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Abstract. Let λ1(G) be the largest eigenvalue of the adjacency matrix of graph G with n

vertices and maximum degree ∆. Recently, ∆ − λ1(G) > ∆+1
n(3n+∆−8)

for a non-regular connected

graph G was obtained in [B.L. Liu and G. Li, A note on the largest eigenvalue of non-regular graphs,

Electron J. Linear Algebra, 17:54–61, 2008]. But unfortunately, a mistake was found in the cited

preprint [T. Bııyıkoğlu and J. Leydold, Largest eigenvalues of degree sequences], which led to an

incorrect proof of the main result of [B.L. Liu and G. Li]. This paper presents a correct proof of

the main result in [B.L. Liu and G. Li], which avoids the incorrect theorem in [T. Bııyıkoğlu and J.

Leydold].
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1. Introduction. In this paper, we only consider connected, simple and undi-
rected graphs. Let uv be an edge whose end vertices are u and v. The symbol N(u)
denotes the neighbor set of vertex u. Then dG(u) = |N(u)| is called the degree of
u. The maximum degree among the vertices of G is denoted by ∆. The sequence
π = π(G) = (d1, d2, ..., dn) is called the degree sequence of G, where di = dG(v) holds
for some v ∈ V (G). In the entire article, we enumerate the degrees in non-increasing
order, i.e., d1 ≥ d2 ≥ · · · ≥ dn.

Let A(G) be the adjacency matrix of G. The spectral radius of G, denoted by
λ1(G), is the largest in modulus eigenvalue of A(G). When G is connected, A(G)
is irreducible and by the Perron-Frobenius Theorem (see e.g., [4]), λ1(G) is a simple
eigenvalue and has a unique positive unit eigenvector. We refer to such an eigenvector
f as the Perron vector of G.

Let G be a connected non-regular graph. In [7], G is called λ1-extremal if
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λ1(G) ≥ λ1(G′) holds for any other connected non-regular graph G′ with the same
number of vertices and maximum degree as G. Let G(n,∆) denote the set of all
connected non-regular graphs with n vertices and maximum degree ∆.

In [6], the following result was proved.

Theorem 1.1. Suppose G ∈ G(n,∆). Then

∆− λ1 >
∆+ 1

n(3n+∆− 8) .

But unfortunately, a mistake was found in the cited reference [3], resulting in
an incorrect proof of Theorem 1.1. In this paper, we shall give a correct proof of
Theorem 1.1, in which we avoid using the wrong theorem in reference [3].

2. Main result.

Let V<∆ = {u : d(u) < ∆}. For the characterization of λ1-extremal graphs G of
G(n,∆), we have the following.

Theorem 2.1. [6] Suppose 2 < ∆ < n − 1. If G is a λ1-extremal graph of
G(n,∆), then G must have one of the following properties:

(1) |V<∆| ≥ 2, V<∆ induces a complete graph.

(2) |V<∆| = 1.
(3) V<∆ = {u, v}, uv 	∈ E(G) and d(u) = d(v) = ∆− 1.
Definition 2.2. [6] Suppose 2 < ∆ < n − 1 and G ∈ G(n,∆). Then

G is called a type-I graph if G has property (1);

G is called a type-II graph if G has property (2);

G is called a type-III graph if G has property (3).

By Definition 2.2, it is easy to see the following.

Proposition 2.3. If G is a type-III graph, then

π(G) = (∆,∆, ...,∆,∆ − 1,∆− 1),
where 2 < ∆ < n − 1.

Suppose π = (d1, d2, ..., dn) and π′ = (d′1, d′2, ..., d′n). We write π � π′ if and only
if

∑n
i=1 di =

∑n
i=1 d′i, and

∑j
i=1 di ≤ ∑j

i=1 d′i for all j = 1, 2, ..., n. Let Cπ be the
class of connected graphs with degree sequence π. If G ∈ Cπ and λ1(G) ≥ λ1(G′) for
any other G′ ∈ Cπ, then G is said to have the greatest maximum eigenvalue in Cπ .

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 64-68, January 2009



ELA

66 Bolian Liu, Liu Mu-huo, and Zhifu You

The next theorem (i.e., Theorem 2.3 [6]) is a crucial lemma in the proof of The-
orem 1.1.

Theorem 2.4. [6] Suppose 2 < ∆ < n − 1 and G is a λ1-extremal graph of
G(n,∆). Then G must be a type-I or type-II graph.

In [6], the proof of Theorem 2.4 needs the next result which was stated in [3].

Theorem 2.5. [3] Let π and π′ be two distinct degree sequences with π � π′. Let
G be the graph with greatest maximum eigenvalue in class Cπ, and G′ in class Cπ′ ,

respectively. Then λ1(G) < λ1(G′).

By Proposition 2.3, if G is a type-III graph, then π(G) = (∆,∆, ...,∆,∆− 1,∆−
1). Let G′ be a graph with π(G′) = (∆,∆, ...,∆,∆,∆ − 2). It is easy to see that
π(G) � π(G′). Thus, with the application of Theorem 2.5, one can prove Theorem
2.4. But unfortunately, some counterexamples to Theorem 2.5 have been found; thus
the authors of [3] have changed Theorem 2.5 from general graphs to the class of trees
(see [2]).

Next we shall give a proof of Theorem 2.4 that does not depend on Theorem 2.5.

Let G − uv be the graph obtained from G by deleting the edge uv ∈ E(G).
Similarly, G+ uv denotes the graph obtained from G by adding an edge uv /∈ E(G),
where u, v ∈ V (G).

Lemma 2.6. (Shifting [1]) Let G(V, E) be a connected graph with uv1 ∈ E and
uv2 	∈ E. Let G′ = G + uv2 − uv1. Suppose f is the Perron vector of G. If f(v2) ≥
f(v1), then λ1(G′) > λ1(G).

Lemma 2.7. (Switching [1], [5]) Let G(V, E) be a connected graph with u1v1 ∈ E

and u2v2 ∈ E, but v1v2 	∈ E and u1u2 	∈ E. Let G′ = G + v1v2 + u1u2 − u1v1 −
u2v2. Suppose f is the Perron vector of G. If f(v1) ≥ f(u2) and f(v2) ≥ f(u1),
then λ1(G′) ≥ λ1(G). The inequality is strict if and only if at least one of the two
inequalities is strict.

Let G1(n,∆) denote the set of all connected graphs of type-III.

Lemma 2.8. Let G be a graph in G1(n,∆) with u1v1 ∈ E(G), where d(u1) = ∆
and d(v1) = ∆ − 1. Suppose f is the Perron vector of G. If f(u1) ≤ f(v1), then G

cannot have the greatest maximum eigenvalue in G1(n,∆).

Proof. Assume that the contrary holds, i.e., suppose that G has the greatest
maximum eigenvalue in G1(n,∆). Without loss of generality, assume V<∆(G) =
{v1, v2}. By Definition 2.2, we have d(v1) = ∆− 1 = d(v2) and v1v2 	∈ E. We divide
the proof into two cases:
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Case 1. u1v2 ∈ E. Let G′ = G+ v1v2 − u1v2. Thus, dG′(u1) = ∆− 1 = dG′(v2),
dG′(v1) = ∆ and u1v2 	∈ E(G′). Moreover, G′ is also connected. Thus, G′ ∈ G1(n,∆).
By Lemma 2.6, we have λ1(G′) > λ1(G), a contradiction.

Case 2. u1v2 	∈ E. Since dG(u1) = ∆ > ∆ − 1 = dG(v1), then there must exist
some w ∈ N(u1) such that w 	∈ N(v1) and w 	= v1. Let G′ = G + v1w − u1w.
Thus, dG′(u1) = dG′(v2) = ∆ − 1, dG′(v1) = ∆, and u1v2 	∈ E. Moreover, G′ is also
connected. This implies that G′ ∈ G1(n,∆). By Lemma 2.6, we have λ1(G′) > λ1(G),
a contradiction.

The result follows.

The following is the proof of Theorem 2.4.

Proof. Assume that the contrary holds, i.e., suppose that there is a graph G of
type-III such that G has the greatest maximum eigenvalue in G(n,∆). (This implies
that G also has the greatest maximum eigenvalue in G1(n,∆).) Without loss of
generality, assume V<∆(G) = {v1, v2}. By Definition 2.2, we have d(v1) = ∆ − 1 =
d(v2) and v1v2 	∈ E. Let f be the Perron vector of G. We consider the next two cases:

Case 1. N(v1) = N(v2) = {u1, ..., u∆−1}. Since 2 < ∆ < n−1 andG is connected,
there exists i, j (1 ≤ i < j ≤ ∆− 1) such that uiuj 	∈ E (otherwise, the subgraph of
G induced by {u1, ..., u∆−1} is a complete graph of order ∆ − 1, and it will yield a
contradiction to the connection of G by ∆ < n − 1).

If f(ui) ≤ f(v2), note that d(ui) = ∆, d(v2) = ∆ − 1 and uiv2 ∈ E(G), and
by Lemma 2.8, G cannot have the greatest maximum eigenvalue in G1(n,∆) (also, G
cannot have the greatest maximum eigenvalue in G(n,∆)), a contradiction. Moreover,
since d(uj) = ∆, d(v1) = ∆− 1 and ujv1 ∈ E(G), it can be proved analogously that
f(uj) ≤ f(v1) is also impossible. Thus, f(ui) > f(v2) and f(uj) > f(v1). Let
G′ = G + uiuj + v1v2 − uiv1 − ujv2. Clearly, G′ is also connected and G′ ∈G(n,∆).
By Lemma 2.7, we can conclude that λ1(G′) > λ1(G), a contradiction.

Case 2. N(v1) 	= N(v2). Without loss of generality, suppose f(v1) ≥ f(v2). Two
subcases should be considered as follows.

Subcase 1. |N(v1) ∩ N(v2)| ≥ 1. Since N(v1) 	= N(v2), there exists uj such that
uj ∈ N(v2) \ N(v1). Let G′ = G + v1uj − v2uj. Note that G′ is also connected and
G′ ∈G(n,∆). By Lemma 2.6, we have λ1(G′) > λ1(G), a contradiction.

Subcase 2. |N(v1)∩N(v2)| = 0. Since G is connected, there exists a shortest path
P from v2 to v1. Note that dG(v2) = ∆− 1 ≥ 2 and |N(v1)∩N(v2)| = 0. Then there
must exist uj such that uj ∈ N(v2) \ N(v1), but uj 	∈ P . Let G′ = G + v1uj − v2uj .
Clearly, G′ is also connected and G′ ∈G(n,∆). By Lemma 2.6, we have λ1(G′) >

λ1(G), a contradiction.
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This completes the proof.

With the help of Theorem 2.4, it is not difficult to prove that Theorem 1.1 holds.
For details of the proof, one can refer to Section 3 of [6].
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manuscript.
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