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FAMILIES OF GRAPHS WITH TWIN PENDENT PATHS AND THE BRAESS EDGE∗

SOOYEONG KIM†

Abstract. In the context of a random walk on an undirected graph, Kemeny’s constant can measure the average travel

time for a random walk between two randomly chosen vertices. We are interested in graphs that behave counter-intuitively in

regard to Kemeny’s constant: in particular, we examine graphs with a cut-vertex at which at least two branches are paths,

regarding whether the insertion of a particular edge into a graph results in an increase of Kemeny’s constant. We provide

several tools for identifying such an edge in a family of graphs and for analysing asymptotic behaviour of the family regarding

the tendency to have that edge; and classes of particular graphs are given as examples. Furthermore, asymptotic behaviours of

families of trees are described.
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1. Introduction. Imagine a situation that adding roads to a road network in order to reduce traffic

congestion results in, on contrary to one’s expectation, slowing down overall traffic flow (called Braess’s

paradox [3]). Random walks on graphs can also exhibit a version of this paradox. The family of random

walks on undirected graphs is a special type of Markov chain: the transition probability from an initial

state to another is given by the inverse of the degree of the vertex corresponding to the initial state. The

parameter known as Kemeny’s constant can be used to measure the average time for travel of a Markov

chain between two randomly chosen states; so, in the context of random walks, it can be interpreted as a

measure of how well connected the vertices of a graph are. Related applications can be found in [18] for

detecting potential super-spreaders of COVID-19, and in [9] for determining ‘critical’ roads in vehicle traffic

networks based on Markov chains.

Kemeny’s constant can serve as a proxy for identifying an edge exhibiting the version of the paradox [13],

by examining an edge whose insertion into an undirected graph corresponding to a road network increases

Kemeny’s constant for random walks on the graph (such an edge is called a Braess edge) that corresponds

to travel times on the network. In the present paper, we study under what circumstances graphs can have

a Braess edge in order to see what type of graphs exhibit the version of the paradox.

The term ‘Braess edge’ is introduced in [13] and acknowledges Dietrich Braess who studies Braess’s

paradox for traffic networks [3]. Kirkland and Zeng [13] provides a particular family of trees, with a vertex

adjacent to two pendent vertices (such two vertices are called twin pendent vertices), such that inserting

an edge between the twin pendent vertices causes Kemeny’s constant to increase. Furthermore, Ciardo [8]

extends the result to all connected graphs with twin pendent vertices. Unlike the works [13] and [8], Hu and

Kirkland [11] establishes equivalent conditions for complete multipartite graphs and complete split graphs

to have every non-edge as a Braess edge.
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Our work is to generalise the circumstances in [8, 13] where graphs have a pair of twin pendent vertices;

so, we consider graphs that can be constructed from a connected graph and two paths by identifying a

vertex of the graph and a pendent vertex of each path. We call the two paths twin pendent paths in the

constructed graph. In Section 3, a formula is derived that identifies a graph with twin pendent paths in

which the non-edge between the pendent vertices of the twin pendent paths is a Braess edge. In Section 4, a

combinatorial expression is provided in order to investigate asymptotic behaviour of a family of graphs with

twin pendent paths regarding the tendency to have the non-edge, between the pendent vertices of the twin

pendent paths, as a Braess edge. Furthermore, several families of graphs are discussed throughout Sections

3, 4 and 5. In particular, asymptotic behaviours of families of trees are characterised in Section 5.

2. Preliminaries. Throughout the paper, we assume all graphs to be simple and undirected.

We shall introduce necessary terminology and notation in graph theory. Let G be a graph of order

n with vertex set V (G) and edge set E(G) where n = |V (G)|. An edge joining vertices v and w of G is

denoted by v ∼ w. Let mG be defined as |E(G)|. The subgraph of G induced by a subset S of V (G) is

the graph with vertex set S, where two vertices in S are adjacent if and only if they are adjacent in G.

For v ∈ V (G), we denote by degG(v) the degree of v. A vertex v of a graph G is said to be pendent if

degG(v) = 1. Given a labelling of V (G), we define dG to be the column vector whose ith component is

degG(vi) for 1 ≤ i ≤ n, where vi is the ith vertex in V (G). For v, w ∈ V (G), the distance between v and w

in G is denoted by distG(v, w). For a connected graph G with a vertex v, the eccentricity eG(v) of v in G is

eG(v) = max{distG(v, w)|w ∈ V (G)}. The diameter, denoted diam(G), of G is diam(G) = max{eG(v)|v ∈
V (G)}.

The trivial graph is the graph of order 1. A tree is a connected graph that has no cycles. A forest is a

graph whose connected components are trees. A spanning tree (resp. a spanning forest) of G is a subgraph

that is a tree (resp. a forest) and includes all of the vertices of G. A k-tree spanning forest of G is a spanning

forest that consists of k trees. For v ∈ V (G), we use G − v to denote the graph obtained from G by the

deletion of v. A vertex v of a connected graph G is called a cut-vertex of G if G − v is disconnected. If

G − v has k connected components G1, . . . , Gk for some k ≥ 2, then the subgraph induced by V (Gi) ∪ {v}
for 1 ≤ i ≤ k is called a branch of G at v.

Let us introduce several types of connected graphs. We denote the complete graph of order n by Kn,

the cycle of length n by Cn, and the path on n vertices by Pn. If we need to specify the ordering of vertices

of a cycle or a path, then we use Cn = (v1, v2, . . . , vn, v1) to denote the cycle whose vertices are labelled by

v1, . . . , vn, and whose edges are v1 ∼ vn and vi ∼ vi+1 for i = 1, . . . , n − 1; similarly, Pn = (v1, v2, . . . , vn)

denotes the path whose vertices are labelled by v1, . . . , vn and whose edges are vi ∼ vi+1 for i = 1, . . . , n− 1.

A star Sn is a tree on n vertices with one vertex of degree n− 1. For n ≥ 3, v is called the centre vertex of

Sn if degSn(v) = n − 1. For n > k ≥ 1, a broom Bn,k is a tree constructed from the path on k vertices by

adding n− k pendent vertices to one pendent vertex on the path.

Let k ≥ 2, and let Gi be a graph with vi ∈ V (Gi) for i = 1, . . . , k. Suppose that V (G1), . . . , V (Gk)

are disjoint. Let v /∈ V (Gi) for i = 1, . . . , k. We consider a graph G with vertex set V (G) = {v} ∪(⋃k
i=1 (V (Gi)− vi)

)
, where two vertices x and y in G are adjacent if and only if it satisfies one of the

following: (i) x ∼ y ∈
⋃k
i=1E(Gi); and (ii) one of x and y is v, and the other is a vertex adjacent to vj in

Gj for some 1 ≤ j ≤ k. Then, we say that the graph G is obtained from G1, . . . , Gk by identifying vertices

v1, . . . , vk as v.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 9-31, January 2022.

11 Families of graphs with twin pendent paths and the Braess edge

G

G̃

v

v2

vk1

vk1+1

w2

wk2 wk2+1

Figure 1. An illustration of twin pendent paths in G̃.

Let G be a graph. Let Pk1+1 = (v1, . . . , vk1+1) and Pk2+1 = (w1, . . . , wk2+1) where k1 and k2 are non-

negative integers with k1 + k2 ≥ 2. Suppose that G̃ is the graph obtained from G, Pk1+1, and Pk2+1 by

identifying a vertex v of G, v1, and w1 as v. We say that the paths (v, v2, . . . , vk1+1) and (v, w2 . . . , wk2+1)

in G̃ are twin pendent paths (see Figure 1 for illustration). Then, the pendent vertices of the twin pendent

paths in G̃ are vk1+1 and wk2+1. We remark that considering the construction of G̃, it is reasonable to

assume that k1 and k2 are permitted to be 0 (we consider it throughout this paper), as opposed to one’s

anticipation from the word ‘twin pendent paths’, in that Pk1+1 and Pk2+1 both are of length at least 1.

Consider a discrete, finite, time-homogeneous Markov chain whose finite state space is {1, . . . , n}. The

Markov chain can be represented by the transition matrix M . (We refer the interested reader to [17] for the

necessary background for Markov chains.) Then, Kemeny’s constant κ(M) is defined as
∑n
j 6=imi,jwj , where

mi,j is the mean first passage time from state i to state j, and wj is the jth entry of the stationary distribution.

Note that Kemeny’s constant is independent of i. It is found in [16] that κ(M) + 1 =
∑n
i=1

∑n
j=1 wimi,jwj .

This admits the interpretation of Kemeny’s constant in terms of the expected number of steps from a

randomly chosen initial state to a randomly chosen final state. Alternatively, κ(M) can be expressed as

κ(M) =
∑n
j=2

1
1−λj where 1, λ2, . . . , λn are the eigenvalues of M . For the details, the reader may refer to

[12].

For our work, we use the combinatorial expression for Kemeny’s constant for a random walk on a

connected graph in [13]. In order to emphasise that we are dealing with random walks on connected graphs,

given a connected graph G, we use κ(G) to denote Kemeny’s constant for the transition matrix of the random

walk on G. We denote by τG the number of spanning trees of G, and by FG(i; j) the set of 2-tree spanning

forests of G such that one of the two trees contains a vertex i of G, and the other has a vertex j of G. We

define FG to be the matrix given by FG = [fGi,j ] where fGi,j = |FG(i; j)|. Note that fGi,i = 0, that is, the

diagonal entries of FG are zero. Recall that mG is the number of edges of G. Then, Kemeny’s constant for

the transition matrix of the random walk on G is given by:

κ(G) =
dTGFGdG
4mGτG

.

A non-edge e of G is said to be a Braess edge for G if κ(G) < κ(G ∪ e) where G ∪ e is the graph obtained

from G by adding e to G. A connected graph G is said to be paradoxical [8] if there exists a Braess edge

for G.

We also introduce some useful notation. We denote by 1k the all 1’s vector of size k, by 0k the all 0’s

vector of size k, and by Jp,q the all 1’s matrix of size p× q. If k = p = q, we write Jp,q as Jk. The subscripts
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k and a pair of p and q are omitted if their sizes are clear from the context. We denote by ev the column

vector whose component in vth position is 1 and 0’s elsewhere, and denote by fvG the vth column of FG.

Then, the ith entry of fvG is fGi,v. Moreover, fvG can be written as fv if G is clear from the context.

We assume familiarity with basic material on graph theory. We refer the reader to [6] for the necessary

background. In what follows, we omit G that is a subscript or a superscript in the notation described in this

section when no confusion arises, and we use boldface lowercase letters to denote column vectors.

3. Graphs with twin pendent paths and the Braess edge. In this section, for a connected graph

with twin pendent paths, we provide an equivalent condition for the non-edge between the pendent vertices

of the twin pendent paths to be a Braess edge. Moreover, we examine several families of graphs through the

equivalent condition.

We begin with investigating the components in the expression for Kemeny’s constant κ(G) where G is

a connected graph with a cut-vertex—a connected graph with twin pendent paths has a cut-vertex.

Proposition 3.1. Let H1 and H2 be connected graphs, and let v1 ∈ V (H1) and v2 ∈ V (H2). Assume

that G is obtained from H1 and H2 by identifying v1 and v2 as a vertex v. Suppose that H̃1 = H1 − v1 and

H̃2 = H2 − v2. Then, labelling the vertices of G in order of V (H̃1), v and V (H̃2), we have

dTG = [dTH1
0T|V (H̃2)|] + [0T|V (H̃1)| d

T
H2

],

mG = mH1 +mH2 ,

τG = τH1
τH2

,

FG =

 τH2
FH̃1

τH2
f1 τH2

f11
T + τH1

1fT2
τH2

fT1 0 τH1
fT2

τH1f21
T + τH21f

T
2 τH1f2 τH1FH̃2

 ,(3.1)

where f1 and f2 are the column vectors obtained from fvH1
and fvH2

by deleting the vth component (which is

0), respectively. Furthermore, we obtain

dTGFGdG = τH2d
T
H1
FH1dH1 + τH1d

T
H2
FH2dH2 + 4τH2mH2d

T
H1

fvH1
+ 4τH1

mH1
dTH2

fvH2
.(3.2)

Proof. The conclusions for dG and mG are readily established. We shall consider FG and τG. Since

fGi,j = fGj,i for all i, j ∈ V (G), FG is symmetric. Hence, we only need to verify the entries above the main

diagonal. Note that v is a cut-vertex of G. Since all spanning trees of G can be obtained from spanning trees

of H1 and of H2 by identifying v1 and v2 as v, we have τG = τH1
τH2

. Let i, j ∈ V (H1). For each spanning

forest of H1 in FH1(i; j), we can obtain τH2 spanning forests of G in FG(i; j) from the forest of H1 and each

of τH2
spanning trees of H2 by identifying v1 and v2. Therefore, fGi,j = τH2

fH1
i,j for i, j ∈ V (H1). Similarly,

for i, j ∈ V (H2), we have fGi,j = τH1
fH2
i,j . Let i ∈ V (H̃1) and j ∈ V (H̃2). The set FG(i; j) is a disjoint

union of Ai and Aj , where Ai is the set of spanning forests of G in FG(i; j) such that the tree having the

vertex i among the two trees contains v, and Aj = FG(i; j)\Ai. Since for each spanning forest in Ai the tree

with i has v, the tree contains a spanning tree of H1 as a subtree. So, any forest in Ai can be constructed

from a spanning tree of H1 and a spanning forest in FH2
(v2; j) with v1 and v2 identified as v. Hence, we

have |Ai| = τH1
fH2
v2,j

. Note that fH1
i,v1

= fH1
v1,i

. Applying an analogous argument to the case |Aj |, we have

|Aj | = τH2
fH1
i,v1

. Thus, fGi,j = τH2
fH1
i,v + τH1

fH2
v,j for i ∈ V (H̃1) and j ∈ V (H̃2). Therefore, our desired results

for FG and τG are obtained.
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Now, we shall prove (3.2). Labelling the vertices of H1 (resp. H2) in order of V (H̃1) and v (resp. v and

V (H̃2)), we have

τH2FH1 =

[
τH2

FH̃1
τH2

f1
τH2f

T
1 0

]
, τH1FH2 =

[
0 τH1

fT2
τH1

f2 τH1
FH̃2

]
.

Note that (fvH1
)T =

[
fT1 0

]
and (fvH2

)T =
[
0 fT2

]
. Then,[

τH2
f1 τH2

f11
T
|V (H̃2)|

+ τH1
1|V (H̃1)|f

T
2

0 τH1
fT2

]
= τH2

fvH1
1T|V (H2)| + τH1

1|V (H1)|(f
v
H2

)T .

Considering dTG = [dTH1
0T
|V (H̃2)|

] + [0T
|V (H̃1)|

dTH2
] with FG in (3.1), we have

dTGFGdG

= τH2
dTH1

FH1
dH1

+ τH1
dTH2

FH2
dH2

+ 2dTH1

[
τH2

f1 τH2
f11

T + τH1
1fT2

0 τH1
fT2

]
dH2

= τH2
dTH1

FH1
dH1

+ τH1
dTH2

FH2
dH2

+ 2dTH1

(
τH2

fvH1
1T|V (H2)| + τH1

1|V (H1)|(f
v
H2

)T
)
dH2

= τH2d
T
H1
FH1dH1 + τH1d

T
H2
FH2dH2 + 4τH2mH2d

T
H1

fvH1
+ 4τH1mH1d

T
H2

fvH2
.

We can see from Proposition 3.1 that given mHi and τHi for i = 1, 2, dTGFGdG can be computed from

dTHiFHidHi and dTHif
v
Hi

for i = 1, 2. The following examples regarding Kn, Cn, Pn and Sn present the

corresponding quantities dTFd and dT fv and assist us later to obtain several results and related examples.

Example 3.2. Consider a complete graph Kn on n vertices. Then, m =
(
n
2

)
and τ = nn−2 by Cayley’s

formula (see [6]). Note that Kn is symmetric (see [10]), that is, for any pair of edges of Kn, there is an

automorphism that maps one edge to the other. So, FKn = α(J − I) where α = fKni,j for all i, j ∈ V (Kn).

Then, α is the determinant of the submatrix obtained from the Laplacian matrix of Kn by deleting ith and

jth rows and columns where i 6= j (see [5]). It can be seen that α = 2nn−3. Therefore, for any vertex v in

Kn, we have

dTFd = α(n− 1)21T (J − I)1 = 2nn−2(n− 1)3,

dT fv = α(n− 1)1T (1− ev) = 2nn−3(n− 1)2.

Example 3.3. Consider the cycle Cn = (1, 2, . . . , n, 1) where n ≥ 3. For 1 ≤ v ≤ n, we obtain

FCn =
[
dist(i, j)(n− dist(i, j))

]
1≤i,j≤n , d = 21,

(fv)T =
[
(v − 1)(n− (v − 1)) · · · 1 · (n− 1) 0 1 · (n− 1) · · · (n− v)v

]
.

It can be checked that for v = 1, . . . , n,

dTFd =
2

3
(n− 1)n2(n+ 1) and dT fv =

1

3
(n− 1)n(n+ 1).

Note that for any tree T , FT is the distance matrix of T (see [13]), which is the matrix whose (i, j)-entry

is the distance between i and j.
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Example 3.4. Consider the path Pn = (1, 2, . . . , n) where n ≥ 2. Let v be a vertex of Pn. For 1 ≤ v ≤ n,

we have

FPn =
[
|i− j|

]
1≤i,j≤n , d = 21n − e1 − en,

(fv)T =
[
v − 1 · · · 1 0 1 · · · n− v

]
.

One can verify that for v = 1, . . . , n,

dTFd = 41TF1− 41TFe1 − 41TFen + 2eT1 Fen =
4

3
(n− 1)3 +

2

3
(n− 1),

dT fv = (v − 1)2 + (n− v)2.

Example 3.5. Consider a star Sn of order n where n ≥ 3. Suppose that n is the centre vertex. Then,

we have

dT =
[
1Tn−1 0

]
+ (n− 1)en, FSn =

[
2(J − I) 1n−1

1Tn−1 0

]
.

Hence, we have that for v = 1, . . . , n,

dTFd = 21Tn−1(J − I)1n−1 + 2(n− 1)2 = 2(n− 1)(2n− 3),

dT fv =

{
n− 1, if v = n

3n− 5, if v 6= n.

We consider the following definition for clarity of exposition regarding our work in this paper.

Definition 3.6. Let G be a connected graph on n vertices, and v ∈ V (G). Fix two non-negative integers

k1, k2 with k1 + k2 ≥ 2. Let G̃(v, k1, k2) denote the graph obtained from G, Pk1+1 = (v1, . . . , vk1+1) and

Pk2+1 = (w1, . . . , wk2+1) by identifying the vertices v, v1 and w1. Also, we denote by Ĝ(v, k1, k2) the graph

obtained from G̃(v, k1, k2) by inserting the edge vk1+1 ∼ wk2+1. We say that G is (v, k1, k2)-paradoxical if

κ(Ĝ(v, k1, k2)) > κ(G̃(v, k1, k2)). If G is (v, k1, k2)-paradoxical for every v ∈ V (G), then we say that G is

(k1, k2)-paradoxical.

Our main goal stated in the beginning of this section can be rephrased in terms of Definition 3.6: given a

connected graph G with a vertex v, we shall find an equivalent condition for G to be (v, k1, k2)-paradoxical.

Example 3.7. Consider the following graphs:

v

G

v

G̃(v, 1, 2)

v

Ĝ(v, 1, 2)

With the aid of MATLAB R©, κ(Ĝ(v, 1, 2)) − κ(G̃(v, 1, 2)) ≈ 0.1667. Further, it is shown in Example 3.19

that G is (v, 1, 2)-paradoxical.

Let us continue with the hypothesis and notation of Definition 3.6. To see if G is (v, k1, k2)-paradoxical,

we need to investigate κ(Ĝ(v, k1, k2))−κ(G̃(v, k1, k2)). So, we shall find formulae for dT
G̃
FG̃dG̃ and dT

Ĝ
FĜdĜ

in Lemmas 3.8 and 3.9, respectively.
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Lemma 3.8. Let Pk be a path with two pendent vertices x and y where k ≥ 2, and H be a connected

graph. Suppose that G is the graph obtained from Pk and H by identifying a vertex of Pk and a vertex of H,

say v. Let distG(v, x) = k1 and distG(v, y) = k2. Then,

dTGFGdG = dTHFHdH + 4(k − 1)dTHfvH + τH

(
4

3
(k − 1)3 +

2

3
(k − 1) + 4mH(k2

1 + k2
2)

)
.

Proof. The conclusion is straightforward from (3.2) and Example 3.4.

Lemma 3.9. Let Ck be a cycle of length k where k ≥ 3, and H be a connected graph. Suppose that G is

the graph obtained from Ck and H by identifying a vertex of Ck and a vertex of H, say v. Then,

dTGFGdG = kdTHFHdH + 4k2dTHfvH +
2τH

3
(k + 2mH)(k − 1)k(k + 1).

Proof. The conclusion is readily established from (3.2) and Example 3.3.

Using Lemmas 3.8 and 3.9, we establish our desired equivalent condition as follows.

Theorem 3.10. Let G be a connected graph with a vertex v. Suppose that k1, k2 ≥ 0, k1 + k2 ≥ 2 and

k − 1 = k1 + k2. Then, G is (v, k1, k2)-paradoxical if and only if

kdTG(2fvG1
T − FG)dG + 4m2

GτGk

(
−2

3
(k1 + k2)(k1 + k2 − 1) + 2k1k2)

)
+

2mGτGk

3

(
−5(k1 + k2)3 + (k1 + k2)2 + (k1 + k2) + 12k1k2(k1 + k2 + 1)

)
− 2τGk

3
(k1 + k2 + 1)(k1 + k2)(k1 + k2 − 1)2 > 0.

(3.3)

Proof. Evidently, mG̃ = mG + k − 1, mĜ = mG + k and τG̃ = τG. Since v is a cut-vertex in Ĝ, we have

τĜ = kτG. Then,

κ(Ĝ(v, k1, k2))− κ(G̃(v, k1, k2)) =
dT
Ĝ
FĜdĜ

4mĜτĜ
−

dT
G̃
FG̃dG̃

4mG̃τG̃

=
(mG + k − 1)dT

Ĝ
FĜdĜ − k(mG + k)dT

G̃
FG̃dG̃

4k(mG + k)(mG + k − 1)τG
.(3.4)

Then, G is (v, k1, k2)-paradoxical if and only if

(mG + k − 1)dT
Ĝ
FĜdĜ − k(mG + k)dT

G̃
FG̃dG̃ > 0.

For simplicity, let d = dG, fv = fvG, F = FG, m = mG and τ = τG. Using Lemmas 3.8 and 3.9, we have

(m+ k − 1)dT
Ĝ
FĜdĜ − k(m+ k)dT

G̃
FG̃dG̃

= (m+ k − 1)

(
kdTFd + 4k2dT fv +

2τ

3
(k + 2m)(k − 1)k(k + 1)

)
− k(m+ k)

(
dTFd + 4(k − 1)dT fv +

4

3
τ(k − 1)3 +

2

3
τ(k − 1) + 4mτ(k2

1 + k2
2)

)
= −kdTFd + 4mkdT fv + 4m2τk

(
1

3
(k − 1)(k + 1)− k2

1 − k2
2

)
+

2mτk

3

(
(k − 1)k(k + 1) + 2(k − 1)2(k + 1)− 2(k − 1)3 − (k − 1)− 6k(k2

1 + k2
2)
)

+
2τk

3

(
(k − 1)2k(k + 1)− 2k(k − 1)3 − k(k − 1)

)
.

(3.5)
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Since 1Td = 2m, we have 4mkdT fv = 2kdT fv1Td. Then, one can check from k − 1 = k1 + k2 that the last

expression in (3.5) can be recast as the left side of the inequality (3.3).

Now, we shall introduce the following notation to easily analyse the expression in (3.3). Let G be a

connected graph of order n with V (G) = {1, . . . , n}, and let

φG(v) := dTG(2fvG1
T − FG)dG,

φ1(k1, k2) := −2

3
(k1 + k2)(k1 + k2 − 1) + 2k1k2,

φ2(k1, k2) := −(k1 + k2)(5(k1 + k2)2 − (k1 + k2)− 1) + 12k1k2(k1 + k2 + 1),

φ3(k1, k2) := −(k1 + k2 + 1)(k1 + k2)(k1 + k2 − 1)2,

where v, k1 and k2 are integers such that 1 ≤ v ≤ n, k1, k2 ≥ 0 and k1 + k2 ≥ 2. Furthermore, let

ΦG(v, k1, k2) := kφG(v) + 4m2
GτGkφ1(k1, k2) +

2mGτGk

3
φ2(k1, k2) +

2τGk

3
φ3(k1, k2).(3.6)

By Theorem 3.10, G is (v, k1, k2)-paradoxical if and only if ΦG(v, k1, k2) > 0. We simply write ΦG(v, k1, k2)

and φG(v) as Φ(v, k1, k2) and φ(v), respectively, if G is clear from the context. Note that φi(k1, k2) =

φi(k2, k1) for i = 1, 2, 3. So, ΦG(v, k1, k2) = ΦG(v, k2, k1).

Remark 3.11. A connected graph G is (v, k1, k2)-paradoxical if and only if G is (v, k2, k1)-paradoxical.

Furthermore, G is (k1, k2)-paradoxical if and only if G is (k2, k1)-paradoxical.

Signs of φi(k1, k2) for i = 1, 2, 3 and φG(v). We shall consider the signs of φi(k1, k2) for i = 1, 2, 3

in terms of k1 and k2 and consider an upper bound for each φi(k1, k2). Evidently, φ3(k1, k2) decreases as

k1 + k2 increases, and so

φ3(k1, k2) ≤ −6 for any k1, k2 ≥ 0 where k1 + k2 ≥ 2,(3.7)

with equality if and only if k1 + k2 = 2. Next, φ1(k1, k2) can be written as:

φ1(k1, k2) = −2

3
(k2

1 − (k2 + 1)k1 + k2
2 − k2).

Setting φ1(k1, k2) = 0, we have

k1 =
1

2

(
(k2 + 1)±

√
−3k2

2 + 6k2 + 1

)
.

Since φ1(k1, k2) is symmetric, without loss of generality, we shall fix k2 first. It follows from −3k2
2+6k2+1 < 0

that if k2 < 1 − 2
√

3
3 < 0 or k2 > 1 + 2

√
3

3 > 2, then φ1(k1, k2) < 0 for any k1 ≥ 0. Furthermore, if k2 = 1,

then φ1(1, 1) = 2
3 , φ1(2, 1) = 0 and φ1(k1, 1) < 0 for k1 > 2. Finally, for k2 = 2, we have φ1(0, 2) = − 4

3 ,

φ1(1, 2) = φ1(2, 2) = 0 and φ1(k1, 2) < 0 for k1 > 2. Therefore, φ1(k1, k2) > 0 if and only if (k1, k2) = (1, 1);

φ1(k1, k2) = 0 if and only if (k1, k2) ∈ {(1, 2), (2, 1), (2, 2)}; and φ1(k1, k2) < 0 for any k1, k2 ≥ 0 with

k1 + k2 ≥ 2 and (k1, k2) /∈ {(1, 1), (1, 2), (2, 1), (2, 2)}.

Remark 3.12. We have ∂φ1

∂k1
= − 4

3k1 + 2
3 (k2 + 1). Then, φ1(2, 0) = − 4

3 and ∂φ1

∂k1

∣∣∣
k2=0

< 0 for k1 ≥

2; φ1(3, 1) = −2 and ∂φ1

∂k1

∣∣∣
k2=1

< 0 for k1 ≥ 3; φ1(3, 2) = − 4
3 and ∂φ1

∂k1

∣∣∣
k2=2

< 0 for k1 ≥ 3; finally,

φ1(k2, k2) = − 2
3 (k2

2 − 2k2) ≤ −2 for k2 ≥ 3 and ∂φ1

∂k1
< 0 for k1 ≥ k2 ≥ 3. Hence, since φ1(k1, k2) is
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symmetric, φ1(k1, k2) ≤ − 4
3 for integers k1, k2 ≥ 0 with k1 +k2 ≥ 2 and (k1, k2) /∈ {(1, 1), (1, 2), (2, 1), (2, 2)}.

Furthermore, by computation, we have φ1(3, 0) = φ1(4, 2) = −4. Therefore, φ1(k1, k2) ≤ −2 for integers

k1, k2 ≥ 0 with k1 + k2 ≥ 2 and (k1, k2) /∈ {(0, 2), (2, 0), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2)}.

Putting k − 1 = k1 + k2 ≥ 2, φ2(k1, k2) can be written as:

φ2(k1, k2) = −12kk2
1 + 12k(k − 1)k1 − (k − 1)(5k2 − 11k + 5).

Setting φ2(k1, k2) = 0, we have

k1 =
1

12k

(
6k(k − 1)±

√
−12k(k − 1)(2k2 − 8k + 5)

)
.

Since 2k2 − 8k + 5 > 0 for all k ≥ 4, φ2(k1, k2) < 0 for any k1, k2 ≥ 0 with k1 + k2 ≥ 3. For k = 3, we have

φ2(1, 1) = 2 > 0 and φ2(2, 0) = −34 < 0. Let f(t) = −(t − 1)(2t2 − 8t + 5) where t is real number. Then,

for fixed t ≥ 3, the maximum of φ2(t1, t2) for nonnegative numbers t1 and t2 with t1 + t2 = t− 1 is attained

as f(t) at t1 = t−1
2 . We can find that f(3) > 0, f(4) = −15 and f ′(t) < 0 for t ≥ 4. From computation, we

have φ2(0, 3) = −123 and φ2(1, 2) = −27. Hence,

φ2(k1, k2) < −15 for any k1, k2 ≥ 0 with k1 + k2 ≥ 2 and (k1, k2) 6= (1, 1).(3.8)

We claim that for a non-trivial connected graph G, φ(v) = dT (2fv1T − F )d > 0 for v = 1, . . . , n. In

order to establish our claim, we first show that fGi,j is a metric on the vertex set of G by using the resistance

distance (see [14] for an introduction). Let L be the Laplacian matrix of G, and let L† = [`†i,j ]n×n be the

Moore–Penrose inverse of L. Then, the resistance distance Ωi,j between vertices i and j of G is represented

(see [15]) as:

Ωi,j = `†i,i + `†j,j − `
†
i,j − `

†
j,i.

Moreover, the resistance distance is a metric on V (G) (see [2]). As proved in [7], the number fGi,j of 2-tree

spanning forests of G having i and j in different trees is

fGi,j = τGΩi,j .

Therefore, we have the following properties endowed by the metric Ωi,j :

(i) fGi,j ≥ 0, with equality if and only if i = j;

(ii) fGi,j = fGj,i for all i, j;

(iii) for any i, j, k, fGi,j ≤ fGi,k + fGk,j , with equality [4] if and only if either all paths in G from i to j pass

through k or k is one of i and j.

Let X = 2fv1T − F , and Q = [qi,j ] = X+XT

4 . Then,

dTXd =
1

2
(dTXd + dTXTd) = 2dTQd.

Since 2Q = fv1T +1(fv)T −F , we have 2qi,j = fi,v+fv,j−fi,j ≥ 0. Since G is connected, if i 6= v, then there

exists a 2-tree spanning forest having i and v in different trees, that is, fi,v > 0. For a non-trivial connected

graph G, there exists a vertex i with i 6= v such that 2qi,i = fi,v + fv,i > 0. Hence, Q is a non-negative

symmetric matrix with Q 6= 0. Since d > 0, we have dTQd > 0. Therefore, dT (2fv1T − F )d > 0.
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Recall that given a connected graph G of order n where n ≥ 2, G is (v, k1, k2)-paradoxical if and only

if Φ(v, k1, k2) > 0, where 1 ≤ v ≤ n and integers k1, k2 ≥ 0 with k1 + k2 ≥ 2. We have seen that φ(v) > 0

for any 1 ≤ v ≤ n regardless of k1 and k2; φ1(k1, k2) ≥ 0 if and only if (k1, k2) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)};
φ2(k1, k2) < 0 for any k1, k2 with (k1, k2) 6= (1, 1); and φ3(k1, k2) < 0 for any k1, k2. Hence, φ(v) must have

a relatively larger quantity in order for G to be (v, k1, k2)-paradoxical.

Consider the case k1 = k2 = 1. Then, Φ(v, 1, 1) = 3φ(v)+8m2
GτG+4mGτG−12τG. Clearly, Φ(v, 1, 1) > 0

for any non-trivial connected graph G and any vertex v of G. Hence, we have the following result.

Theorem 3.13 ([8]). Let G be a connected graph of order n where n ≥ 2. Then, G is (1, 1)-paradoxical.

Combinatorial interpretation for fvG1
T +1(fvG)T −FG. Let G be a non-trivial connected graph with

a vertex v. We now discuss a combinatorial interpretation for qi,j where qi,j = 1
2 (fGi,v + fGv,j − fGi,j). Denote

by FG(i, j; v) (or equivalently FG(v; i, j)) the set of all spanning forests consisting of two trees in G, one of

which contains vertices i and j and the other of which contains a vertex v. Then, we have

|FG(i; j)| = |FG(i; v, j)|+ |FG(i, v; j)|,
|FG(i; v)| = |FG(i, j; v)|+ |FG(i; v, j)|,
|FG(v; j)| = |FG(i, v; j)|+ |FG(v; i, j)|.

It follows that 2qi,j = fi,v + fv,j − fi,j = 2|FG(i, j; v)|, that is, qi,j is the number of 2-tree spanning forests

of G having i, j in one tree and v in the other. Thus, we define QG,v as the matrix QG,v = [qi,j ] associated

to G and v. Then,

QG,v =
1

2
(fv1T + 1(fv)T − F ), φG(v) = dT (2fv1T − F )d = 2dTQG,vd.

Remark 3.14. Let G be a connected graph with a vertex v. Let QG,v = [qi,j ]. Since 2qi,j = fi,v +fv,j−
fi,j , we have qi,j = 0 whenever v = i or v = j. Suppose that v is a cut-vertex. If there is no path from i to j

with i 6= v and j 6= v in G−v, then by the combinatorial interpretation for qi,j , we obtain qi,j = 0. Consider

a branch B of G at v. Let i, j ∈ V (B). For each forest in FG(i, j; v), the subtree with the vertex v in the

forest must contain all vertices of V (G)\V (B). Thus, for the subgraph G′ induced by V (G)\(V (B)− {v}),
we have |FG(i, j; v)| = τG′ |FB(i, j; v)|. This implies that G′ is a tree if and only if |FG(i, j; v)| = |FB(i, j; v)|.

Given a tree T with a vertex v, let QT ,v = [qi,j ]. Consider two vertices i and j in T with i 6= v

and j 6= v. For each forest in FT (i, j; v), there is a subtree of the forest having i and j. Then, all vertices

w0, w1, . . . , wdist(i,j) on the subpath with pendent vertices i and j must be contained in the subtree. Therefore,

qi,j = min{dist(v, wp)|p = 0, . . . ,dist(i, j)}. In particular, if i = j then qi,j = dist(i, v).

Based on Remark 3.14, let us consider the following example.

Example 3.15. Consider the path P6 = (1, . . . , 6). Let QPn,v = [qi,j ] where v = 3. Evidently, q3,i =

qi,3 = 0 for 1 ≤ i ≤ 6. Since v is a cut vertex, we have qi,j = 0 for i ∈ {1, 2} and j ∈ {4, 5, 6}. By the

argument in the second paragraph of Remark 3.14, we have

QPn,v =



2 1 0 0 0 0

1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 1 1

0 0 0 1 2 2

0 0 0 1 3 3


.
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While the combinatorial interpretation for entries of QG,v is given, we mainly focus on the computation

of dTQG,vd in the rest of this section, but the combinatorial interpretation is used more in Section 5.

Several examples. We now find conditions for Kn, Cn, Pn or Sn to be (v, k1, k2)-paradoxical or

(k1, k2)-paradoxical. For simplicity, set k − 1 = k1 + k2 and φi = φi(k1, k2) for i = 1, 2, 3. Note that

φG(v) = dT (2fv1T − F )d = 2dTQG,vd and φi(k1, k2) = φi(k2, k1) for i = 1, 2, 3. We compute φG(v) by

using F and fv for G = Kn or G = Cn, and by directly finding QG,v for G = Pn or G = Sn. For convenience,

the following quantities are computed in advance: φ2(1, 2) = −27, φ3(1, 2) = −48, φ2(2, 2) = −60 and

φ3(2, 2) = −180.

Example 3.16. Consider a complete graph Kn on n vertices. Let v be a vertex of Kn. Then, from

φ(v) = dT (2fv1T − F )d and Example 3.2, it is readily seen that

φ(v) = 2nn−2(n− 1)3 = 2τ(n− 1)3.

Using (3.6) with m = n(n−1)
2 , we obtain

ΦKn(v, k1, k2) = τk

(
2(n− 1)3 + n2(n− 1)2φ1 +

1

3
n(n− 1)φ2 +

2

3
φ3

)
.

Suppose that (k1, k2) /∈ {(1, 1), (1, 2), (2, 1), (2, 2)}. By Remark 3.12, φ1 ≤ − 4
3 . From (3.8), we have φ2 <

−15. By (3.7), φ3 ≤ −6. Hence,

Φ(v, k1, k2) < τk

(
−4

3
n4 +

14

3
n3 − 37

3
n2 + 11n− 6

)
.

One can verify that − 4
3n

4+ 14
3 n

3− 37
3 n

2+11n−6 < 0 for n ≥ 1. Thus, if (k1, k2) /∈ {(1, 1), (1, 2), (2, 1), (2, 2)},
then Kn is not (v, k1, k2)-paradoxical for any n ≥ 1.

Consider (k1, k2) = (1, 2) and (k1, k2) = (2, 2). Then,

Φ(v, 1, 2) = 4τ
(
2(n− 1)3 − 9n(n− 1)− 32

)
,

Φ(v, 2, 2) = 5τ
(
2(n− 1)3 − 20n(n− 1)− 120

)
.

Using the derivatives of Φ(v,1,2)
4τ and Φ(v,2,2)

10τ with respect to n, it can be checked that Φ(v, 1, 2) > 0 if and only

if n ≥ 7; Φ(v, 2, 2) > 0 if and only if n ≥ 13. Hence, Kn is (1, 2)-paradoxical for n ≥ 7, and (2, 2)-paradoxical

for n ≥ 13.

Example 3.17. Given a cycle Cn with a vertex v, from φ(v) = dT (2fv1T − F )d and Example 3.3, we

have φ(v) = 2
3 (n− 1)n2(n+ 1) = 2τ

3 (n− 1)n(n+ 1). Using (3.6), we find

ΦCn(v, k1, k2) = τk

(
2

3
(n− 1)n(n+ 1) + 4n2φ1 +

2

3
nφ2 +

2

3
φ3

)
.

We observe that the term of the highest degree about n in Φ(v,k1,k2)
τk has a positive coefficient. This implies

that given k1, k2 ≥ 0 with k1 + k2 ≥ 2, Cn is (k1, k2)-paradoxical for sufficiently large n. Consider (k1, k2) =

(1, 2) and (k1, k2) = (2, 2). Then,

Φ(v, 1, 2) = 4τ

(
2

3
(n− 1)n(n+ 1)− 18n− 32

)
,

Φ(v, 2, 2) = 5τ

(
2

3
(n− 1)n(n+ 1)− 40n− 120

)
.
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One can verify that Φ(v, 1, 2) ≥ 0 for n ≥ 6 with equality if and only if n = 6; Φ(v, 2, 2) ≥ 0 for n ≥ 9 with

equality if and only if n = 9. Hence, Cn is (1, 2)-paradoxical for n ≥ 7, and (2, 2)-paradoxical for n ≥ 10.

Example 3.18. Consider the path Pn = (1, . . . , n) with a vertex v. By Remark 3.14 and Example 3.15,

we have

QPn,v =

[
M1 0

0 M2

]
,

where M1 =
[
min{v − i, v − j}

]
1≤i,j≤v and M2 =

[
min{i, j}

]
1≤i,j≤n−v. We have dPn = 21n − e1 − en.

Then,

dTQPn,vd = 41TQPn,v1 + (M1)1,1 + (M2)n−v,n−v − 41TQPn,ve1 − 41TQPn,ven

= 4

(
v−1∑
k=1

k2 +

n−v∑
k=1

k2

)
+ n− 1− 2v(v − 1)− 2(n− v)(n− v + 1)

= 4(n− 1)v2 − 4(n2 − 1)v +
4

3
n3 − 1

3
n− 1.

The minimum of dTQPn,vd is attained as 1
3n(n− 1)(n− 2) if n is odd, and as 1

3n
3−n2 + 5

3n− 1 if n is even.

The maximum of dTQPn,vd is 1
3 (n− 1)(2n− 1)(2n− 3) at v = 1 or v = n.

By (3.6) and the minimum of φ(v) = 2dTQPn,vd, we have

ΦPn(v, k1, k2) ≥ k
(

2

3
n(n− 1)(n− 2) + 4(n− 1)2φ1 +

2

3
(n− 1)φ2 +

2

3
φ3

)
.

By a similar argument as in Example 3.17, given k1, k2 ≥ 0 with k1 + k2 ≥ 2, Pn is (k1, k2)-paradoxical for

sufficiently large n.

Example 3.19. Consider a star Sn of order n with a vertex v. Using Remark 3.14, it can be checked

that

QSn,v =


J +

[
In−1 0

0 0

]
− ev1

T − 1eTv , if deg(v) = 1,[
In−1 0

0 0

]
, if deg(v) = n− 1.

Hence,

dTQSn,vd =

{
(n− 1)(4n− 7), if deg(v) = 1,

n− 1, if deg(v) = n− 1.

Suppose that v is the centre vertex. Then, n ≥ 3. By (3.6) and φ(v) = 2dTQSn,vd, we have

ΦSn(v, k1, k2) = k

(
2(n− 1) + 4(n− 1)2φ1 +

2

3
(n− 1)φ2 +

2

3
φ3

)
.

Let (k1, k2) 6= (1, 1). Clearly, φ1 ≤ 0. By (3.8) and (3.7), we have φ2 < −15 and φ3 ≤ −6, respectively. So,

Φ(v, k1, k2) < −4k(2n − 1). Hence, if Sn is (v, k1, k2)-paradoxical where v is the centre vertex of Sn, then

(k1, k2) = (1, 1) and n ≥ 3.
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Suppose that v is a pendent vertex. Then,

ΦSn(v, k1, k2) = k

(
2(n− 1)(4n− 7) + 4(n− 1)2φ1 +

2

3
(n− 1)φ2 +

2

3
φ3

)
.

We have φ1(2, 0) = − 4
3 , φ2(2, 0) = −34 and φ3(2, 0) = −6; φ1(3, 2) = − 4

3 , φ2(3, 2) = −163 and φ3(3, 2) =

−480. One can check that Φ(v, 2, 0) = 8n2 − 102n + 82 > 0 for n ≥ 12; Φ(v, 2, 1) = 32n2 − 160n > 0 for

n ≥ 6; Φ(v, 2, 2) = 40n2 − 310n − 330 > 0 for n ≥ 9; and Φ(v, 3, 2) = 16n2 − 720n − 1216 > 0 for n ≥ 47.

Let

A = {(0, 2), (2, 0), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2)}.

Suppose that (k1, k2) /∈ A. By Remark 3.12, we have φ1(k1, k2) ≤ −2. From (3.8) and (3.7), φ2 < −15 and

φ3 ≤ −6, respectively. Hence, Φ(v, k1, k2) < −k(16n − 12). Therefore, if Sn is (v, k1, k2)-paradoxical

for a pendent vertex v, then k1, k2 and n satisfy one of the following: (i) (k1, k2) = (1, 1), n ≥ 2;

(ii) (k1, k2) ∈ {(0, 2), (2, 0)}, n ≥ 12; (iii) (k1, k2) ∈ {(1, 2), (2, 1)}, n ≥ 6; (iv) (k1, k2) = (2, 2), n ≥ 9;

and (v) (k1, k2) ∈ {(2, 3), (3, 2)}, n ≥ 47.

4. Asymptotic behaviour of a sequence of graphs with twin pendent paths regarding the

Braess edge. We have seen the families of complete graphs, cycles, stars and paths in the previous section,

and we have observed their asymptotic behaviours with respect to the property of being (v, k1, k2)-paradoxical

as the orders of graphs increase. In particular, from Examples 3.17 and 3.18, if for any non-negative integers

k1 and k2 with k1 + k2 ≥ 2, any graph in a family of cycles or paths has sufficiently large order relative to

k1 and k2, then it is (k1, k2)-paradoxical. This idea is formalised for a specified vertex, and a tool for finding

such families is described in this section.

Definition 4.1. Let Gv be a sequence of graphs G1, G2, . . . where for each n ≥ 1, Gn is a connected

graph of order n with a specified vertex v. Fix integers k1, k2 ≥ 0 with k1 + k2 ≥ 2. The sequence Gv
is asymptotically (k1, k2)-paradoxical if there exists N > 0 such that Gn is (v, k1, k2)-paradoxical for all

n ≥ N . The sequence Gv is asymptotically paradoxical if for any integers l1, l2 ≥ 0 with l1 + l2 ≥ 2, Gv is

asymptotically (l1, l2)-paradoxical.

In what follows, Gv = (Gn)v denotes a sequence of connected graphs G1, G2, . . . where for each n ≥ 1,

|V (Gn)| = n and v ∈ V (Gn).

Example 4.2. From Theorem 3.13, any sequence Gv = (Gn)v is asymptotically (1, 1)-paradoxical.

Example 4.3. Let Gv1 = (Kn)v, Gv2 = (Cn)v, Gv3 = (Pn)v and Gv4 = (Sn)v. From Examples 3.16–3.19, Gv2
and Gv3 are asymptotically paradoxical, but Gv1 and Gv4 are not. In particular, Gv1 is asymptotically (k1, k2)-

paradoxical if and only if (k1, k2) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}. Consider Gv4 = (Sn)v. Suppose that there

exists N > 0 such that v is a pendent vertex of Sn for all n ≥ N . Then, Gv4 is asymptotically (k1, k2)-

paradoxical if and only if (k1, k2) is in the set A described in Example 3.19. If there exists N > 0 such

that v is the centre vertex of Sn for all n ≥ N , then Gv4 is asymptotically (k1, k2)-paradoxical if and only if

(k1, k2) = (1, 1).

Consider a sequence Gv = (Gn)v. Examining the proof of Theorem 3.10 with (3.4), we find from (3.6)

that
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κ(Ĝn(v, k1, k2))− κ(G̃n(v, k1, k2))

=
ΦGn(v, k1, k2)

4k(mGn + k)(mGn + k − 1)τGn

=
φGn(v) + 4m2

Gn
τGnφ1(k1, k2) +

2mGnτGn
3 φ2(k1, k2) +

2τGn
3 φ3(k1, k2)

4(mGn + k)(mGn + k − 1)τGn
.(4.9)

Note that since φGn(v) > 0 for all n ≥ 2, we have
φGn (v)

4m2
Gn

τGn
> 0.

We introduce a sufficient condition for Gv = (Gn)v to be asymptotically (k1, k2)-paradoxical. Moreover,

the following result can be used for minimising N0 > 0 such that Gn is (v, k1, k2)-paradoxical for all n ≥ N0.

Proposition 4.4. Let k1, k2 be non-negative integers with k1 + k2 ≥ 2 and (k1, k2) 6= (1, 1). Given

a sequence Gv = (Gn)v, suppose that
φGN+1

(v)

4m2
GN+1

τGN+1

≥ φGN (v)

4m2
GN

τGN
for some N > 0. If GN is (v, k1, k2)-

paradoxical, then GN+1 is (v, k1, k2)-paradoxical. This implies that if GN0
is (v, k1, k2)-paradoxical for some

N0 > 0, and if
φGn (v)

4m2
Gn

τGn
is non-decreasing for n ≥ N0, then Gn is (v, k1, k2)-paradoxical for all n ≥ N0—that

is, Gv = (Gn)v is asymptotically (k1, k2)-paradoxical.

Proof. We only need to show that if ΦGN (v, k1, k2) > 0 then ΦGN+1
(v, k1, k2) > 0. We note that

mGN+1
> mGn . From the numerator in (4.9), it follows that

ΦGN+1
(v, k1, k2) = 4m2

GN+1
τGN+1

(
φGN+1

(v)

4m2
GN+1

τGN+1

+ φ1(k1, k2) +
φ2(k1, k2)

6mGN+1

+
φ3(k1, k2)

6m2
GN+1

)

> 4m2
GN+1

τGN+1

(
φGN+1

(v)

4m2
GN+1

τGN+1

+ φ1(k1, k2) +
φ2(k1, k2)

6mGN

+
φ3(k1, k2)

6m2
GN

)

≥ 4m2
GN+1

τGN+1

(
φGN (v)

4m2
GN

τGN
+ φ1(k1, k2) +

φ2(k1, k2)

6mGN

+
φ3(k1, k2)

6m2
GN

)

= 4m2
GN+1

τGN+1

ΦGN (v, k1, k2)

4m2
GN

τGN
> 0.

Note that the first inequality is obtained by (3.8) and (3.7).

Example 4.5. Let (k1, k2) = (1, 2). Consider Gv = (Pn)v where for each n ≥ 2, v is a pendent vertex

of Pn. Examining Example 3.18, it can be seen that ΦP4
(v, 1, 2) < 0 and ΦP5

(v, 1, 2) > 0; and
φPn (v)

4m2
Pn
τPn

is

strictly increasing for n ≥ 2. Therefore, by Proposition 4.4, Pn is (v, 1, 2)-paradoxical for n ≥ 5.

Here is the main result in this section.

Theorem 4.6. Given a sequence Gv = (Gn)v, Gv is asymptotically paradoxical if and only if
φGn (v)

4m2
Gn

τGn
→

∞ as n→∞.
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Proof. We shall prove the sufficiency by contrapositive. Suppose that
φGn (v)

4m2
Gn

τGn
is bounded, say 0 <

φGn (v)

4m2
Gn

τGn
≤ L for any n ≥ 2 and for some L > 0. Then, from (4.9), we have

κ(Ĝn(v, k1, k2))− κ(G̃n(v, k1, k2))

<
φGn(v) + 4m2

Gn
τGnφ1(k1, k2) +

2mGnτGn
3 φ2(k1, k2) +

2τGn
3 φ3(k1, k2)

4m2
Gn
τGn

≤ L+ φ1(k1, k2) +
φ2(k1, k2)

6mGn

+
φ3(k1, k2)

6m2
Gn

.

Considering Remark 3.12, (3.8) and (3.7), there exist integers K1 ≥ 0 and K2 ≥ 0 with K1 + K2 ≥ 2 such

that κ(Ĝn(v,K1,K2))− κ(G̃n(v,K1,K2)) < 0 for all n ≥ 2—that is, Gv is not asymptotically paradoxical.

Suppose that
φGn (v)

4m2
Gn

τGn
diverges to infinity. Fix k1, k2 ≥ 0 with k1 + k2 ≥ 2. Since Gn is connected for

all n ≥ 1, mGn goes to infinity as n→∞. It follows from (4.9) that

lim
n→∞

(
κ(Ĝn(v, k1, k2))− κ(G̃n(v, k1, k2))

)
=∞.

Therefore, Gv is asymptotically paradoxical.

Example 4.7. Revisit Examples 3.16–3.19. One can verify that as n → ∞, we have
φKn (v)

4m2
Kn

τKn
→ 0;

φCn (v)

4m2
Cn
τCn
→∞;

φPn (v)

4m2
Pn
τPn
→∞;

φSn (v)

4m2
Sn
τSn
→ 2 where v is a pendent vertex of Sn; and

φSn (v)

4m2
Sn
τSn
→ 0 where v

is the centre vertex of Sn. By Theorem 4.6, the sequences (Cn)v and (Pn)v are asymptotically paradoxical.

Now we shall construct (v, k1, k2)-paradoxical graphs from a connected graph that is not (v, k1, k2)-

paradoxical, by using an asymptotically paradoxical sequence. Given a connected graph G with a vertex

v, suppose that G is not (v, k1, k2)-paradoxical. Adding new vertices and edges to G, we shall make the

resulting graph (v, k1, k2)-paradoxical.

Note that the case of the equality in the following proposition is used in Section 5.

Proposition 4.8. Let G be a connected graph, and v be a cut-vertex. Suppose that there are ` branches

B1, . . . , B` of G at v. Then,

dTGQG,vdG =
∑̀
k=1

τG′kd
T
Bk
QBk,vdBk ≥

∑̀
k=1

dTBkQBk,vdBk ,(4.10)

where G′k is the subgraph induced by V (G)\(V (Bk)− {v}). This implies that φG(v) ≥
∑`
k=1 φBk(v). More-

over, the two sides are equal if and only if G is a tree.

Proof. Let QG,v = [qi,j ]. By Remark 3.14, if i = v or j = v, then qi,j = 0. Consider i 6= v and j 6= v.

Suppose that i ∈ V (Bk1) and j ∈ V (Bk2) for k1 6= k2. Since v is a cut-vertex of G, we find from Remark

3.14 that qi,j = 0. Hence, for k = 1, . . . , `, the submatrix of QG,v whose rows and columns are indexed by

V (Bk) and V (G)\V (Bk), respectively, is the zero matrix. For k = 1, . . . , `, assume i, j ∈ V (Bk). Since v is

a cut-vertex, by Remark 3.14, we have |FG(i, j; v)| = τG′k |FBk(i, j; v)| where G′k is the subgraph induced by

V (G)\(V (Bk)−{v}), with equality if and only if G′k is a tree. Therefore, the submatrix of QG,v whose rows

and columns are indexed by the vertex set V (Bk) is τG′kQBk,v.
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Let 1 ≤ k ≤ `. For dBk = (di)i∈V (Bk), let d̂Bk = (d̂i)i∈V (G) where d̂i = di if i ∈ V (Bk), and d̂i = 0 if

i ∈ V (G)\V (Bk). Then, for 1 ≤ k1, k2 ≤ `,

d̂TBk1
QG,vd̂Bk2 = dTBk1

Q̃G,vdBk2 ,

where Q̃G,v is the submatrix of QG,v whose rows and columns are indexed by V (Bk1) and V (Bk2), respec-

tively. If k1 6= k2 then dTBk1
Q̃G,vdBk2 = 0. Furthermore, dTBk1

Q̃G,vdBk1 = τG′k1
dTBk1

QBk1 ,vdBk1 . Evidently,

dG =
∑`
k=1 d̂Bk . Therefore, the desired result follows.

Proposition 4.9. Let Hi be a connected graph with a vertex vi for i = 1, . . . , `. Suppose that a se-

quence Gv = (Gn)v is asymptotically paradoxical. Consider a sequence (G′)v = (G′n)v where for 1 ≤
n ≤

∑`
i=1 |V (Hi)|, G′n = Gn, and for n >

∑`
i=1 |V (Hi)|, G′n is the graph obtained from H1, . . . ,H` and

Gn−
∑`
i=1 |V (Hi)| by identifying the vertices v1, . . . , v`, v. Then, (G′)v is asymptotically paradoxical.

Proof. Suppose that n >
∑`
i=1 |V (Hi)|. Let n0 = n −

∑`
i=1 |V (Hi)|. Since v is a cut-vertex in G′n, we

have τG′n = τGn0
τH1
· · · τH` . Using Proposition 4.8, we obtain

φG′n(v)

4m2
G′n
τG′n
≥

φGn0
(v) +

∑`
i=1 φHi(vi)

4(mGn0
+
∑`
i=1mHi)

2τGn0
τH1
· · · τH`

.

As n → ∞, we have n0 → ∞. Since (G)v is asymptotically paradoxical, by Theorem 4.6 we obtain
φGn0

(v)

4m2
Gn0

τGn0

→ ∞ as n → ∞. It follows that
φG′n

(v)

4m2
G′n

τG′n
→ ∞ as n → ∞. Therefore, (G′)v is asymptoti-

cally paradoxical.

Remark 4.10. Let a sequence Gv = (Gn)v be asymptotically paradoxical. Suppose that a connected

graph H with a vertex w is not (w, k1, k2)-paradoxical for some integers k1 and k2 with k1 + k2 ≥ 2.

Proposition 4.9 tells that regardless of the number of branches of H at w, we can obtain a (v, k1, k2)-

paradoxical graph from H by identifying w and the vertex v of Gn for sufficiently large order n.

Example 4.11. Adopting the notation in Remark 4.10, consider the following graph H:

w

H

One can check from computation that φH(w) = 2dTHQH,wdH = 118 and ΦH(w, 1, 2) < 0. So, H is not

(w, 1, 2)-paradoxical. From Example 4.7, Gv = (Pn)v is asymptotically paradoxical. For ease of exposition,

we assume that for each n ≥ 2, v is a pendent vertex of Pn. Suppose that G′n is the graph obtained from H

and Pn by identifying w and v as v. As discussed in Remark 4.10, there must be some N0 > 0 such that G′n
is (v, 1, 2)-paradoxical for all n ≥ N0. We shall minimise such an N0. Using Proposition 4.8 and Example

3.18, we have

φG′n(v) = 2dTG′nQG′n,vdG′n = 2dTHQH,wdH + 6dTPnQPn,vdPn = 118 + 2(n− 1)(2n− 1)(2n− 3).

By computation of ΦG′n(v, 1, 2) for n = 2, . . . , 5, G′2, G′3, and G′4 are not (v, 1, 2)-paradoxical, and G′5 is

(v, 1, 2)-paradoxical. Furthermore, it can be checked that
φG′n

(v)

4m2
G′n

τG′n
is strictly increasing for n ≥ 5. Hence,
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v v1 v2 v3 v4

Figure 2. An example for illustration of the notation T0, . . . , Tα in Step 1.

by Proposition 4.4, G′n is (v, 1, 2)-paradoxical for all n ≥ 5. In other words, we can construct a (v, 1, 2)-

paradoxical graph from H and a path of length at least 4 by identifying w and a pendent vertex of the

path.

5. Asymptotically paradoxical sequences of trees. We begin with presenting an outline of this

section. Throughout this section, we shall consider sequences Gv = (Tn)v of trees, where for each n ≥ 2,

Tn is obtained from Tn−1 by an addition of a new pendent vertex or a subdivision of an edge. Then,

we examine asymptotic behaviour of such trees upon the addition of twin pendent paths; specifically, we

investigate under what circumstances the sequences are asymptotically paradoxical. Considering Theo-

rem 4.6, we need to understand
φTn (v)

4m2
TnτTn

. Recall that φTn(v) = 2dTTnQTn,vdTn . To consider condi-

tions for
φTn (v)

4m2
TnτTn

to diverge to infinity, we shall find the minimum of dTTnQTn,vdTn , provided the num-

ber of branches of Tn at v and the eccentricity of v in each branch are given (Proposition 5.3). With

the minimum, we provide some condition in terms of the eccentricity of v in Tn and the number of

branches of Tn at v satisfying some property, in order for the sequences to be asymptotically paradoxical

(Theorem 5.6).

Here is a sketch of two steps to find the minimum of dTTnQTn,vdTn . By Proposition 4.8, we only need to

understand the minimum of dTBQB,vdB where B is a branch of Tn at v—that is, the minimum of dTTQT ,vdT
where T is a tree with a pendent vertex v and the eccentricity of v is given. This minimum is provided

in (5.13) at the end of Step 1. By Proposition 4.8, we establish our desired result in Proposition 5.3 in

Step 2.

Step 1. Let T be a tree of order n and v be a pendent vertex in T . Suppose that α is the eccentricity

eT (v) of v in T . Then, there exists the path P = (v0, v1, . . . , vα) of length α in T where v0 = v. Evidently,

v0 and vα are pendent vertices in T . Let T0 and Tα be the trees where V (T0) = {v0} and V (Tα) = {vα}. For

k = 1, . . . , α− 1, if there are more than two branches of T at vk, then we define Tk to be the tree obtained

from T by deleting two branches except vk where one contains vk−1 and the other vk+1; if there are exactly

two branches of T at vk, then we define Tk to be the tree with V (Tk) = {vk}. Then, V (T0), . . . , V (Tα) are

mutually disjoint sets. Moreover, for each k = 0, . . . , α, we have eTk(vk) ≤ α− k. As an example, if T is the

tree in Figure 2, then V (T0) = {v}, V (T3) = {v3}, and V (T4) = {v4}; furthermore, T1 and T2 are S4 and P3,

respectively.

Let QT ,v = [qi,j ]. Recall that qi,j = |FT (i, j; v)| is the number of 2-tree spanning forests of T having i,

j in one tree and v in the other. Note that v = v0. In order to understand the structure of QT ,v, we shall

consider two cases: (i) i and j are in different subtrees; and (ii) i and j are in the same subtree. Suppose

that i ∈ V (Tk1) and j ∈ V (Tk2) where 0 ≤ k1 < k2 ≤ α. For each forest in FT (i, j; v), since i and j belong to

the same subtree in the forest, the subtree must contain vk1 and vk2 . For any vertex w on the subpath of T
with i and j as the pendent vertices, we have distT (v, vk1) ≤ distT (v, w). Hence, by Remark 3.14, qi,j = k1

for i ∈ V (Tk1) and j ∈ V (Tk2) with 0 ≤ k1 < k2 ≤ α.
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Assume that i, j are in V (Tk) for some 1 ≤ k ≤ α. Consider the subpath P ′ of Tk with i and j as the

pendent vertices. Suppose that w0 is the vertex on P ′ such that distTk(vk, w0) ≤ distTk(vk, w) for w ∈ V (P ′).

Then, distT (v, w0) = k + distTk(vk, w0). Let QTk,vk = [q̃i,j ]. By Remark 3.14, we have qi,j = k + q̃i,j .

Labelling the rows and columns of QT ,v in order of v, V (T1), . . . , V (Tα), we obtain the following structure:

QT ,v =



0 0 0 0 · · · 0

0 J +QT1,v1 J J · · · J

0 J 2J +QT2,v2 2J · · · 2J

0 J 2J 3J +QT3,v3 · · ·
...

...
...

...
...

. . . (α− 1)J

0 J 2J 3J · · · αJ +QTα,vα


where the Js in the blocks of QT ,v are appropriately sized. Let nk = |V (Tk)| for k = 0, . . . , α. Note that

n0 = nα = 1. Then, QT ,v can be recast as:

QT ,v =

α−1∑
i=0

[
0 0

0 Jn−(n0+···+ni)

]
+ diag(0, QT1,v1 , . . . , QTα,vα)

=

α−1∑
i=0

[
0n0+···+ni

1n−(n0+···+ni)

] [
0Tn0+···+ni 1Tn−(n0+···+ni)

]
+ diag(0, QT1,v1 , . . . , QTα,vα),

where n = n0 + n1 + · · ·+ nα.

Now, we shall compute dTTQT ,vdT . Let xT =
[
0 dTT1 · · · dTTα−1

0
]

and y = ev +
∑α−1
i=1 2evi +evα .

Then,

xTQT ,vx =

α−2∑
i=0

(
dTTi+1

1 + · · ·+ dTTα−1
1
)2

+

α−1∑
i=1

dTTiQTi,vidTi

= 4

α−2∑
i=0

 α−1∑
j=i+1

(nj − 1)

2

+

α−1∑
i=1

dTTiQTi,vidTi = 4

α−1∑
i=1

α−1∑
j=i

(nj − 1)

2

+

α−1∑
i=1

dTTiQTi,vidTi .

We can find that the submatrix of QT ,v whose rows and columns are indexed by {v0, . . . , vα} is

[min(i, j)]0≤i,j≤α. So, (
∑α
k=0 evk)

T
QT ,v (

∑α
k=0 evk) is the sum of all entries in [min(i, j)]0≤i,j≤α. Thus,

from y = 2 (
∑α
k=0 evk)− (ev + eα), we have

yTQT ,vy = 41T [min(i, j)]0≤i,j≤α1− 4(ev + eα)TQT ,v

(
α∑
k=0

evk

)
+ (ev + eα)TQT ,v(ev + eα)

=
2

3
α(α+ 1)(2α+ 1)− 2α(α+ 1) + α =

1

3
α(2α− 1)(2α+ 1).
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Finally, we find

α−1∑
i=0

xT
[
0 0

0 Jn−(n0+···+ni)

]
y

=

α−2∑
i=0

(
dTTi+1

1 + · · ·+ dTTα−1
1
)

(2(α− i)− 1)

= 2

α−2∑
i=0

 α−1∑
j=i+1

(nj − 1)

 (2(α− i)− 1) = 2

α−1∑
i=1

α−1∑
j=i

(nj − 1)

 (2(α− i) + 1) .

From Remark 3.14, for each k = 0, . . . , α, we have |FTk(l, vk; vk)| = 0 for l ∈ V (Tk). So, the vth
k column of

diag(0, QT1,v1 , . . . , QTα,vα) is the zero vector. This implies xTdiag(0, QT1,v1 , . . . , QTα,vα)y = 0. Hence,

2xTQT ,vy = 4

α−1∑
i=1

α−1∑
j=i

(nj − 1)

 (2(α− i) + 1).

Note that dT = x + y. Therefore, for a tree T with a pendent vertex v,

dTTQT ,vdT = xTQT ,vx + 2xTQT ,vy + yTQT ,vy

= 4

α−1∑
i=1

α−1∑
j=i

(nj − 1)

2

+

α−1∑
i=1

dTTiQTi,vidTi

+ 4

α−1∑
i=1

α−1∑
j=i

(nj − 1)

 (2(α− i) + 1) +
1

3
α(2α− 1)(2α+ 1).

(5.11)

Example 5.1. Let n ≥ α ≥ 1, and Bn,α be the broom with vertices v, v1, . . . , vα in Figure 3. Let v0 = v,

and X = {0, . . . , α}\{α − 1}. Suppose that for i ∈ X, Ti is the tree with V (Ti) = {vi}, and Tα−1 is the

subtree induced by V (Bn,α)\{v1, . . . , vα−2, vα}. Then, Tα−1 is a star of order n − α with the centre vertex

vα−1. Let ni = |V (Ti)| for i = 0, . . . , α. By (5.11) and Example 3.19, we obtain

dTBn,α,vQBn,α,vdBn,α,v = 4

α−1∑
i=1

(n− α− 1)2 + dTSn−αQSn−α,vα−1dSn−α

+ 4

α−1∑
i=1

(n− α− 1)(2(α− i) + 1) +
1

3
α(2α− 1)(2α+ 1)

= 4(α− 1)(n− α− 1)2 + (n− α− 1)(4α2 − 3) +
1

3
α(2α− 1)(2α+ 1).

v v1 v2 vα−1 vα

. . .

Figure 3. A broom on n vertices with exactly (n− α) pendent vertices having a common neighbour.
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We continue (5.11) with the same hypotheses and notation. We consider dTTiQTi,vidTi for i = 1, . . . , α−1

in (5.11). Note that for i = 1, . . . , α − 1, vi is not necessarily a pendent vertex in Tvi . The result for the

minimum of dTTiQTi,vidTi appears in the paper [13] as the minimum of dTTi(2f
v
Ti1

T − FTi)dTi . We shall

introduce the result, which is proved by induction in [13], with a different proof by using the combinatorial

interpretation for entries in QTi,vi .

Lemma 5.2 ([13]). Let T be a tree of order n ≥ 2 with a vertex v. Then,

dTQT ,vd ≥ n− 1,

with equality if and only if for n = 2, T = P2 and for n ≥ 3, T = Sn and v is the centre vertex.

Proof. Let QT ,v = [qi,j ]. By Remark 3.14, we have qii = dist(i, v) ≥ 1 whenever i 6= v. The degree of

each vertex is at least 1. So, we have dTQT ,vd ≥ (n − 1). To attain the equality, qi,j = 0 if i 6= j. From

Remark 3.14, we can find that v is a cut-vertex so that T − v consists of n− 1 isolated vertices. Therefore,

our desired result is obtained.

Applying Lemma 5.2 to dTTiQTi,vidTi in (5.11) for each i = 1, . . . , α− 1, we obtain
∑α−1
i=1 dTTiQTi,vidTi ≥

n− α− 1. Thus, dTTQT ,vdT in (5.11) is bounded below as follows:

dTTQT ,vdT ≥ 4

α−1∑
i=1

α−1∑
j=i

(nj − 1)

2

+ 4

α−1∑
i=1

α−1∑
j=i

(nj − 1)

 (2(α− i) + 1)

+ (n− α− 1) +
1

3
α(2α− 1)(2α+ 1).

Consider

α−1∑
i=1

α−1∑
j=i

(nj − 1)

2

+

α−1∑
i=1

α−1∑
j=i

(nj − 1)

 (2(α− i) + 1)(5.12)

=
[
(n1 + · · ·+ nα−1 − (α− 1))2 + (n1 + · · ·+ nα−1 − (α− 1))(2α− 1)

]
+
[
(n2 + · · ·+ nα−1 − (α− 2))2 + (n2 + · · ·+ nα−1 − (α− 2))(2α− 3)

]
+ · · ·+

[
(nα−1 − 1)2 + (nα−1 − 1)3

]
.

Since n1 + · · ·+ nα−1 is constant, we find that the minimum of (5.12) is attained as (n− α− 1)(n+ α− 2)

at n1 = n− α and n2 = · · · = nα−1 = 1. Therefore, when v is a pendent vertex, we have

dTTQT ,vdT ≥ (n− α− 1)(4n+ 4α− 7) +
1

3
α(2α− 1)(2α+ 1),(5.13)

where equality holds if and only if T is a broom Bn,α with v, v1, . . . , vα described below:

v v1 v2 vα−1 vα

. . .

Step 2. The following is the result for the minimum of dTTQT ,vdT where T is a tree with a vertex v.

(The vertex v is not necessarily a pendent vertex.)
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Proposition 5.3. Let T be a tree with a vertex v. Suppose that B1, . . . , B` are the branches of T at v

for some ` ≥ 1. Let ni = |V (Bi)|, and let ei = eBi(v) for i = 1, . . . , `. Then,

dTTQT ,vdT ≥
∑̀
i=1

[
(ni − ei − 1)(4ni + 4ei − 7) +

1

3
ei(2ei − 1)(2ei + 1)

]
,

where equality holds if and only if for i = 1, . . . , `, each branch Bi is a broom Bni,ei such that if ni > ei + 1,

then v is one of the (ni−ei) pendent vertices having a common neighbour; if ni = ei+1, then v is a pendent

vertex in Bni,ei (which is a path).

Proof. The conclusions can be readily established by Proposition 4.8 and (5.13).

Hereafter, the symbols ω, O and Θ stand for the small Omega notation, the big O notation and the big

Theta notation, respectively (see [1]).

As mentioned in the beginning of this section, we consider the following sequence Gv = (Tn)v of trees,

where V (T1) = {v} and for each n ≥ 2, Tn is obtained from Tn−1 by adding a new pendent vertex to Tn−1,

or by subdividing an edge in Tn−1 into two edges connecting to a new vertex. We denote by αn(x) and `n(x)

the eccentricity of x in Tn and the number of branches of Tn at x, respectively. For the rest of this section,

we use αn(·) and `n(·) only for the specified vertex v of the trees in the sequence, so we simply write αn(v)

and `n(v) as αn and `n.

Define B
(1)
1 = T1 and `1 = 1. Assume that for n ≥ 2, B

(n−1)
1 , . . . , B

(n−1)
`n−1

are the branches of Tn−1 at

v. Let {w} = V (Tn)\V (Tn−1). Consider the case `n − `n−1 = 1. Then, w must be added to the vertex v in

Tn−1 to form Tn. For this case, we define B
(n)
i as B

(n−1)
i for i = 1, . . . , `n − 1, and define B

(n)
`n

as the path

(v, w). Suppose `n = `n−1. Then, there exists exactly one branch B
(n−1)
k for some k ∈ {1, . . . , `n−1} such

that w is adjacent to at least a vertex of B
(n−1)
k in Tn. We define B

(n)
i as B

(n−1)
i for 1 ≤ i ≤ `n−1 with

i 6= k, and define B
(n)
k as the induced subtree of Tn by V

(
B

(n−1)
k

)
∪ {w}. Hence, we may define

βn = |{i|e
B

(k)
i

(v) = Θ(αk), i = 1, . . . , `n}|.

Note that βn is the number of branches of Tn at v such that the eccentricity of v in a branch is asymptotically

bounded above and below by the eccentricity of v in Tk.

Example 5.4. If Gv = (Pn)v where v is a pendent vertex for n ≥ 2, then αn = n− 1 and `n = βn = 1.

If Gv = (Sn)v where v is the centre vertex for n ≥ 3, then αn = 1 and `n = βn = n− 1.

Remark 5.5. Consider a sequence Gv = (Tn)v of trees. Evidently, βn ≤ `n = O(n) and αn = O(n).

Since αn = max{e
B

(n)
i

(v)|1 ≤ i ≤ `n}, we have βn ≥ 1.

Here is the main result in this section.

Theorem 5.6. Let Gv = (Tn)v be a sequence of trees. If βnα
3
n = ω(n2), then Gv is asymptotically

paradoxical.

Proof. Suppose that βnα
3
n = ω(n2). For n ≥ 2, suppose that B

(n)
1 , . . . , B

(n)
`n

are the branches of Tn at

v. Let e
(n)
i = e

B
(n)
i

(v) and k
(n)
i =

∣∣∣V (B(n)
i

)∣∣∣ for i = 1, . . . , `n. We may assume that e
(n)
j = Θ(αn) for

j = 1, . . . , βn. Then, for each j = 1, . . . , βn, there exist Cj > 0 and Nj > 0 such that e
(n)
j ≥ Cjαn for all
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n ≥ Nj . Choose C0 = min{Cj |j = 1, . . . , βn} and N0 = max{Nj |j = 1, . . . , βn}. Then, e
(n)
j ≥ C0αn for all

n ≥ N0 and 1 ≤ j ≤ βn. By Proposition 5.3, for n ≥ N0, we have

φTn(v)

4m2
TnτTn

=
2dTTnQTn,vdTn

4(n− 1)2

≥

∑`n
i=1

[(
k

(n)
i − e(n)

i − 1
)(

4k
(n)
i + 4e

(n)
i − 7

)
+ 1

3e
(n)
i

(
2e

(n)
i − 1

)(
2e

(n)
i + 1

)]
2(n− 1)2

≥ βnC0αn(2C0αn − 1)(2C0αn + 1)

6(n− 1)2
.

Since βnα
3
n = ω(n2), we have

φTn (v)

4m2
TnτTn

→∞ as n goes to infinity. Therefore, the conclusion follows.

Corollary 5.7. Suppose that Gv = (Tn)v is a sequence of trees Tn such that αn = ω(n
2
3 ). Then, Gv is

asymptotically paradoxical.

Proof. It is straightforward from Theorem 5.6.

Corollary 5.8. Suppose that Gv = (Tn)v is a sequence of trees Tn such that diam(Tn) = ω(n
2
3 ). Then,

Gv is asymptotically paradoxical.

Proof. Let P be a longest path in Tn. Suppose that w0 is the vertex on P such that dist(v, w0) ≤
dist(v, w) for all vertices w on P . Then, αn ≥ dist(v, w0) + 1

2diam(Tn). By Corollary 5.7, our desired result

follows.

A rooted tree is a tree with a vertex designated as the root such that every edge is directed away from

the root. A leaf in a rooted tree is a vertex whose degree is 1. The depth of a vertex v in a rooted tree is

the distance between v and the root. The height of a rooted tree is the maximum distance from the root to

all leaves.

Example 5.9. Let Gv = (Tn)v be a sequence of trees. For each n ≥ 1, Tn can be considered as a rooted

tree at v. We may also regard branches B
(n)
1 , . . . , B

(n)
`n

of Tn at v as rooted trees at v. For each n ≥ 3, let

Tn be obtained from Tn−1 as follows: if e
B

(n−1)
1

(v) = bnc0c − 1, then a new vertex x is added to a leaf z of

B
(n−1)
1 such that the depth of z is the height of B

(n−1)
1 ; if e

B
(n−1)
1

(v) = bnc0c, then a new vertex x is added to

a vertex w in Tn−1 such that dist(v, w) < e
B

(n−1)
1

(v). Assume that c0 = 0.7. Considering b3c0c = b4c0c = 2

and b5c0c = b6c0c = 3, one of all possible sequences can be obtained as in Figure 4. Note that the very

left branch of each rooted tree at v in that figure is B
(n)
1 for n = 2, . . . , 6. Then, e

B
(n)
1

(v) ≥ e
B

(n)
k

(v) for all

Figure 4. A sequence of rooted trees considered in Example 5.9.
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n ≥ 2 and 2 ≤ k ≤ `n. Moreover, e
B

(n)
1

(v) ≥ nc0 − 1 for all n ≥ 2. By Corollary 5.7, Gv is asymptotically

paradoxical—that is, for integers k1, k2 ≥ 0 with k1 + k2 ≥ 2, Tn is (v, k1, k2)-paradoxical for sufficiently

large n.

From the following example, the converses of Theorem 5.6, Corollaries 5.7 and 5.8 do not hold.

Example 5.10. Consider a sequence Gv = (Tn)v where for n ≥ 4, Tn is a broom Bn,αn with αn ≥ 3.

Suppose that for each n ≥ 4, v is the pendent vertex of Bn,αn that does not have any common neighbour

with other pendent vertices in Bn,αn . Clearly, βn = 1. Suppose that αn = ω(1). By Example 5.1, we obtain

φBn,αn (v)

4m2
Bn,αn

τBn,αn
=

4(αn − 1)(n− αn − 1)2 + (n− αn − 1)(4α2
n − 3) + 1

3αn(2αn − 1)(2αn + 1)

2(n− 1)2

≥ 2(αn − 1)(n− αn − 1)2

(n− 1)2
,

for n ≥ 4. Since n2αn = ω(n2), we have
φTn (v)

4m2
TnτTn

→∞ as n goes to infinity. Therefore, Gv is asymptotically

paradoxical. Moreover, we have βnα
3
n = ω(1).
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