ERRATUM TO 'A NOTE ON THE LARGEST EIGENVALUE OF NON-REGULAR GRAPHS ${ }^{*}$

BOLIAN LIU ${ }^{\dagger}$, LIU MU-HUO ${ }^{\ddagger}$, AND ZHIFU YOU ${ }^{\dagger}$

Abstract

Let $\lambda_{1}(G)$ be the largest eigenvalue of the adjacency matrix of graph G with n vertices and maximum degree Δ. Recently, $\Delta-\lambda_{1}(G)>\frac{\Delta+1}{n(3 n+\Delta-8)}$ for a non-regular connected graph G was obtained in [B.L. Liu and G. Li, A note on the largest eigenvalue of non-regular graphs, Electron J. Linear Algebra, 17:54-61, 2008]. But unfortunately, a mistake was found in the cited preprint [T. Bıyıkoğlu and J. Leydold, Largest eigenvalues of degree sequences], which led to an incorrect proof of the main result of [B.L. Liu and G. Li]. This paper presents a correct proof of the main result in [B.L. Liu and G. Li], which avoids the incorrect theorem in [T. Brıyıkoğlu and J. Leydold].

Key words. Spectral radius, Non-regular graph, λ_{1}-extremal graph, Perron vector.

AMS subject classifications. 05C35, 15A48, 05C50.

1. Introduction. In this paper, we only consider connected, simple and undirected graphs. Let $u v$ be an edge whose end vertices are u and v. The symbol $N(u)$ denotes the neighbor set of vertex u. Then $d_{G}(u)=|N(u)|$ is called the degree of u. The maximum degree among the vertices of G is denoted by Δ. The sequence $\pi=\pi(G)=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is called the degree sequence of G, where $d_{i}=d_{G}(v)$ holds for some $v \in V(G)$. In the entire article, we enumerate the degrees in non-increasing order, i.e., $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$.

Let $A(G)$ be the adjacency matrix of G. The spectral radius of G, denoted by $\lambda_{1}(G)$, is the largest in modulus eigenvalue of $A(G)$. When G is connected, $A(G)$ is irreducible and by the Perron-Frobenius Theorem (see e.g., [4]), $\lambda_{1}(G)$ is a simple eigenvalue and has a unique positive unit eigenvector. We refer to such an eigenvector f as the Perron vector of G.

Let G be a connected non-regular graph. In [7], G is called λ_{1}-extremal if

[^0]$\lambda_{1}(G) \geq \lambda_{1}\left(G^{\prime}\right)$ holds for any other connected non-regular graph G^{\prime} with the same number of vertices and maximum degree as G. Let $\mathcal{G}(n, \Delta)$ denote the set of all connected non-regular graphs with n vertices and maximum degree Δ.

In [6], the following result was proved.
Theorem 1.1. Suppose $G \in \mathcal{G}(n, \Delta)$. Then

$$
\Delta-\lambda_{1}>\frac{\Delta+1}{n(3 n+\Delta-8)}
$$

But unfortunately, a mistake was found in the cited reference [3], resulting in an incorrect proof of Theorem 1.1. In this paper, we shall give a correct proof of Theorem 1.1, in which we avoid using the wrong theorem in reference [3].

2. Main result.

Let $V_{<\Delta}=\{u: d(u)<\Delta\}$. For the characterization of λ_{1}-extremal graphs G of $\mathcal{G}(n, \Delta)$, we have the following.

Theorem 2.1. [6] Suppose $2<\Delta<n-1$. If G is a λ_{1}-extremal graph of $\mathcal{G}(n, \Delta)$, then G must have one of the following properties:
(1) $\left|V_{<\Delta}\right| \geq 2, V_{<\Delta}$ induces a complete graph.
(2) $\left|V_{<\Delta}\right|=1$.
(3) $V_{<\Delta}=\{u, v\}, u v \notin E(G)$ and $d(u)=d(v)=\Delta-1$.

Definition 2.2. [6] Suppose $2<\Delta<n-1$ and $G \in \mathcal{G}(n, \Delta)$. Then
G is called a type-I graph if G has property (1);
G is called a type-II graph if G has property (2);
G is called a type-III graph if G has property (3).
By Definition 2.2, it is easy to see the following.
Proposition 2.3. If G is a type-III graph, then

$$
\pi(G)=(\Delta, \Delta, \ldots, \Delta, \Delta-1, \Delta-1)
$$

where $2<\Delta<n-1$.
Suppose $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ and $\pi^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}\right)$. We write $\pi \unlhd \pi^{\prime}$ if and only if $\sum_{i=1}^{n} d_{i}=\sum_{i=1}^{n} d_{i}^{\prime}$, and $\sum_{i=1}^{j} d_{i} \leq \sum_{i=1}^{j} d_{i}^{\prime}$ for all $j=1,2, \ldots, n$. Let C_{π} be the class of connected graphs with degree sequence π. If $G \in C_{\pi}$ and $\lambda_{1}(G) \geq \lambda_{1}\left(G^{\prime}\right)$ for any other $G^{\prime} \in C_{\pi}$, then G is said to have the greatest maximum eigenvalue in C_{π}.

The next theorem (i.e., Theorem $2.3[6]$) is a crucial lemma in the proof of Theorem 1.1.

Theorem 2.4. [6] Suppose $2<\Delta<n-1$ and G is a λ_{1}-extremal graph of $\mathcal{G}(n, \Delta)$. Then G must be a type-I or type-II graph.

In [6], the proof of Theorem 2.4 needs the next result which was stated in [3].
Theorem 2.5. [3] Let π and π^{\prime} be two distinct degree sequences with $\pi \unlhd \pi^{\prime}$. Let G be the graph with greatest maximum eigenvalue in class C_{π}, and G^{\prime} in class $C_{\pi^{\prime}}$, respectively. Then $\lambda_{1}(G)<\lambda_{1}\left(G^{\prime}\right)$.

By Proposition 2.3, if G is a type-III graph, then $\pi(G)=(\Delta, \Delta, \ldots, \Delta, \Delta-1, \Delta-$ $1)$. Let G^{\prime} be a graph with $\pi\left(G^{\prime}\right)=(\Delta, \Delta, \ldots, \Delta, \Delta, \Delta-2)$. It is easy to see that $\pi(G) \unlhd \pi\left(G^{\prime}\right)$. Thus, with the application of Theorem 2.5, one can prove Theorem 2.4. But unfortunately, some counterexamples to Theorem 2.5 have been found; thus the authors of [3] have changed Theorem 2.5 from general graphs to the class of trees (see [2]).

Next we shall give a proof of Theorem 2.4 that does not depend on Theorem 2.5.
Let $G-u v$ be the graph obtained from G by deleting the edge $u v \in E(G)$. Similarly, $G+u v$ denotes the graph obtained from G by adding an edge $u v \notin E(G)$, where $u, v \in V(G)$.

Lemma 2.6. (Shifting [1]) Let $G(V, E)$ be a connected graph with $u v_{1} \in E$ and $u v_{2} \notin E$. Let $G^{\prime}=G+u v_{2}-u v_{1}$. Suppose f is the Perron vector of G. If $f\left(v_{2}\right) \geq$ $f\left(v_{1}\right)$, then $\lambda_{1}\left(G^{\prime}\right)>\lambda_{1}(G)$.

Lemma 2.7. (Switching [1], [5]) Let $G(V, E)$ be a connected graph with $u_{1} v_{1} \in E$ and $u_{2} v_{2} \in E$, but $v_{1} v_{2} \notin E$ and $u_{1} u_{2} \notin E$. Let $G^{\prime}=G+v_{1} v_{2}+u_{1} u_{2}-u_{1} v_{1}-$ $u_{2} v_{2}$. Suppose f is the Perron vector of G. If $f\left(v_{1}\right) \geq f\left(u_{2}\right)$ and $f\left(v_{2}\right) \geq f\left(u_{1}\right)$, then $\lambda_{1}\left(G^{\prime}\right) \geq \lambda_{1}(G)$. The inequality is strict if and only if at least one of the two inequalities is strict.

Let $\mathcal{G}_{1}(n, \Delta)$ denote the set of all connected graphs of type-III.
Lemma 2.8. Let G be a graph in $\mathcal{G}_{1}(n, \Delta)$ with $u_{1} v_{1} \in E(G)$, where $d\left(u_{1}\right)=\Delta$ and $d\left(v_{1}\right)=\Delta-1$. Suppose f is the Perron vector of G. If $f\left(u_{1}\right) \leq f\left(v_{1}\right)$, then G cannot have the greatest maximum eigenvalue in $\mathcal{G}_{1}(n, \Delta)$.

Proof. Assume that the contrary holds, i.e., suppose that G has the greatest maximum eigenvalue in $\mathcal{G}_{1}(n, \Delta)$. Without loss of generality, assume $V_{<\Delta}(G)=$ $\left\{v_{1}, v_{2}\right\}$. By Definition 2.2, we have $d\left(v_{1}\right)=\Delta-1=d\left(v_{2}\right)$ and $v_{1} v_{2} \notin E$. We divide the proof into two cases:

Case 1. $u_{1} v_{2} \in E$. Let $G^{\prime}=G+v_{1} v_{2}-u_{1} v_{2}$. Thus, $d_{G^{\prime}}\left(u_{1}\right)=\Delta-1=d_{G^{\prime}}\left(v_{2}\right)$, $d_{G^{\prime}}\left(v_{1}\right)=\Delta$ and $u_{1} v_{2} \notin E\left(G^{\prime}\right)$. Moreover, G^{\prime} is also connected. Thus, $G^{\prime} \in \mathcal{G}_{1}(n, \Delta)$. By Lemma 2.6, we have $\lambda_{1}\left(G^{\prime}\right)>\lambda_{1}(G)$, a contradiction.

Case 2. $u_{1} v_{2} \notin E$. Since $d_{G}\left(u_{1}\right)=\Delta>\Delta-1=d_{G}\left(v_{1}\right)$, then there must exist some $w \in N\left(u_{1}\right)$ such that $w \notin N\left(v_{1}\right)$ and $w \neq v_{1}$. Let $G^{\prime}=G+v_{1} w-u_{1} w$. Thus, $d_{G^{\prime}}\left(u_{1}\right)=d_{G^{\prime}}\left(v_{2}\right)=\Delta-1, d_{G^{\prime}}\left(v_{1}\right)=\Delta$, and $u_{1} v_{2} \notin E$. Moreover, G^{\prime} is also connected. This implies that $G^{\prime} \in \mathcal{G}_{1}(n, \Delta)$. By Lemma 2.6, we have $\lambda_{1}\left(G^{\prime}\right)>\lambda_{1}(G)$, a contradiction.

The result follows. \square
The following is the proof of Theorem 2.4.
Proof. Assume that the contrary holds, i.e., suppose that there is a graph G of type-III such that G has the greatest maximum eigenvalue in $\mathcal{G}(n, \Delta)$. (This implies that G also has the greatest maximum eigenvalue in $\mathcal{G}_{1}(n, \Delta)$.) Without loss of generality, assume $V_{<\Delta}(G)=\left\{v_{1}, v_{2}\right\}$. By Definition 2.2, we have $d\left(v_{1}\right)=\Delta-1=$ $d\left(v_{2}\right)$ and $v_{1} v_{2} \notin E$. Let f be the Perron vector of G. We consider the next two cases:

Case 1. $N\left(v_{1}\right)=N\left(v_{2}\right)=\left\{u_{1}, \ldots, u_{\Delta-1}\right\}$. Since $2<\Delta<n-1$ and G is connected, there exists $i, j(1 \leq i<j \leq \Delta-1)$ such that $u_{i} u_{j} \notin E$ (otherwise, the subgraph of G induced by $\left\{u_{1}, \ldots, u_{\Delta-1}\right\}$ is a complete graph of order $\Delta-1$, and it will yield a contradiction to the connection of G by $\Delta<n-1$).

If $f\left(u_{i}\right) \leq f\left(v_{2}\right)$, note that $d\left(u_{i}\right)=\Delta, d\left(v_{2}\right)=\Delta-1$ and $u_{i} v_{2} \in E(G)$, and by Lemma 2.8, G cannot have the greatest maximum eigenvalue in $\mathcal{G}_{1}(n, \Delta)$ (also, G cannot have the greatest maximum eigenvalue in $\mathcal{G}(n, \Delta)$), a contradiction. Moreover, since $d\left(u_{j}\right)=\Delta, d\left(v_{1}\right)=\Delta-1$ and $u_{j} v_{1} \in E(G)$, it can be proved analogously that $f\left(u_{j}\right) \leq f\left(v_{1}\right)$ is also impossible. Thus, $f\left(u_{i}\right)>f\left(v_{2}\right)$ and $f\left(u_{j}\right)>f\left(v_{1}\right)$. Let $G^{\prime}=G+u_{i} u_{j}+v_{1} v_{2}-u_{i} v_{1}-u_{j} v_{2}$. Clearly, G^{\prime} is also connected and $G^{\prime} \in \mathcal{G}(n, \Delta)$. By Lemma 2.7, we can conclude that $\lambda_{1}\left(G^{\prime}\right)>\lambda_{1}(G)$, a contradiction.

Case 2. $N\left(v_{1}\right) \neq N\left(v_{2}\right)$. Without loss of generality, suppose $f\left(v_{1}\right) \geq f\left(v_{2}\right)$. Two subcases should be considered as follows.

Subcase 1. $\left|N\left(v_{1}\right) \cap N\left(v_{2}\right)\right| \geq 1$. Since $N\left(v_{1}\right) \neq N\left(v_{2}\right)$, there exists u_{j} such that $u_{j} \in N\left(v_{2}\right) \backslash N\left(v_{1}\right)$. Let $G^{\prime}=G+v_{1} u_{j}-v_{2} u_{j}$. Note that G^{\prime} is also connected and $G^{\prime} \in \mathcal{G}(n, \Delta)$. By Lemma 2.6, we have $\lambda_{1}\left(G^{\prime}\right)>\lambda_{1}(G)$, a contradiction.

Subcase 2. $\left|N\left(v_{1}\right) \cap N\left(v_{2}\right)\right|=0$. Since G is connected, there exists a shortest path P from v_{2} to v_{1}. Note that $d_{G}\left(v_{2}\right)=\Delta-1 \geq 2$ and $\left|N\left(v_{1}\right) \cap N\left(v_{2}\right)\right|=0$. Then there must exist u_{j} such that $u_{j} \in N\left(v_{2}\right) \backslash N\left(v_{1}\right)$, but $u_{j} \notin P$. Let $G^{\prime}=G+v_{1} u_{j}-v_{2} u_{j}$. Clearly, G^{\prime} is also connected and $G^{\prime} \in \mathcal{G}(n, \Delta)$. By Lemma 2.6, we have $\lambda_{1}\left(G^{\prime}\right)>$ $\lambda_{1}(G)$, a contradiction.

This completes the proof.
With the help of Theorem 2.4, it is not difficult to prove that Theorem 1.1 holds. For details of the proof, one can refer to Section 3 of [6].

Acknowledgment. The authors are grateful to the referees for their valuable comments, corrections and suggestions, which led to an improvement of the original manuscript.

REFERENCES

[1] F. Belardo, E.M.L. Marzi, and S.K. Simić. Some results on the index of unicyclic graphs. Linear Algebra Appl., 416:1048-1059, 2006.
[2] T. Bıyıkoğlu and J. Leydold. Graphs with given degree sequence and maximal spectral radius. Electron. J. Combin., Research Paper 119, 9pp., 2008.
[3] T. Bıyıkoğlu and J. Leydold. Largest eigenvalues of degree sequences. Preprint. Available at http://arxiv.org/abs/math/0605294. V1 May 11, 2006
[4] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1990.
[5] J. Leydold. A Faber-Krahn-type inequality for regular trees. Geom. Funct. Anal., 7:364-378, 1997.
[6] B.L. Liu and G. Li. A note on the largest eigenvalue of non-regular graphs. Electron J. Linear Algebra, 17:54-61, 2008.
[7] B.L. Liu, J. Shen, and X.M. Wang. On the largest eigenvalue of non-regular graphs. J. Combin. Theory Ser. B, 97:1010-1018, 2007.

[^0]: *Received by the editors November 20, 2008. Accepted for publication January 06, 2009. Handling Editor: Stephen J. Kirkland.
 \dagger School of Mathematic Science, South China Normal University, Guangzhou, 510631, P.R. China (liubl@scnu.edu.cn, youzhf@hotmail.com). This work was supported by the National Natural Science Foundation of China (No. 10771080) and by DF of the Ministry of Education of China (No. 20070574006).
 ${ }^{\ddagger}$ Department of Applied Mathematics, South China Agricultural University, Guangzhou, 510642, P.R. China (liumuhuo@scau.edu.cn). Supported by the fund of South China Agricultural University (No. 2008K012).

