X =2f"17 — F, and Q = [ ;] = X+X . Then,

dTxd = %(dTXd +d"X7d) = 2d7Qd.

Since 2Q = f'1T +1(f*)T — F, we have 2q; ; = fi v+ fuj — fi,; > 0. Since G is connected, if i # v, then there
exists a 2-tree spanning forest having ¢ and v in different trees, that is, f; , > 0. For a non-trivial connected
graph G, there exists a vertex ¢ with ¢ # v such that 2¢;; = fi v + fu,; > 0. Hence, @) is a non-negative
symmetric matrix with Q # 0. Since d > 0, we have d”’Qd > 0. Therefore, d (2f*17 — F)d > 0.
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Recall that given a connected graph G of order n where n > 2, G is (v, k1, k2)-paradoxical if and only
if ®(v,k1,ke) > 0, where 1 < v < n and integers k1, ko > 0 with k; + ko > 2. We have seen that ¢(v) > 0
for any 1 < v < n regardless of ky and ko; ¢1(k1, k2) > 0 if and only if (k1,k2) € {(1,1),(1,2),(2,1),(2,2)};
da(k1,ka) < 0 for any kq, ko with (ki,k2) # (1,1); and ¢3(kq, ko) < 0 for any ki, ko. Hence, ¢(v) must have
a relatively larger quantity in order for G to be (v, k1, k2 )-paradoxical.

Consider the case k; = ko = 1. Then, ®(v,1,1) = 3¢(v)+8mE T +4maTe —127¢. Clearly, ®(v,1,1) > 0
for any non-trivial connected graph G and any vertex v of G. Hence, we have the following result.

THEOREM 3.13 ([8]). Let G be a connected graph of order n wheren > 2. Then, G is (1,1)-paradozical.

Combinatorial interpretation for f317 +1(f2)T — F. Let G be a non-trivial connected graph with
a vertex v. We now discuss a combinatorial interpretation for g; ; where g; ; = %( fv + ffj — ZGJ) Denote
by Fa(i,j;v) (or equivalently Fe(v;i,j)) the set of all spanning forests consisting of two trees in G, one of
which contains vertices ¢ and j and the other of which contains a vertex v. Then, we have

\Fa(i0) = [Fa(isv, ) + [ Fali v ),
[Fa(iv)| = |Fali, jiv)| + [Fa(isv, 4],
[Fa(vig) = |Falivij)l + [ Falvii, j)l-

It follows that 2¢; ; = fi.o + fo,; — fij = 2|Fc (4, j;v)|, that is, ¢; ; is the number of 2-tree spanning forests
of G having 4, j in one tree and v in the other. Thus, we define Q¢ ,, as the matrix Qg ., = [¢;, ;] associated
to G and v. Then,

1
Qc.o = §(f”1T +1(f) - F), ¢a(v) =d"(2f"17 - F)d = 2d" Q¢ d.

REMARK 3.14. Let G be a connected graph with a vertex v. Let Q¢ = [g;,;]. Since 2¢; ; = fiv+ foj —
fij, we have g; ; = 0 whenever v = ¢ or v = j. Suppose that v is a cut-vertex. If there is no path from 7 to j
with ¢ # v and j # v in G — v, then by the combinatorial interpretation for ¢; ;, we obtain ¢; ; = 0. Consider
a branch B of G at v. Let ¢,5 € V(B). For each forest in F¢(4,j;v), the subtree with the vertex v in the
forest must contain all vertices of V(G)\V (B). Thus, for the subgraph G’ induced by V(G)\(V(B) — {v}),
we have | Fg(i, j;v)| = 7¢/|Fp (i, j;v)|. This implies that G’ is a tree if and only if |Fg (i, j;v)| = |Fs (4, j;v)|.

Given a tree 7 with a vertex v, let Q7 = [g;;]. Consider two vertices ¢ and j in 7 with ¢ # v
and j # v. For each forest in F7r (i, j;v), there is a subtree of the forest having ¢ and j. Then, all vertices
Wo, W1, - - -, Weist(i,j) On the subpath with pendent vertices ¢ and j must be contained in the subtree. Therefore,
¢i,; = min{dist(v,wp)|p =0,...,dist(¢, j)}. In particular, if ¢ = j then ¢; ; = dist(7,v).

Based on Remark 3.14, let us consider the following example.

EXAMPLE 3.15. Consider the path Ps = (1,...,6). Let Qp, » = [¢;,;] where v = 3. Evidently, ¢3,; =
¢i3 = 0for 1 <i<6. Since v is a cut vertex, we have ¢; ; = 0 for ¢ € {1,2} and j € {4,5,6}. By the
argument in the second paragraph of Remark 3.14, we have

2 10

QP,“’U =

S OO O =
o O O O
o O O O O
_ == O OO
[SURN R e i s B an)
W= o oo
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While the combinatorial interpretation for entries of Q¢ ., is given, we mainly focus on the computation
of dTQ¢ »d in the rest of this section, but the combinatorial interpretation is used more in Section 5

Several examples. We now find conditions for K,,, C,, P, or S, to be (v, k1, ks)-paradoxical or
(k1, ko)-paradoxical. For simplicity, set k — 1 = k; + ko and ¢; = ¢;(k1,k2) for ¢ = 1,2,3. Note that
p(v) = dT (217 — F)d = 2d7 Q¢ »d and ¢;(k1, k2) = ¢;i(ka, k1) for i = 1,2,3. We compute ¢ (v) by
using F' and f* for G = K,, or G = C},, and by directly finding Qg,, for G = P,, or G = S,,. For convenience,
the following quantities are computed in advance: ¢2(1,2) = —27, ¢3(1,2) = —48, ¢2(2,2) = —60 and
$3(2,2) = —180.

ExaMPLE 3.16. Consider a complete graph K, on n vertices. Let v be a vertex of K,,. Then, from
#(v) = dT(2f"1T — F)d and Example 3.2, it is readily seen that

é(v) =2n""2(n —1)* = 27(n — 1)%.

Using (3.6) with m = @, we obtain

Dr (v, ki, ko) =7k (2(n — 1)3 + n2(n — 1)2¢1 + %n(n — 1o + §¢3) .

Suppose that (k1,k2) ¢ {(1,1),(1,2),(2,1),(2,2)}. By Remark 3.12, ¢; < —3. From (3.8), we have ¢ <
—15. By (3.7), ¢3 < —6. Hence,

4 14 37
D(v, k1, ko) < Tk (—3n4+3n3 3 2—|—11n—6> .

One can verify that — 4n4—|— p3 37712—&—1171—6 < 0forn > 1. Thus, if (k1, k2) ¢ {(1,1),(1,2),(2,1),(2,2)},
then K, is not (v, k1, kg) paradox1ca1 for any n > 1.

Consider (k1, ko) = (1,2) and (k1, k2) = (2,2). Then,

®(v,1,2) =47 (2(n —1)* — 9n(n — 1) — 32),
®(v,2,2) =57 (2(n — 1)® — 20n(n — 1) — 120) .

Using the derivatives of (v L2 and é(f(’)i’z) with respect to n, it can be checked that ®(v, 1,2) > 0 if and only

ifn>7 ®w,2,2) >0if and only if n > 13. Hence, K, is (1, 2)-paradoxical for n > 7, and (2, 2)-paradoxical
for n > 13.

EXAMPLE 3.17. Given a cycle C,, with a vertex v, from ¢(v) = d¥(2f*17 — F)d and Example 3.3, we
have ¢(v) = 2(n — 1)n?(n+ 1) = 2 (n — 1)n(n + 1). Using (3.6), we find

o, (v, ki, ko) =Tk (3(n —Dn(n+1) +4n’p; + %n(bg + §¢3> )

We observe that the term of the highest degree about n in M has a positive coefficient. This implies

that given kq, ko > 0 with k1 + ko > 2, C,, is (kq, k2)-paradoxical for sufficiently large n. Consider (ki,ks) =
(1,2) and (k1,k2) = (2,2). Then,
2
®(v,1,2) =47 (3(n —1n(n+1) —18n — 32) ,

®(v,2,2) =57 <§(n —1)n(n+1) — 40n — 120) .
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One can verify that ®(v,1,2) > 0 for n > 6 with equality if and only if n = 6; ®(v,2,2) > 0 for n > 9 with
equality if and only if n = 9. Hence, C,, is (1, 2)-paradoxical for n > 7, and (2, 2)-paradoxical for n > 10.

EXAMPLE 3.18. Consider the path P,, = (1,...,n) with a vertex v. By Remark 3.14 and Example 3.15,
we have

M0
QP,,,,U — |: 0 M2:| )

where M, = [min{v — i, —j}]1<ij<v and M, = [min{i,j}]1<ij<n7v. We have dp, = 21,, —e; — e,,.
Then, - -

dTQP,L,vd = 41TQP,HU1 + (M1>171 + (M2>n7'u,n7v - 41TQP,L,ve1 - 41TQP”,Uen

n—u

:4<§k2+2k2>+n—1—2@(0—1)—2(n—v)(n—v+1)
k=1

k=1

4 1
=4(n—1)v* —4(n? - 1)v + §n3 — 3= 1.

The minimum of d”Qp, ,d is attained as 1n(n—1)(n—2) if n is odd, and as §n® —n?+ 3n—1if n is even.

The maximum of d”Qp, ,d is 1(n —1)(2n —1)(2n —3) at v =1 or v = n.

ny

By (3.6) and the minimum of ¢(v) = 2dTQvad’ we have
2 9 2 2
®p, (v, ko) >k Sn(n = 1)(n = 2) +4(n = 1)1 + S(n = 1)éo + 265 ) .

By a similar argument as in Example 3.17, given ki, ko > 0 with ky + ko > 2, P, is (k1, k2)-paradoxical for
sufficiently large n.

ExXAMPLE 3.19. Consider a star S, of order n with a vertex v. Using Remark 3.14, it can be checked
that

J+ {Ino_l 8] —e, 17 —1el if deg(v) = 1,
QSn,v =
’ Infl 0 .
f =n-—1.
[ 0 O] , if deg(v) =n
Hence,
n—1)4n —7), if deg(v) =1,
4w [ Dan 7). it des(o)
n—1, if deg(v) =n — 1.

Suppose that v is the centre vertex. Then, n > 3. By (3.6) and ¢(v) = 2d7Qs, ,d, we have
.2 2
s, (v, k1, k2) =k (2(n —1) +4(n = 1)7d1 + 2(n — 1) + 5 ¢3 ) -
Let (ki1,k2) # (1,1). Clearly, ¢1 < 0. By (3.8) and (3.7), we have ¢ < —15 and ¢35 < —6, respectively. So,

O(v, k1, k) < —4k(2n — 1). Hence, if S, is (v, k1, k2)-paradoxical where v is the centre vertex of S, then
(k1,k2) = (1,1) and n > 3.
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Suppose that v is a pendent vertex. Then,
9 2 2
P, (v, k1, k2) =k (2(n—1)(4n —T7) +4(n —1)7¢1 + g(n —1)¢o + §¢>3 :

We have ¢1(270) = _%7 ¢2(2a0) = —34 and ¢3(270) = _6a ¢1(3v2) = _%7 ¢2(372) = —163 and ¢3(372) =
—480. One can check that ®(v,2,0) = 8n? — 102n + 82 > 0 for n > 12; ®(v,2,1) = 32n? — 160n > 0 for
n > 6; ®(v,2,2) = 40n? — 310n — 330 > 0 for n > 9; and ®(v,3,2) = 16n? — 720n — 1216 > 0 for n > 47.
Let

A=1{(0,2),(2,0),(1,1),(1,2),(2,1),(2,2),(2,3),(3,2) }.

Suppose that (ki,k2) ¢ A. By Remark 3.12, we have ¢1(k1,k2) < —2. From (3.8) and (3.7), ¢2 < —15 and
¢3 < —06, respectively. Hence, ®(v,k1,ke) < —k(16n — 12). Therefore, if S,, is (v, k1, k2)-paradoxical
for a pendent vertex v, then ki, ko and n satisfy one of the following: (i) (k1,k2) = (1,1), n > 2;
(ii) (k‘l,kg) € {(0,2),(2,0)}, n > 12; (iii) (kjl,k‘g) S {(1,2),(2,1)}, n > 6; (iV) (k‘l,kg) = (2,2), n>9;
and (v) (k1,k2) € {(2,3),(3,2)}, n > 47.

4. Asymptotic behaviour of a sequence of graphs with twin pendent paths regarding the
Braess edge. We have seen the families of complete graphs, cycles, stars and paths in the previous section,
and we have observed their asymptotic behaviours with respect to the property of being (v, k1, k2 )-paradoxical
as the orders of graphs increase. In particular, from Examples 3.17 and 3.18, if for any non-negative integers
k1 and ko with k1 + ko > 2, any graph in a family of cycles or paths has sufficiently large order relative to
k1 and ko, then it is (ki, ko)-paradoxical. This idea is formalised for a specified vertex, and a tool for finding
such families is described in this section.

DEFINITION 4.1. Let G¥ be a sequence of graphs G1,Gs,... where for each n > 1, G,, is a connected
graph of order n with a specified vertex v. Fix integers ki,ko > 0 with ki + ko > 2. The sequence G"
is asymptotically (k1, ks)-paradozical if there exists N > 0 such that G, is (v, k1, ko )-paradoxical for all
n > N. The sequence GV is asymptotically paradozical if for any integers l1,lo > 0 with I; + 13 > 2, GV is
asymptotically (I1,ls)-paradoxical.

In what follows, G¥ = (G,,)" denotes a sequence of connected graphs G1,Gs, ... where for each n > 1,

[V(G,)| =n and v € V(G,,).
EXAMPLE 4.2. From Theorem 3.13, any sequence G = (G,,)" is asymptotically (1, 1)-paradoxical.

EXAMPLE 4.3. Let G} = (K,)", GY = (C,)", GY = (P,)" and G} = (S,,)". From Examples 3.16-3.19, GJ
and G are asymptotically paradoxical, but G} and Gf are not. In particular, G} is asymptotically (ki, k2)-
paradoxical if and only if (k1,k2) € {(1,1),(1,2),(2,1),(2,2)}. Consider G = (S,)”. Suppose that there
exists N > 0 such that v is a pendent vertex of S,, for all n > N. Then, G} is asymptotically (k1, k2)-
paradoxical if and only if (ki, k2) is in the set A described in Example 3.19. If there exists N > 0 such
that v is the centre vertex of S,, for all n > N, then G} is asymptotically (k1, k2)-paradoxical if and only if
(kh k2) = (17 1)'

Consider a sequence G¥ = (G,)". Examining the proof of Theorem 3.10 with (3.4), we find from (3.6)
that
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K(Go(v, k1, k) — K(Gn (v, k1, k2))
_ (I)Gn(vvklak2)
4k(mg, + k)(mg, +k—1)1q,
 ba, (V) +4AmE Ta, dr(k, ke) + 200 6o (ky, ko) + 2 s (e, k)
o 4(mgn —+ k’) (mGn + k- 1)TGn

(4.9)

$ay (v)

2
4mGn TGy

Note that since ¢¢,, (v) > 0 for all n > 2, we have > 0.

We introduce a sufficient condition for G¥ = (G, )" to be asymptotically (ki, k2)-paradoxical. Moreover,
the following result can be used for minimising Ny > 0 such that G,, is (v, k1, ko )-paradoxical for all n > Nj.

PROPOSITION 4.4. Let ki, ko be non-negative integers with ki + ko > 2 and (k1,k2) # (1,1). Given
a sequence G¥ = (Gy)", suppose that Ponn() 5 day () for some N > 0. If Gy is (v,ky, ka)-

2 2
4mGN+1TGN+1 4mGNTGN

paradozical, then Gny1 s (v, k1, k2)-paradozical. This implies that if Gy, is (v, k1, k2)-paradozical for some
Ny > 0, and if M is non-decreasing for n > Ny, then Gy, is (v, k1, k2)-paradozical for alln > No—that

2
MG, TGn

is, G¥ = (Gp)" is asymptotically (k1, k2)-paradozical.

Proof. We only need to show that if ®g, (v,ki,k2) > 0 then ®g,  (v,ki,k2) > 0. We note that
MGy, > Ma, . From the numerator in (4.9), it follows that

> i Ton (% T ukr, ) + @6(:121]:2) T d)%%?))
= 4méN+1TGN+1W > 0.
Note that the first inequality is obtained by (3.8) and (3.7). 0

EXAMPLE 4.5. Let (ki,k2) = (1,2). Consider G¥ = (P,)” where for each n > 2, v is a pendent vertex

of P,. Examining Example 3.18, it can be seen that ®p,(v,1,2) < 0 and ®p_(v,1,2) > 0; and % is
Py TPn

strictly increasing for n > 2. Therefore, by Proposition 4.4, P, is (v, 1, 2)-paradoxical for n > 5.

Here is the main result in this section.

THEOREM 4.6. Given a sequence G = (Gp,)", GY is asymptotically paradozical if and only if% —
GnTGn

o0 as n — O0.
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Proof. We shall prove the sufficiency by contrapositive. Suppose that % is bounded, say 0 <
Gn

n
$Gy, (V)
2
4m,Gn TGn

< L for any n > 2 and for some L > 0. Then, from (4.9), we have

~

K(Gn('l], kla k2>) - H(én('l)7 kl) k2))
< ba, (v) +4mg 1a, ¢1(k1, k) + MO8 TG oo (ky, ko) + TS 3k, kea)

4ménTGn
kpk ki k

§L+¢1(k1,k2)+ ¢2( 1 2) + ¢3( 12 2).
6ma,, 6mg,

Considering Remark 3.12, (3.8) and (3.7), there exist integers K7 > 0 and Ko > 0 with K7 + Ky > 2 such

~

that k(G (v, K1, K2)) — m(én(v, K1, K3)) <0 for all n > 2—that is, G¥ is not asymptotically paradoxical.

Suppose that % diverges to infinity. Fix k1, ko > 0 with ky + ko > 2. Since G, is connected for
GnTGn

all n > 1, mg, goes to infinity as n — oo. It follows from (4.9) that

lim (n(@n(v, K, ko)) — #(Gn (v, ki, kg))> = oo.

n—oo

Therefore, G is asymptotically paradoxical. 0
EXAMPLE 4.7. Revisit Examples 3.16-3.19. One can verify that as n — oo, we have % — 0;
KnTKn
4¢§”' GRS 4¢1§’l(v) — 00; ﬁﬂ — 2 where v is a pendent vertex of S,; and ﬁﬂ — 0 where v
me,, TCOn mp,, TPn ms,, TSn ms,, TSn

is the centre vertex of S,,. By Theorem 4.6, the sequences (C,,)? and (P,)? are asymptotically paradoxical.

Now we shall construct (v, k1, ko)-paradoxical graphs from a connected graph that is not (v, k1, k2)-
paradoxical, by using an asymptotically paradoxical sequence. Given a connected graph G with a vertex
v, suppose that G is not (v, k1, ka)-paradoxical. Adding new vertices and edges to G, we shall make the
resulting graph (v, k1, ko )-paradoxical.

Note that the case of the equality in the following proposition is used in Section 5.

PROPOSITION 4.8. Let G be a connected graph, and v be a cut-vertex. Suppose that there are £ branches
By,...,By of G at v. Then,

¢ ¢
(4.10) diQcwde =Y 7e d}, Qp, vdp, > Y dE, Qp, vds,,
k=1 k=1

where G, is the subgraph induced by V(G)\(V(By) — {v}). This implies that ¢c(v) > Zi:l ¢, (v). More-
over, the two sides are equal if and only if G is a tree.

Proof. Let Q¢.» = [¢i,;]. By Remark 3.14, if ¢ = v or j = v, then ¢; ; = 0. Consider i # v and j # v.
Suppose that i € V(Byg,) and j € V(By,) for ki # ko. Since v is a cut-vertex of G, we find from Remark
3.14 that ¢; ; = 0. Hence, for k = 1,..., ¢, the submatrix of Q¢ , whose rows and columns are indexed by
V(By) and V(G)\V (By), respectively, is the zero matrix. For k = 1,...,¢, assume i,j € V(By). Since v is
a cut-vertex, by Remark 3.14, we have |F¢(i, j;v)| = 76/ [Fp, (4, j; v)| where G/, is the subgraph induced by
V(G)\(V(By) — {v}), with equality if and only if G/, is a tree. Therefore, the submatrix of Q¢ , whose rows
and columns are indexed by the vertex set V(By) is 761 QB -
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Let 1 < k < . For dp, = (d;)icv(p,), let dp, = (di)icv(q) where d; = d; if i € V(By), and d; = 0 if
i € V(G)\V(Byg). Then, for 1 < ky, kg < ¢,

T ~ T ~
dBkl QG,UdBk2 - dBkl QG,UdBkQ ]

where @G,U is the submatrix of Q¢ , whose rows and columns are indexed by V(By,) and V(By,), respec-
tively. If ky # ko then dgleGdekz = 0. Furthermore, dEMQG,vch = ngﬂldglemadBkl. Evidently,
dg = Zi:l dp,. Therefore, the desired result follows. d

PROPOSITION 4.9. Let H; be a connected graph with a vertex v; for i = 1,... 0. Suppose that a se-
quence G¥ = (Gp)Y is asymptotically paradoxical. Consider a sequence (G')? = (G))" where for 1 <
n < Zle \V(H))|, Gl, = Gy, and for n > Zle |[V(H,)|, Gl, is the graph obtained from Hy,...,Hy and
Gn_zg_l v 0y identifying the vertices vy, ...,vg,v. Then, (G')? is asymptotically paradozical.

Proof. Suppose that n > Zf:l [V(H;)|. Let ng =n — Zf:l |V (H;)|. Since v is a cut-vertex in G, we

have 7q: = 7G, TH, - - TH,- Using Proposition 4.8, we obtain

ng

06, (0) 66, () + Xisy dm(v)

2 — L :
Ame, e, T A(ma,, + Y mu,)? TG, TH, - TH,

As n — oo, we have ng — o0o. Since (G)V is asymptotically paradoxical, by Theorem 4.6 we obtain

4¢2G"7°(v) — o0 as n — oo. It follows that ﬁ& — 00 as n — oo. Therefore, (G')V is asymptoti-
mcno TGng mG%TG%
cally paradoxical. 0

REMARK 4.10. Let a sequence G¥ = (G,,)" be asymptotically paradoxical. Suppose that a connected
graph H with a vertex w is not (w, ki, ks)-paradoxical for some integers k; and ko with ky + ko > 2.
Proposition 4.9 tells that regardless of the number of branches of H at w, we can obtain a (v, ky, k2)-
paradoxical graph from H by identifying w and the vertex v of G,, for sufficiently large order n.

EXAMPLE 4.11. Adopting the notation in Remark 4.10, consider the following graph H:

H

One can check from computation that ¢y (w) = 2d5Qpm wdy = 118 and ®p(w,1,2) < 0. So, H is not
(w, 1,2)-paradoxical. From Example 4.7, G¥ = (P,,)" is asymptotically paradoxical. For ease of exposition,
we assume that for each n > 2, v is a pendent vertex of P,,. Suppose that G, is the graph obtained from H
and P, by identifying w and v as v. As discussed in Remark 4.10, there must be some Ny > 0 such that G,
is (v, 1, 2)-paradoxical for all n > Ny. We shall minimise such an Ny. Using Proposition 4.8 and Example
3.18, we have

b, (v) = 2d& Qar, vder, = 2dQuwdn +6dp, Qp, vdp, =118 +2(n — 1)(2n — 1)(2n - 3).

By computation of ®¢: (v,1,2) for n = 2,...,5, G, Gj, and G} are not (v, 1,2)-paradoxical, and G is

(v,1,2)-paradoxical. Furthermore, it can be checked that % is strictly increasing for n > 5. Hence,
a9
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v V1 V2 V3 Vg
FIGURE 2. An example for illustration of the notation To,...,To in Step 1.

by Proposition 4.4, G/, is (v, 1,2)-paradoxical for all n > 5. In other words, we can construct a (v,1,2)-
paradoxical graph from H and a path of length at least 4 by identifying w and a pendent vertex of the
path.

5. Asymptotically paradoxical sequences of trees. We begin with presenting an outline of this
section. Throughout this section, we shall consider sequences G¥ = (7,)" of trees, where for each n > 2,
T, is obtained from 7,_1 by an addition of a new pendent vertex or a subdivision of an edge. Then,
we examine asymptotic behaviour of such trees upon the addition of twin pendent paths; specifically, we
investigate under what circumstances the sequences are asymptotically paradoxical. Considering Theo-

rem 4.6, we need to understand 4;’:27(2” Recall that ¢7, (v) = 2d% Q7, .d7,. To consider condi-
tions for % to diverge to infinity, we shall find the minimum of d; Q7, vd7,, provided the num-
Tn ' Tn " } }

ber of branches of 7,, at v and the eccentricity of v in each branch are given (Proposition 5.3). With
the minimum, we provide some condition in terms of the eccentricity of v in 7, and the number of
branches of T,, at v satisfying some property, in order for the sequences to be asymptotically paradoxical
(Theorem 5.6).

Here is a sketch of two steps to find the minimum of d% @7, »dT,. By Proposition 4.8, we only need to
understand the minimum of de B,wdp where B is a branch of 7,, at v—that is, the minimum of d;QT’vdT
where 7 is a tree with a pendent vertex v and the eccentricity of v is given. This minimum is provided
in (5.13) at the end of Step 1. By Proposition 4.8, we establish our desired result in Proposition 5.3 in
Step 2.

Step 1. Let T be a tree of order n and v be a pendent vertex in 7. Suppose that « is the eccentricity
er(v) of vin T. Then, there exists the path P = (vg,v1,...,0,) of length a in T where vy = v. Evidently,
vo and v, are pendent vertices in 7. Let T and T, be the trees where V(7y) = {vo} and V(7,) = {vs}. For
k=1,...,a—1, if there are more than two branches of 7 at vy, then we define 7 to be the tree obtained
from 7T by deleting two branches except v, where one contains vg_; and the other vy 1; if there are exactly
two branches of T at vg, then we define T to be the tree with V(7)) = {vg}. Then, V(To),...,V(T,) are
mutually disjoint sets. Moreover, for each k =0,...,a, we have ey, (vr) < o — k. As an example, if T is the
tree in Figure 2, then V(Tg) = {v}, V(T3) = {vs}, and V(T3) = {v4}; furthermore, 71 and T3 are Sy and Ps,
respectively.

Let Q7 = [¢:,;]. Recall that ¢; ; = |F7(i,7;v)| is the number of 2-tree spanning forests of 7 having i,
j in one tree and v in the other. Note that v = vy. In order to understand the structure of Q7 ,, we shall
consider two cases: (i) 7 and j are in different subtrees; and (ii) ¢ and j are in the same subtree. Suppose
that ¢ € V(Tx,) and j € V(Tg,) where 0 < k; < ks < . For each forest in Fr (3, j; v), since ¢ and j belong to
the same subtree in the forest, the subtree must contain vg, and vg,. For any vertex w on the subpath of T
with ¢ and j as the pendent vertices, we have disty (v, vg,) < disty(v, w). Hence, by Remark 3.14, ¢; ; = k1
for i € V(Ty,) and j € V(Ti,) with 0 < k1 < ko < a.
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Assume that i, j are in V(T) for some 1 < k < a. Consider the subpath P’ of T; with ¢ and j as the
pendent vertices. Suppose that wy is the vertex on P’ such that disty; (vg, wo) < disty, (vg, w) for w € V(P').
Then, dist7 (v, wo) = k + dist7, (vg, wo). Let Qv = [Gi,;]- By Remark 3.14, we have ¢; ; = k + ¢, ;.

Labelling the rows and columns of Q7 ,, in order of v, V(71), ...,V (74), we obtain the following structure:
[0 0 0 0 e 0 T
0| J+Q7m J J e J
0 J 2J + Q70, 2J e 2J
@ro=|, J 2J 3J + Q7s 0, :
: : : : S (a=1)J
| 0 J 2J 3J e o Q7 0,

where the Js in the blocks of Q7 , are appropriately sized. Let ny = |V (Ty)| for k = 0,...,a. Note that
ng = ng = 1. Then, Q7 , can be recast as:

Z [ } + diag(0, Q7 w1+ Q7 )
0 Jn (no+--+mnq)

Q s
,_._,

[ 0no+~-'+ni

1 ] [Ogo+~~+m 15—(n0+.~+m)} + diag(o’ QTl,Ul L] Qvau)’
n—(no+--+n;)

=0

where n =ng +n1 + -+ - + na.

Now, we shall compute dZ 7Q7,0dT1. Let xT [O d% e d%,l O} andy = e, + Zf:ll 2e,, +e,,.
Then,
a—2 2 a—1
xTQrox =3 (dTH t d%fg) n Z A% Q7. ».dr.
i=0 i
2
a—2 a—1 a—1
=43 | 2 (- +Zd7defn —42 Z (=1 | + 3 d7.Q7.udn.
i=0 \j=i+l = =i i=1
We can find that the submatrix of @7, whose rows and columns are indexed by {vg,...,v.} is

[min(i, j)]o<ij<a- S0, (O p—o evk)T Q7.0 (D p_o€uv,) is the sum of all entries in [min(i, j)]o<i j<a. Thus,
fromy =2 (3 7_,ev,) — (ey + €4), we have

yTQT,vy = 41T[min(i,j)]0§i)j§al — 4(ev + ea)TQT’v (Z eyk> + (ev + ea)TQTﬂ,(ev + ea)
k=0

—ala+1)2a+1) —2a(a+1)+a= éa(?a —1D(2a+1).
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Finally, we find

a—1
ZXT 8 0 }y

i—o Jn—(no+---+n7~,)
a—2
=Y (df, 1+ dh 1) -1 - 1)
1=0
a—2 a—1 a—1 a—1
=23 [ D (-1 | Qa—-i)-1)=2>"| > (n;—-1)| a=—i)+1).
i=0 \j=i+1 i=1 \ j=i

From Remark 3.14, for each k = 0,...,a, we have |Fr, (I, vi;vx)| = 0 for L € V(T;). So, the vi* column of
diag(0, Q7015 - - -, Q7. v, ) is the zero vector. This implies x” diag(0, Q7 v,5 - - -, Q7. 0., )y = 0. Hence,

a—1 fa—1
2x"Qroy =4 | D (n;— 1) | 2(a—1i) +1).
i=1 \ j=i

Note that d+ = x + y. Therefore, for a tree 7 with a pendent vertex v,

d%:QT,vdT = XTQT,UX + 2XTQT,vy + yTQT,vy

a—1 fa—1 2 a—1
=4 (2= +> d7Qr.dr
(5.11) i=1 \ j=i i=1
a—1 fa-1
. 1
14 > (n;—1) 2(a =19 +1) + za(2a —1)(2a +1).
i=1 \ j=i
EXAMPLE 5.1. Let n > o > 1, and B,, o be the broom with vertices v, v1, ..., v, in Figure 3. Let vy = v,
and X = {0,...,a}\{a — 1}. Suppose that for ¢ € X, 7; is the tree with V(7;) = {v;}, and To—_1 is the
subtree induced by V(B o)\{v1,--.,Va—2,a}. Then, To_1 is a star of order n — a with the centre vertex

Vo—1. Let n; = |V(T;)| for i =0,...,a. By (5.11) and Example 3.19, we obtain

a—1
T _ E 2 T
dBn,‘a,’UQBn,a7'UdBn,a7'U - 4 (n - 1) + dSn,a anfouvoc—ldsn—a
=1

a—1
+4) (n—a—-1)2(a—i)+1)+ %a(2a — 1) (20 + 1)
=1

=4(a—1)(n—a—-1>2*+n—-a—1)(4a* -3) + %a(Za —1)(2a+1).

FIGURE 3. A broom on n wvertices with exactly (n — a) pendent vertices having a common neighbour.
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We continue (5.11) with the same hypotheses and notation. We consider d; Q7 pdy; fori=1,..., a—1
in (5.11). Note that for ¢ = 1,...,a — 1, v; is not necessarily a pendent vertex in T,,. The result for the

minimum of d%QTi,vidTi appears in the paper [13] as the minimum of d% (2f 7 17 — Fr)d7,. We shall
introduce the result, which is proved by induction in [13], with a different proof by using the combinatorial
interpretation for entries in Q7; ,.

LEMMA 5.2 ([13]). Let T be a tree of order n > 2 with a vertex v. Then,
d"Qr.d>n—1,

with equality if and only if for n =2, T = Py and forn >3, T =S, and v is the centre vertex.

Proof. Let Q7. = [¢i,;]. By Remark 3.14, we have g;; = dist(é,v) > 1 whenever ¢ # v. The degree of
each vertex is at least 1. So, we have d” Q7 ,d > (n — 1). To attain the equality, ¢;; = 0 if i # j. From
Remark 3.14, we can find that v is a cut-vertex so that 7 — v consists of n — 1 isolated vertices. Therefore,
our desired result is obtained. ]

Applying Lemma 5.2 to A% Q7; »,d7; in (5.11) for each i = 1,...,a — 1, we obtain E;:ll d7. Q7 v d7, >
n—a — 1. Thus, d¥Q7 ,d7 in (5.11) is bounded below as follows:

2
a—1 [fa—1 a—1 [fa—1
d7Qr.dr >4> [N (n;—1)| +4 > (nj—1) ] 2(a—i)+1)
i=1 \ j=i i=1 \ j=i

+n—a-1)+ éa(Qa - 1(2a+1).

Consider

(5.12) i(njq) +i i(nﬁm (20— i) + 1)

=[(m 4+ na1—(@=1))*+(n1 +-- + 151 — (@ —1))(2a = 1)]
[(n2 4+ 101 — (@ =2))* + (n2 + - + 101 — (@ = 2))(2a — 3)]
o+ [(na1 — 1)+ (na—1 — 1)3] .

Since ny + - -+ + nq_1 is constant, we find that the minimum of (5.12) is attained as (n —a —1)(n + a —2)

at ny =n—aand ny =--- =n,_1 = 1. Therefore, when v is a pendent vertex, we have
1
(5.13) dTQr,dr > (n—a—1)4n+4a —17) + ga(Qa - 1)(2a+1),
where equality holds if and only if 7 is a broom B,, , with v,v1,...,v, described below:
v VI Uy Va1 Ua

Step 2. The following is the result for the minimum of d%F—QT’UdT where T is a tree with a vertex v.
(The vertex v is not necessarily a pendent vertex.)
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PROPOSITION 5.3. Let T be a tree with a vertex v. Suppose that By, ..., By are the branches of T at v
for some £ > 1. Let n; = |V (B;)|, and let e; = ep,(v) fori=1,...,¢. Then,

¢
1
dXQr,dr > g {(nl —e;—1)(4n; +4e; —7) + gei(Qei —1)(2e; + 1),
i=1

where equality holds if and only if for i =1,...,¢, each branch B; is a broom By, ., such that if n; > e; +1,
then v is one of the (n; —e;) pendent vertices having a common neighbour; if n; = e; + 1, then v is a pendent
vertex in B, ., (which is a path).

Proof. The conclusions can be readily established by Proposition 4.8 and (5.13). d

Hereafter, the symbols w, O and O stand for the small Omega notation, the big O notation and the big
Theta notation, respectively (see [1]).

As mentioned in the beginning of this section, we consider the following sequence G¥ = (7,)? of trees,
where V(71) = {v} and for each n > 2, T, is obtained from 7,_; by adding a new pendent vertex to 7,_1,
or by subdividing an edge in 7,_; into two edges connecting to a new vertex. We denote by a,,(x) and ¢,,(z)
the eccentricity of x in 7, and the number of branches of 7, at x, respectively. For the rest of this section,
we use ay,(+) and £,,(+) only for the specified vertex v of the trees in the sequence, so we simply write a,(v)
and £, (v) as a, and £,.

Define B%l) =77 and ¢; = 1. Assume that for n > 2, Bgn_l), .. .,Bé:;l) are the branches of 7,_1 at
v. Let {w} = V(T,)\V(Tp-1). Consider the case ¢, — ¢,,_1 = 1. Then, w must be added to the vertex v in
Trn—1 to form 7,. For this case, we define BZ-(n) as Bi(n_l) fori=1,...,¢, — 1, and define Bé:) as the path
(v,w). Suppose ¢, = £,_1. Then, there exists exactly one branch B,in_l) for some k € {1,...,¢,_1} such
that w is adjacent to at least a vertex of B,g”_l) in 7,. We define Bi(") as Bi("_l) for 1 < i < ¥,_1 with
i # k, and define B,(Cn) as the induced subtree of 7, by V <B£n71)> U {w}. Hence, we may define

Bn = |{i|€B(k) (’U) = @(ak),i =1,... ,En}|
Note that 3, is the number of branches of 7,, at v such that the eccentricity of v in a branch is asymptotically
bounded above and below by the eccentricity of v in Tg.

EXAMPLE 5.4. If G¥ = (P,)" where v is a pendent vertex for n > 2, then o, =n —1 and ¢, =, = 1.
If G¥ = (S,,)? where v is the centre vertex for n > 3, then o, =1 and ¢,, = 8, =n — 1.

REMARK 5.5. Consider a sequence G¥ = (7,)" of trees. Evidently, 5, < £, = O(n) and «,, = O(n).
Since o, = max{e zm (v)[1 < i < 4, }, we have 3, > 1.

Here is the main result in this section.

THEOREM 5.6. Let G¥ = (T,)" be a sequence of trees. If Bna = w(n?), then GY is asymptotically
paradozical.

Proof. Suppose that 8,02 = w(n?). For n > 2, suppose that B%n), ceey Bé:) are the branches of 7, at
v. Let 61(,") = e m(v) and ]gg”) = ‘V (Bf")>’ for i = 1,...,¢,. We may assume that eE-n) = O(ay,) for
j=1,...,B8,. Then, for each j = 1,...,3,, there exist C; > 0 and IN; > 0 such that eg-n) > Cjay, for all
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n > N;. Choose Cy = min{C}|j =1,...,5,} and Ny = max{N,|j =1,...,5,}. Then, eg-n) > Cyay, for all
n > Ng and 1 < j < 3,. By Proposition 5.3, for n > Ny, we have

¢7—n (U) _ Qd%—'—n Qﬁnvdﬁt

AmZ 77, 4(n—1)?
§ Sy [(B = el = 1) (k" 4 a6l = 7) 4 Lel (26 < 1) (2 4 1))
2 2n—1)°
5n0004n 200an -1 200an + 1
>
- 6(n —1)2 '
Since 8,03 = w(n?), we have % — 00 as n goes to infinity. Therefore, the conclusion follows. O
Tn n

COROLLARY 5.7. Suppose that G¥ = (T,,)? is a sequence of trees T, such that o, = w(n%) Then, GV is
asymptotically paradoxical.

Proof. 1t is straightforward from Theorem 5.6. ]

COROLLARY 5.8. Suppose that G* = (T,,)" is a sequence of trees T,, such that diam(T,) = w(n?). Then,
GY is asymptotically paradoxical.

Proof. Let P be a longest path in 7,. Suppose that wg is the vertex on P such that dist(v,wp) <
dist(v, w) for all vertices w on P. Then, o, > dist(v,wp) + 3diam(7,). By Corollary 5.7, our desired result
follows. o

A rooted tree is a tree with a vertex designated as the root such that every edge is directed away from
the root. A leaf in a rooted tree is a vertex whose degree is 1. The depth of a vertex v in a rooted tree is
the distance between v and the root. The height of a rooted tree is the maximum distance from the root to
all leaves.

EXAMPLE 5.9. Let G¥ = (7,)" be a sequence of trees. For each n > 1, 7, can be considered as a rooted
tree at v. We may also regard branches Bﬁn), ceey Bé:) of T, at v as rooted trees at v. For each n > 3, let
T, be obtained from 7,_; as follows: if epin-n (v) = [n] — 1, then a new vertex x is added to a leaf z of
B;nil) such that the depth of z is the height of B%nil); if epn-1 (v) = [n®], then a new vertex z is added to
a vertex w in T,_1 such that dist(v,w) < eBYlfl)(v). Assume that ¢g = 0.7. Considering |3 | = [4%| =2
and |5%] = |6 ] = 3, one of all possible sequences can be obtained as in Figure 4. Note that the very

left branch of each rooted tree at v in that figure is B;n) for n =2,...,6. Then, epim (v) > epm (v) for all
v v
v v v(w)
w
z T
z x
x
7> 73 T T
75 Ts

FIGURE 4. A sequence of rooted trees considered in Example 5.9.
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n >2and 2 <k </{,. Moreover, eB(n)(U) > nc — 1 for all n > 2. By Corollary 5.7, GV is asymptotically
1

paradoxical—that is, for integers ki, ko > 0 with ki + ko > 2, Ty, is (v, ky, k2)-paradoxical for sufficiently

large n.

From the following example, the converses of Theorem 5.6, Corollaries 5.7 and 5.8 do not hold.

ExXAMPLE 5.10. Consider a sequence G¥ = (7,)" where for n > 4, T, is a broom B, o, with «, > 3.
Suppose that for each n > 4, v is the pendent vertex of B, o, that does not have any common neighbour
with other pendent vertices in B,, o, . Clearly, 8, = 1. Suppose that «,, = w(1). By Example 5.1, we obtain

B .o, (v) 4an —1)(n—ap—1)2+ (n—a, — 1)(4a2 —3) + %an(2an - 1)(2ay, + 1)
dmy 7B, ., N 2(n — 1)2
S 2(a, —1)(n — ay, — 1)2
- (n—1)? ’
for n > 4. Since n’a,, = w(n?), we have 4227'(2 — 00 as n goes to infinity. Therefore, GV is asymptotically

paradoxical. Moreover, we have (3,02 = w(1).
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