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CORRIGENDUM TO “DETERMINANTS OF NORMALIZED

BOHEMIAN UPPER HESSENBERG MATRICES”
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Abstract. An amended version of Proposition 3.6 of [Fasi and Negri Porzio, Electron. J. Linear Algebra 36:352–366,

2020] is presented. The result shows that the set of possible determinants of upper Hessenberg matrices with ones on the

subdiagonal and elements in the upper triangular part drawn from the set {−1, 1} is {2k | k ∈ 〈−2n−2, 2n−2〉}, instead of

{2k | k ∈ 〈−n + 1, n− 1〉} as previously stated. This does not affect the main results of the article being corrected and shows

that Conjecture 20 in the Characteristic Polynomial Database is true.
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Let Hn({−1, 1}) denote the set of upper Hessenberg matrices of order n with ones on the subdiagonal

and elements drawn from the set {−1, 1} in the upper triangular part. We rectify [1, Prop. 3.6], which

incorrectly enumerated only a subset of the possible determinants of matrices in Hn({−1, 1}), and thus

provide a proof of [3, Conjecture 20].

Proposition 1. If n > 1, then the set of possible determinants of matrices in the family Hn({−1, 1}) is

(1.1) Dn = {2k | k ∈ 〈−2n−2, 2n−2〉}.

Proof. As noted by Ching [2], there are only 2n−1 possibly nonzero terms in the determinant expansion

of an n×n Hessenberg matrix. If the matrix is in Hn({−1, 1}), then each of these 2n−1 monomials evaluates

to either +1 or −1, which implies that the determinant of any such matrices must be even and cannot be

larger than 2n−1 in absolute value. Now we explain how to construct a matrix H ∈ Hn
0 ({−1, 1}) such that

detH = 2k, for any k ∈ 〈−2n−2, 2n−2〉.

Let K(n) ∈ Hn
0 ({−1, 1}) be the matrix with entries

k
(n)
ij =


0, i > j + 1,

1, i = j + 1,

−1, i ≤ j,
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that is, a Hessenberg matrix with 1 on the first subdiagonal and −1 in the upper triangular part. Our proof

relies on the identity

(1.2) detK(n) = (−1)n 2n−1,

which is a special case of one of the results in [1, Proposition 3.1]. Now consider the matrix

H =


b

a0
...

K(n−1)

an−3
0 . . . 1 an−2

 ,

where b, a0, . . . , an−2 ∈ {−1, 1}. Using [1, Lemma 2.1] followed by (1.2), we obtain

(1.3) detH = (−1)n+1

(
b +

n−2∑
i=0

(−1)i+1ai detK(i+1)

)
= (−1)n+1b + (−1)n+1

n−2∑
i=0

ai2
i,

and the result can be proven by induction. For the base case n = 2, the formula (1.3) reduces to −(b + a0),

which equals 0 if b and a0 have opposite sign, and 2 or −2 if they are both negative or both positive,

respectively. For the inductive step, we write

detH = (−1)n+1b + (−1)n+1
n−2∑
i=0

ai2
i

= (−1)n+1b + (−1)n+1
n−3∑
i=0

ai2
i + (−1)n+1an−22n−2,

and observe that it is enough to show that the coefficients b, a0, . . . , an−2 can be chosen so that detH = 2k

for any k ∈ 〈0, 2n−2〉. A matrix H̃ such that det H̃ = −2k can be obtained by changing the sign of the

entries in the last column of H. Let us set an−2 to (−1)n+1. By the inductive hypothesis, there exist

b, a0, . . . , an−3 ∈ {−1, 1} such that

(−1)nb + (−1)n
n−3∑
i=0

ai2
i = 2k′, k′ ∈ 〈−2n−3, 2n−3〉,

which gives

detH = 2k′ + 2n−2 = 2(k′ + 2n−3).

Observing that all numbers in 〈0, 2n−2〉 can be written in the form k′ + 2n−3, for k′ ∈ 〈−2n−3, 2n−3〉,
concludes the proof.

Corollary 2. The matrices in the family Hn({−1, 1}) have 2n−1 + 1 distinct determinants.

Proof. Since the cardinality of Dn in (1.1) is 2 · 2n−2 + 1 = 2n−1 + 1, Proposition 1 proves the claim for

n > 1. Noting that the only two matrices in H1({−1, 1}) are −1 and 1 concludes the proof.

Corollary 2 proves [3, Conjecture 20], as it shows that the number of distinct determinants of normalized

Bohemian upper Hessenberg matrices with entries from {−1, 1} is given by a shift of the OEIS sequence

A000051.
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