THE NUMERICAL RADIUS OF A WEIGHTED SHIFT OPERATOR WITH GEOMETRIC WEIGHTS*

MAO-TING CHIEN ${ }^{\dagger}$ AND HIROSHI NAKAZATO ${ }^{\ddagger}$

Abstract

Let T be a weighted shift operator T on the Hilbert space $\ell^{2}(\mathbf{N})$ with geometric weights. Then the numerical range of T is a closed disk about the origin, and its numerical radius is determined in terms of the reciprocal of the minimum positive root of a hypergeometric function. This function is related to two Rogers-Ramanujan identities.

Key words. Numerical radius, Weighted shift operator, Rogers-Ramanujan identities.

AMS subject classifications. 47A12, 47B37, 33D15.

1. Introduction. Let T be an operator on a separable Hilbert space. The numerical range of T is defined to be the set

$$
W(T)=\{<T x, x>:\|x\|=1\} .
$$

The numerical range is always nonempty, bounded and convex. The numerical radius $w(T)$ is the supremum of the modulus of $W(T)$. We consider a weighted shift operator T on the Hilbert space $\ell^{2}(\mathbf{N})$ defined by

$$
T=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \cdots \tag{1.1}\\
a_{1} & 0 & 0 & 0 & \cdots \\
0 & a_{2} & 0 & 0 & \ldots \\
0 & 0 & a_{3} & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right),
$$

where $\left\{a_{n}\right\}$ is a bounded sequence. It is known (cf. [1]) that $W(T)$ is a circular disk about the origin. Stout [3] shows that $W(T)$ is an open disk if the weights are periodic and nonzero. For example, when $a_{n}=1$ for all $n, W(T)$ is the open unit disk. Clearly, $w(T)$ is the maximal eigenvalue of the selfadjoint operator $\left(T+T^{*}\right) / 2$. Stout [3] gives a formula for the numerical radius of a weighted shift operator T, by introducing an

[^0]object which is the determinant of the operator $I-z\left(T+T^{*}\right) / 2$ in the sense of limit process of the determinants of finite-dimensional weighted shift matrices.

Let T be the weighted shift operator defined in (1.1) with square summable weights. Denote by $F_{T}(z)$ the determinant of $I-z\left(T+T^{*}\right)$. It is given by

$$
\begin{equation*}
F_{T}(z)=1+\sum_{n=1}^{\infty}(-1)^{n} c_{n} z^{2 n} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{n}=\sum a_{i_{1}}^{2} a_{i_{2}}^{2} \cdots a_{i_{n}}^{2}, \tag{1.3}
\end{equation*}
$$

the sum is taken over

$$
1 \leq i_{1}<i_{2}<\cdots<i_{n}<\infty, \quad i_{2}-i_{1} \geq 2, i_{3}-i_{2} \geq 2, \ldots, \quad i_{n}-i_{n-1} \geq 2
$$

Stout [3] proves that $w\left(T+T^{*}\right)=1 / \lambda$, where λ is the minimum positive root of $F_{T}(z)$.

In this paper, we follow the method of Stout [3] to compute the numerical radius of a geometrically weighted shift operator in terms of the minimum positive root of a hypergeometric function. This function is related to two Rogers-Ramanujan identities.
2. Geometric weights. Let T be an operator on a Hilbert space, and let $T=$ $U P$ be the polar decomposition of T. The Aluthge transformation $\Delta(T)$ of T is defined by

$$
\Delta(T)=P^{\frac{1}{2}} U P^{\frac{1}{2}}
$$

In [4], the numerical range of the Aluthge transformation of an operator is treated. The authors have learned from T. Yamazaki that an upper and a lower bounds for the numerical radius of a geometrically weighted shift operator can be obtained from the numerical range of the Aluthge transformation in the following way:

Theorem 2.1. Let T be a weighted shift operator with geometric weights $\left\{q^{n-1}\right.$, $n \in \mathbf{N}\}, 0<q<1$. Then $W(T)$ is a closed disk about the origin, and

$$
\frac{1}{4 q^{3 / 2}} \sqrt{54-36 q-2 q^{2}-2 \sqrt{(1-q)(9-q)^{3}}} \leq w(T) \leq 1 /(2-\sqrt{q})
$$

Proof. Since $\sum_{n=1}^{\infty} a_{n}^{2}=1 /\left(1-q^{2}\right)<\infty, T$ is Hilbert-Schmidt, and thus compact. Then by [3, Corollary 8], $W(T)$ is closed.

Let T be the geometrically weighted shift with weights $\left\{q^{n-1}\right\}$. Then the positive semidefinite part P of the polar decomposition of T is

$$
P=\operatorname{diag}\left\{1, q, q^{2}, q^{3}, \ldots, q^{n-1}, \ldots\right\}
$$

and we obtain that

$$
\Delta(T)=\sqrt{q} T
$$

By [5], the inequality

$$
w(T) \leq\|T\| / 2+w(\Delta(T)) / 2
$$

holds. Thus, we have

$$
w(T) \leq\|T\| / 2+\sqrt{q} w(T) / 2
$$

Since the operator norm $\|T\|=1$, it follows that

$$
w(T) \leq 1 /(2-\sqrt{q})
$$

For the lower bound, we consider the unit vector $x \in \ell^{2}(\mathbf{N})$ with coordinates $x_{n}=(1-\alpha)^{1 / 2} \alpha^{(n-1) / 2}$, where $0<\alpha<1$. Then

$$
<T x, x>=x_{1} x_{2}+q x_{2} x_{3}+\cdots+q^{n-1} x_{n} x_{n+1}+\cdots=\frac{\sqrt{\alpha}(1-\alpha)}{1-q \alpha}
$$

Hence,

$$
w(T) \geq \sup _{0<\alpha<1} \frac{\sqrt{\alpha}(1-\alpha)}{1-q \alpha}=\frac{1}{4 q^{3 / 2}} \sqrt{54-36 q-2 q^{2}-2 \sqrt{(1-q)(9-q)^{3}}}
$$

and the proof is complete.
Suppose that q is a positive real number with $0<q<1$. We consider a weighted shift operator with geometric weights, $a_{n}=q^{n-1}(n=1,2, \ldots)$. In this case, we denote by $F_{q}(z)$ the function $F_{T}(z)$ in (1.2).

Theorem 2.2. Let T be a weighted shift operator with geometric weights $\left\{q^{n-1}\right.$, $n \in \mathbf{N}\}, 0<q<1$. Then $W(T)$ is a closed disk about the origin, and

$$
\begin{equation*}
F_{q}(z)=1+\sum_{n=1}^{\infty} \frac{(-1)^{n} q^{2 n(n-1)}}{\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{6}\right) \cdots\left(1-q^{2 n}\right)} z^{2 n} \tag{2.1}
\end{equation*}
$$

Proof. By using the geometric series formula

$$
\sum_{n=0} q^{n}=\frac{1}{1-q}
$$

we prove formula (2.1) by induction on the coefficients c_{n} of (1.3). It is obvious that

$$
c_{1}=\sum_{i=1}^{\infty} a_{i}^{2}=\sum_{i=0}^{\infty} q^{2 i}=\frac{1}{1-q^{2}}
$$

We assume that $c_{1}, c_{2}, \ldots, c_{n}$ are of the desired form for the formula (2.1). Then

$$
\begin{aligned}
c_{n+1}= & 1 \times \sum_{2 \leq j_{1}, j_{1}+2 \leq j_{2}, \ldots, j_{n-1}+2 \leq j_{n}} q^{2 j_{1}} q^{2 j_{2}} \cdots q^{2 j_{n}} \\
& +q^{2} \sum_{3 \leq j_{1}, j_{1}+2 \leq j_{2}, \ldots, j_{n-1}+2 \leq j_{n}} q^{2 j_{1}} q^{2 j_{2}} \cdots q^{2 j_{n}}+\cdots \\
= & 1 \times q^{4 n}\left(1 \times q^{4} q^{8} \cdots q^{4(n-1)}+\cdots\right) \\
& +q^{2} q^{6 n}\left(1 \times q^{4} q^{8} \cdots q^{4(n-1)}+\cdots\right)+\cdots \\
= & \left(q^{4 n}+q^{6 n+2}+q^{8 n+4}+\cdots\right) c_{n} \\
= & \frac{q^{4 n} q^{2 n(n-1)}}{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 n}\right)\left(1-q^{2 n+2}\right)} \\
= & \frac{q^{2 n(n+1)}}{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2(n+1)}\right)} .
\end{aligned}
$$

We give an example for $q=0.2$. In this case, the upper and lower bounds of Theorem 2.1 are estimated by

$$
0.414 \approx \frac{1}{4 q^{3 / 2}} \sqrt{54-36 q-2 q^{2}-2 \sqrt{(1-q)(9-q)^{3}}} \leq w(T) \leq 1 /(2-\sqrt{q}) \approx 0.644
$$

On the other hand, the minimum positive root of $F_{0.2}(z)$ in (2.1) is estimated by 0.980552 . Thus, an approximate value of the maximum spectrum of $T+T^{*}$ is given by $1.01983=1 / 0.980552$. Therefore, $w(T) \approx 1.01983 / 2=0.50991$.

We consider an approximating sequence $F_{n}(z: q)$ of $F_{q}(z)$ given by

$$
\begin{aligned}
F_{1}(z: q) & =1-\frac{1}{\left(1-q^{2}\right)} z^{2} \\
F_{2}(z: q) & =1-\frac{1}{\left(1-q^{2}\right)} z^{2}+\frac{q^{4}}{\left(1-q^{2}\right)\left(1-q^{4}\right)} z^{4}, \\
F_{3}(z: q) & =1-\frac{1}{\left(1-q^{2}\right)} z^{2}+\frac{q^{4}}{\left(1-q^{2}\right)\left(1-q^{4}\right)} z^{4}-\frac{q^{12}}{\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{6}\right)} z^{6}, \\
\vdots & \vdots
\end{aligned}
$$

The positive solution of $F_{1}(z: q)=0$ in z satisfies

$$
\frac{1}{z}=\frac{1}{\sqrt{1-q^{2}}}=1+\frac{q^{2}}{2}+\frac{3 q^{4}}{8}+\cdots
$$

The minimum positive solution of $F_{2}(z: q)=0$ in z satisfies

$$
\begin{aligned}
\frac{1}{z} & =\frac{\sqrt{2} q^{2}}{\sqrt{1-q^{4}-\left(1-6 q^{4}+4 q^{6}+5 q^{8}-4 q^{10}\right)^{1 / 2}}} \\
& =1+\frac{q^{2}}{2}-\frac{q^{4}}{8}+\cdots
\end{aligned}
$$

The minimum positive root of $F_{q}(z)$ is assumed to be the limit of the minimum positive solutions of $F_{n}(z: q)=0$. By successive usage of indefinite coefficients method, we find that

$$
\begin{equation*}
\frac{1}{z_{0}}=1+\frac{q^{2}}{2}-\frac{q^{4}}{8}+\frac{9 q^{6}}{16}-\frac{101 q^{8}}{128}+\frac{375 q^{10}}{256}-\frac{2549 q^{12}}{1024}+\frac{9977 q^{14}}{2048}-\cdots \tag{2.2}
\end{equation*}
$$

Notice that the numerical radius $1 /\left(2 z_{0}\right)$ of (2.2) is a sharper estimate than the bound obtained in Theorem 2.1 near $q=0$. Indeed, we have the series for the bound

$$
1 /(2-\sqrt{q})=\frac{1}{2}\left(1+\frac{q^{1 / 2}}{2}+\frac{q}{4}+\frac{q^{3 / 2}}{8}+\frac{q^{2}}{16}+\cdots\right) .
$$

3. Hypergeometric q-series. There is an interesting phenomenon in the hypergeometric function (2.1). By replacing z^{2} by z and q^{2} by q in (2.1), we set

$$
\begin{equation*}
H_{q}(z)=1+\sum_{n=1}^{\infty} \frac{(-1)^{n} q^{n(n-1)}}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots\left(1-q^{n}\right)} z^{n} \tag{3.1}
\end{equation*}
$$

The minimum positive solution of the equation $H_{q}(z)=0$ can be found in a series of q,

$$
z=1-q+q^{2}-2 q^{3}+4 q^{4}-8 q^{5}+16 q^{6}-33 q^{7}+70 q^{8}-\cdots
$$

An analogous function of $H_{q}(z)$ is known as the Euler equation. Recall the q-series identity

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1+q^{n} x\right)=\sum_{n=0}^{\infty} \frac{q^{n(n+1) / 2}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)} x^{n} \tag{3.2}
\end{equation*}
$$

The series (3.2) is called the Euler function in q when $x=-1$. If the term $q^{n(n+1) / 2}$ in (3.2) is replaced by $q^{n(n+1)}$, then it is related to the function (3.1) corresponding to the minimum positive eigenvalue.

The function $F_{q}(z)$ is closely related to Rogers-Ramanujan identities. Substitut$\operatorname{ing} z=i q$ into $F_{q}(z)$, we have

$$
\begin{equation*}
F_{q}(i q)=1+\sum_{n=1}^{\infty} \frac{q^{2 n^{2}}}{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 n}\right)} \tag{3.3}
\end{equation*}
$$

Substituting $z=i q^{2}$ into $F_{q}(z)$, we have

$$
\begin{equation*}
F_{q}\left(i q^{2}\right)=1+\sum_{n=1}^{\infty} \frac{q^{2 n^{2}+2 n}}{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 n}\right)} \tag{3.4}
\end{equation*}
$$

Replacing q^{2} by q in (3.3) and (3.4), we have respectively, in basic hypergeometric q-series (cf. [2]), the following two Rogers-Ramanujan identities

$$
1+\sum_{n=1}^{\infty} \frac{q^{n^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{n=0}^{\infty} \frac{1}{\left(1-q^{5 n+1}\right)\left(1-q^{5 n+4}\right)}
$$

and

$$
1+\sum_{n=1}^{\infty} \frac{q^{n^{2}+n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{n=0}^{\infty} \frac{1}{\left(1-q^{5 n+2}\right)\left(1-q^{5 n+3}\right)}
$$

REFERENCES

[1] A.L. Shields. Weighted Shift Operators and Analytic Function Theory. Math. Surveys. Vol 13, Amer. Math. Soc., Providence, R.I., 1974.
[2] D. Stanton. q-Series and Partitions. Springer, New York, 1989.
[3] Q.T. Stout. The numerical range of a weighted shift. Proc. Amer. Math. Soc., 88:495-502, 1983.
[4] T. Yamazaki. On numerical range of the Aluthge transformation. Linear Algebra Appl., 341:111117, 2002.
[5] T. Yamazaki. On upper and lower bounds of the numerical radius and an equality condition. Studia Math., 178:83-89, 2007.

[^0]: *Received by the editors August 10, 2008. Accepted for publication January 3, 2009. Handling Editor: Shmuel Friedland.
 ${ }^{\dagger}$ Department of Mathematics, Soochow University, Taipei, 11102, Taiwan (mtchien@scu.edu.tw). Supported in part by Taiwan National Science Council.
 \ddagger Department of Mathematical Sciences, Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan (nakahr@cc.hirosaki-u.ac.jp).

