CORRIGENDUM TO "DETERMINANTS OF NORMALIZED BOHEMIAN UPPER HESSENBERG MATRICES" [ELECTRON. J. OF LINEAR ALGEBRA 36 (2020) 352-366]*

MASSIMILIANO FASI^{\dagger}, JISHE FENG ${ }^{\ddagger}$, AND GIAN MARIA NEGRI PORZIO ${ }^{\S}$

Abstract

An amended version of Proposition 3.6 of [Fasi and Negri Porzio, Electron. J. Linear Algebra 36:352-366, 2020] is presented. The result shows that the set of possible determinants of upper Hessenberg matrices with ones on the subdiagonal and elements in the upper triangular part drawn from the set $\{-1,1\}$ is $\left\{2 k \mid k \in\left\langle-2^{n-2}, 2^{n-2}\right\rangle\right\}$, instead of $\{2 k \mid k \in\langle-n+1, n-1\rangle\}$ as previously stated. This does not affect the main results of the article being corrected and shows that Conjecture 20 in the Characteristic Polynomial Database is true.

Key words. Bohemian matrix, Integer matrix, Normalized upper Hessenberg matrix, Determinant.

AMS subject classifications. 11C20, 15A15, 15B36.

Let $\mathcal{H}^{n}(\{-1,1\})$ denote the set of upper Hessenberg matrices of order n with ones on the subdiagonal and elements drawn from the set $\{-1,1\}$ in the upper triangular part. We rectify [1, Prop. 3.6], which incorrectly enumerated only a subset of the possible determinants of matrices in $\mathcal{H}^{n}(\{-1,1\})$, and thus provide a proof of [3, Conjecture 20].

Proposition 1. If $n>1$, then the set of possible determinants of matrices in the family $\mathcal{H}^{n}(\{-1,1\})$ is

$$
\begin{equation*}
D_{n}=\left\{2 k \mid k \in\left\langle-2^{n-2}, 2^{n-2}\right\rangle\right\} . \tag{1.1}
\end{equation*}
$$

Proof. As noted by Ching [2], there are only 2^{n-1} possibly nonzero terms in the determinant expansion of an $n \times n$ Hessenberg matrix. If the matrix is in $\mathcal{H}^{n}(\{-1,1\})$, then each of these 2^{n-1} monomials evaluates to either +1 or -1 , which implies that the determinant of any such matrices must be even and cannot be larger than 2^{n-1} in absolute value. Now we explain how to construct a matrix $H \in \mathcal{H}_{0}^{n}(\{-1,1\})$ such that $\operatorname{det} H=2 k$, for any $k \in\left\langle-2^{n-2}, 2^{n-2}\right\rangle$.

Let $K^{(n)} \in \mathcal{H}_{0}^{n}(\{-1,1\})$ be the matrix with entries

$$
k_{i j}^{(n)}=\left\{\begin{aligned}
0, & i>j+1 \\
1, & i=j+1 \\
-1, & i \leq j
\end{aligned}\right.
$$

[^0]that is, a Hessenberg matrix with 1 on the first subdiagonal and -1 in the upper triangular part. Our proof relies on the identity
\[

$$
\begin{equation*}
\operatorname{det} K^{(n)}=(-1)^{n} 2^{n-1} \tag{1.2}
\end{equation*}
$$

\]

which is a special case of one of the results in [1, Proposition 3.1]. Now consider the matrix

$$
H=\left[\right]
$$

where $b, a_{0}, \ldots, a_{n-2} \in\{-1,1\}$. Using [1, Lemma 2.1] followed by (1.2), we obtain

$$
\begin{equation*}
\operatorname{det} H=(-1)^{n+1}\left(b+\sum_{i=0}^{n-2}(-1)^{i+1} a_{i} \operatorname{det} K^{(i+1)}\right)=(-1)^{n+1} b+(-1)^{n+1} \sum_{i=0}^{n-2} a_{i} 2^{i} \tag{1.3}
\end{equation*}
$$

and the result can be proven by induction. For the base case $n=2$, the formula (1.3) reduces to $-\left(b+a_{0}\right)$, which equals 0 if b and a_{0} have opposite sign, and 2 or -2 if they are both negative or both positive, respectively. For the inductive step, we write

$$
\begin{aligned}
\operatorname{det} H & =(-1)^{n+1} b+(-1)^{n+1} \sum_{i=0}^{n-2} a_{i} 2^{i} \\
& =(-1)^{n+1} b+(-1)^{n+1} \sum_{i=0}^{n-3} a_{i} 2^{i}+(-1)^{n+1} a_{n-2} 2^{n-2}
\end{aligned}
$$

and observe that it is enough to show that the coefficients $b, a_{0}, \ldots, a_{n-2}$ can be chosen so that det $H=2 k$ for any $k \in\left\langle 0,2^{n-2}\right\rangle$. A matrix \widetilde{H} such that $\operatorname{det} \widetilde{H}=-2 k$ can be obtained by changing the sign of the entries in the last column of H. Let us set a_{n-2} to $(-1)^{n+1}$. By the inductive hypothesis, there exist $b, a_{0}, \ldots, a_{n-3} \in\{-1,1\}$ such that

$$
(-1)^{n} b+(-1)^{n} \sum_{i=0}^{n-3} a_{i} 2^{i}=2 k^{\prime}, \quad k^{\prime} \in\left\langle-2^{n-3}, 2^{n-3}\right\rangle,
$$

which gives

$$
\operatorname{det} H=2 k^{\prime}+2^{n-2}=2\left(k^{\prime}+2^{n-3}\right)
$$

Observing that all numbers in $\left\langle 0,2^{n-2}\right\rangle$ can be written in the form $k^{\prime}+2^{n-3}$, for $k^{\prime} \in\left\langle-2^{n-3}, 2^{n-3}\right\rangle$, concludes the proof.

Corollary 2. The matrices in the family $\mathcal{H}^{n}(\{-1,1\})$ have $2^{n-1}+1$ distinct determinants.
Proof. Since the cardinality of D_{n} in (1.1) is $2 \cdot 2^{n-2}+1=2^{n-1}+1$, Proposition 1 proves the claim for $n>1$. Noting that the only two matrices in $\mathcal{H}^{1}(\{-1,1\})$ are -1 and 1 concludes the proof.

Corollary 2 proves [3, Conjecture 20], as it shows that the number of distinct determinants of normalized Bohemian upper Hessenberg matrices with entries from $\{-1,1\}$ is given by a shift of the OEIS sequence A000051.

Acknowledgments. We thank the anonymous referee and the editor for their comments, which helped us improve the presentation of this work.

REFERENCES

[1] M. Fasi and G.M. Negri Porzio. Determinants of normalized Bohemian upper Hessenberg matrices. Electron. J. Linear Algebra, 36:352-366, 2020.
[2] L. Ching. The maximum determinant of an $n \times n$ lower Hessenberg (0,1) matrix. Linear Algebra Appl., 183:147-153, 1993.
[3] S.E. Thornton. The characteristic polynomial database. Available at http://bohemianmatrices.com/cpdb, 2020.

[^0]: *Received by the editors on December 24, 2020. Accepted for publication on February 2, 2021. Handling Editor: Froilán Dopico. Corresponding Author: Massimiliano Fasi.
 \dagger School of Science and Technology, Örebro University, Örebro 701 82, Sweden (massimiliano.fasi@oru.se). The work of this author was supported by the Royal Society, the Wenner-Gren Foundations grant UPD2019-0067, and the Istituto Nazionale di Alta Matematica INdAM-GNCS Project 2020.
 ${ }^{\ddagger}$ School of Mathematics and Statistics, Longdong University, Qingyang, Gansu, 745000, People’s Republic of China (gsfjs6567@126.com).
 §Department of Mathematics, University of Manchester, M13 9PL, UK (gianmaria.negriporzio@manchester.ac.uk).

