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THE NUMERICAL RADIUS OF A WEIGHTED SHIFT
OPERATOR WITH GEOMETRIC WEIGHTS∗

MAO-TING CHIEN† AND HIROSHI NAKAZATO‡

Abstract. Let T be a weighted shift operator T on the Hilbert space �2(N) with geometric

weights. Then the numerical range of T is a closed disk about the origin, and its numerical radius

is determined in terms of the reciprocal of the minimum positive root of a hypergeometric function.

This function is related to two Rogers-Ramanujan identities.
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1. Introduction. Let T be an operator on a separable Hilbert space. The
numerical range of T is defined to be the set

W (T ) = {< Tx, x >: ‖x‖ = 1}.

The numerical range is always nonempty, bounded and convex. The numerical radius
w(T ) is the supremum of the modulus of W (T ). We consider a weighted shift operator
T on the Hilbert space 	2(N) defined by

T =




0 0 0 0 . . .

a1 0 0 0 . . .

0 a2 0 0 . . .

0 0 a3 0 . . .
...

...
...

. . . . . .




,(1.1)

where {an} is a bounded sequence. It is known (cf. [1]) that W (T ) is a circular disk
about the origin. Stout [3] shows that W (T ) is an open disk if the weights are periodic
and nonzero. For example, when an = 1 for all n, W (T ) is the open unit disk. Clearly,
w(T ) is the maximal eigenvalue of the selfadjoint operator (T +T ∗)/2. Stout [3] gives
a formula for the numerical radius of a weighted shift operator T , by introducing an
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object which is the determinant of the operator I − z (T +T ∗)/2 in the sense of limit
process of the determinants of finite-dimensional weighted shift matrices.

Let T be the weighted shift operator defined in (1.1) with square summable
weights. Denote by FT (z) the determinant of I − z(T + T ∗). It is given by

FT (z) = 1 +
∞∑

n=1

(−1)ncnz2n,(1.2)

where

cn =
∑

a2
i1a

2
i2 · · · a2

in
,(1.3)

the sum is taken over

1 ≤ i1 < i2 < · · · < in < ∞, i2 − i1 ≥ 2, i3 − i2 ≥ 2, . . . , in − in−1 ≥ 2.

Stout [3] proves that w(T + T ∗) = 1/λ, where λ is the minimum positive root of
FT (z).

In this paper, we follow the method of Stout [3] to compute the numerical radius
of a geometrically weighted shift operator in terms of the minimum positive root
of a hypergeometric function. This function is related to two Rogers-Ramanujan
identities.

2. Geometric weights. Let T be an operator on a Hilbert space, and let T =
UP be the polar decomposition of T . The Aluthge transformation ∆(T ) of T is
defined by

∆(T ) = P
1
2 UP

1
2 .

In [4], the numerical range of the Aluthge transformation of an operator is treated.
The authors have learned from T. Yamazaki that an upper and a lower bounds for
the numerical radius of a geometrically weighted shift operator can be obtained from
the numerical range of the Aluthge transformation in the following way:

Theorem 2.1. Let T be a weighted shift operator with geometric weights {qn−1,
n ∈ N}, 0 < q < 1. Then W (T ) is a closed disk about the origin, and

1
4q3/2

√
54− 36q − 2q2 − 2

√
(1 − q)(9− q)3 ≤ w(T ) ≤ 1/(2−√

q).

Proof. Since
∑∞

n=1 a2
n = 1/(1−q2) < ∞, T is Hilbert-Schmidt, and thus compact.

Then by [3, Corollary 8], W (T ) is closed.
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Let T be the geometrically weighted shift with weights {qn−1}. Then the positive
semidefinite part P of the polar decomposition of T is

P = diag
{
1, q, q2, q3, . . . , qn−1, . . .

}
,

and we obtain that

∆(T ) =
√

q T.

By [5], the inequality

w(T ) ≤ ||T ||/2 + w(∆(T ))/2

holds. Thus, we have

w(T ) ≤ ||T ||/2 +√
q w(T )/2.

Since the operator norm ||T || = 1, it follows that

w(T ) ≤ 1/(2−√
q).

For the lower bound, we consider the unit vector x ∈ 	2(N) with coordinates
xn = (1 − α)1/2α(n−1)/2, where 0 < α < 1. Then

< Tx, x >= x1x2 + qx2x3 + · · ·+ qn−1xnxn+1 + · · · =
√

α(1 − α)
1− qα

.

Hence,

w(T ) ≥ sup
0<α<1

√
α(1− α)
1− qα

=
1

4q3/2

√
54− 36q − 2q2 − 2

√
(1− q)(9 − q)3,

and the proof is complete.

Suppose that q is a positive real number with 0 < q < 1. We consider a weighted
shift operator with geometric weights, an = qn−1 (n = 1, 2, . . .). In this case, we
denote by Fq(z) the function FT (z) in (1.2).

Theorem 2.2. Let T be a weighted shift operator with geometric weights {qn−1,

n ∈ N}, 0 < q < 1. Then W (T ) is a closed disk about the origin, and

Fq(z) = 1 +
∞∑

n=1

(−1)nq2n(n−1)

(1− q2)(1 − q4)(1 − q6) · · · (1− q2n)
z2n.(2.1)

Proof. By using the geometric series formula
∑
n=0

qn =
1

1− q
,
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we prove formula (2.1) by induction on the coefficients cn of (1.3). It is obvious that

c1 =
∞∑

i=1

a2
i =

∞∑
i=0

q2i =
1

1− q2
.

We assume that c1, c2, . . . , cn are of the desired form for the formula (2.1). Then

cn+1 = 1×
∑

2≤j1,j1+2≤j2,...,jn−1+2≤jn

q2j1q2j2 · · · q2jn

+q2
∑

3≤j1,j1+2≤j2,...,jn−1+2≤jn

q2j1q2j2 · · · q2jn + · · ·

= 1× q4n(1 × q4q8 · · · q4(n−1) + · · ·)
+q2q6n(1 × q4q8 · · · q4(n−1) + · · ·) + · · ·

= (q4n + q6n+2 + q8n+4 + · · ·)cn

=
q4nq2n(n−1)

(1− q2)(1− q4) · · · (1 − q2n)(1− q2n+2)

=
q2n(n+1)

(1− q2)(1− q4) · · · (1 − q2(n+1))
. �

We give an example for q = 0.2. In this case, the upper and lower bounds of
Theorem 2.1 are estimated by

0.414 ≈ 1
4q3/2

√
54− 36q − 2q2 − 2

√
(1 − q)(9− q)3 ≤ w(T ) ≤ 1/(2−√

q) ≈ 0.644.

On the other hand, the minimum positive root of F0.2(z) in (2.1) is estimated by
0.980552. Thus, an approximate value of the maximum spectrum of T + T ∗ is given
by 1.01983 = 1/0.980552. Therefore, w(T ) ≈ 1.01983/2 = 0.50991.

We consider an approximating sequence Fn(z : q) of Fq(z) given by

F1(z : q) = 1− 1
(1− q2)

z2,

F2(z : q) = 1− 1
(1− q2)

z2 +
q4

(1− q2)(1 − q4)
z4,

F3(z : q) = 1− 1
(1− q2)

z2 +
q4

(1− q2)(1 − q4)
z4 − q12

(1 − q2)(1− q4)(1− q6)
z6,

...
...

...

The positive solution of F1(z : q) = 0 in z satisfies

1
z
=

1√
1− q2

= 1 +
q2

2
+

3q4

8
+ · · · .
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The minimum positive solution of F2(z : q) = 0 in z satisfies

1
z
=

√
2q2√

1− q4 − (1− 6q4 + 4q6 + 5q8 − 4q10)1/2

= 1 +
q2

2
− q4

8
+ · · · .

The minimum positive root of Fq(z) is assumed to be the limit of the minimum
positive solutions of Fn(z : q) = 0. By successive usage of indefinite coefficients
method, we find that

1
z0

= 1 +
q2

2
− q4

8
+

9q6

16
− 101q8

128
+

375q10

256
− 2549q12

1024
+

9977q14

2048
− · · · .(2.2)

Notice that the numerical radius 1/(2z0) of (2.2) is a sharper estimate than the bound
obtained in Theorem 2.1 near q = 0. Indeed, we have the series for the bound

1/(2−√
q) =

1
2

(
1 +

q1/2

2
+

q

4
+

q3/2

8
+

q2

16
+ · · ·

)
.

3. Hypergeometric q-series. There is an interesting phenomenon in the hy-
pergeometric function (2.1). By replacing z2 by z and q2 by q in (2.1), we set

Hq(z) = 1 +
∞∑

n=1

(−1)nqn(n−1)

(1 − q)(1− q2)(1− q3) · · · (1− qn)
zn.(3.1)

The minimum positive solution of the equation Hq(z) = 0 can be found in a series of
q,

z = 1− q + q2 − 2q3 + 4q4 − 8q5 + 16q6 − 33q7 + 70q8 − · · · .

An analogous function of Hq(z) is known as the Euler equation. Recall the q-series
identity

∞∏
n=1

(1 + qnx) =
∞∑

n=0

qn(n+1)/2

(1− q)(1 − q2) · · · (1− qn)
xn.(3.2)

The series (3.2) is called the Euler function in q when x = −1. If the term qn(n+1)/2

in (3.2) is replaced by qn(n+1), then it is related to the function (3.1) corresponding
to the minimum positive eigenvalue.

The function Fq(z) is closely related to Rogers-Ramanujan identities. Substitut-
ing z = iq into Fq(z), we have

Fq(iq) = 1 +
∞∑

n=1

q2n2

(1− q2)(1 − q4) · · · (1− q2n)
.(3.3)
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Substituting z = iq2 into Fq(z), we have

Fq(iq2) = 1 +
∞∑

n=1

q2n2+2n

(1 − q2)(1 − q4) · · · (1− q2n)
.(3.4)

Replacing q2 by q in (3.3) and (3.4), we have respectively, in basic hypergeometric
q-series (cf. [2]), the following two Rogers-Ramanujan identities

1 +
∞∑

n=1

qn2

(1− q)(1 − q2) · · · (1− qn)
=

∞∏
n=0

1
(1− q5n+1)(1− q5n+4)

and

1 +
∞∑

n=1

qn2+n

(1 − q)(1− q2) · · · (1− qn)
=

∞∏
n=0

1
(1− q5n+2)(1 − q5n+3)

.
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