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THE ANTI-SYMMETRIC ORTHO-SYMMETRIC SOLUTIONS OF

THE MATRIX EQUATION AT XA = D∗

QING-FENG XIAO† , XI-YAN HU† , AND LEI ZHANG†

Abstract. In this paper, the following problems are discussed.

Problem I. Given matrices A ∈ Rn×m and D ∈ Rm×m, find X ∈ ASRn

P
such that AT XA = D,

where

ASRn

P
= {X ∈ ASRn×n|PX ∈ SRn×n for given P ∈ ORn×n satisfying P T = P}.

Problem II. Given a matrix X̃ ∈ Rn×n, find X̂ ∈ SE such that

‖X̃ − X̂‖ = inf
X∈SE

‖X̃ − X‖,

where ‖ · ‖ is the Frobenius norm, and SE is the solution set of Problem I.
Expressions for the general solution of Problem I are derived. Necessary and sufficient conditions

for the solvability of Problem I are provided. For Problem II, an expression for the solution is given
as well.

Key words. Anti-symmetric ortho-symmetric matrix, Matrix equation, Matrix nearness prob-
lem, Optimal approximation, Least-square solutions.
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1. Introduction. Let Rn×m denote the set of all n × m real matrices, and let
ORn×n, SRn×n, ASRn×n denote the set of all n × n orthogonal matrices, the set of
all n × n real symmetric matrices, the set of all n × n real skew-symmetric matrices,
respectively. The symbol Ik will stand for the identity matrix of order k, A+ for
the Moore-Penrose generalized inverse of a matrix A, and rank(A) for the rank of
matrix A. For matrices A,B ∈ Rn×m, the expression A ∗ B will be the Hadamard
product of A and B; also ‖ · ‖ will denote the Frobenius norm. Defining the inner
product (A,B) = tr(BT A) for matrices A,B ∈ Rn×m, Rn×m becomes a Hilbert
space. The norm of a matrix generated by this inner product is the Frobenius norm.
If A = (aij) ∈ Rn×n, let LA = (lij) ∈ Rn×n be defined as follows: lij = aij whenever
i > j and lij = 0 otherwise (i, j = 1, 2, . . . , n). Let ei be the i-th column of the
identity matrix In(i = 1, 2, . . . , n) and set Sn = (en, en−1, . . . , e1). It is easy to see
that

ST
n = Sn, ST

n Sn = In.

An inverse problem [2-6] arising in the structural modification of the dynamic
behaviour of a structure calls for the solution of the matrix equation

AT XA = D,(1.1)

where A ∈ Rn×m, D ∈ Rm×m, and the unknown X is required to be real and
symmetric, and positive semidefinite or possibly definite. No assumption is made
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about the relative sizes of m and n, and it is assumed throughout that A 6= 0 and
D 6= 0.

Equation (1.1) is a special case of the matrix equation

AXB = C.(1.2)

Consistency conditions for equation (1.2) were given by Penrose [7] (see also [1]).
When the equation is consistent, a solution can be obtained using generalized in-
verses. Khatri and Mitra [8] gave necessary and sufficient conditions for the existence
of symmetric and positive semidefinite solutions as well as explicit formulae using gen-
eralized inverses. In [9,10] solvability conditions for symmetric and positive definite
solutions and general solutions of Equation (1.2) were obtained through the use of
the generalized singular value decomposition [11-13].

For important results on the inverse problem AT XA = D associated with several
kinds of different sets S, for instance, symmetric matrices, symmetric nonnegative
definite matrices, bisymmetric (same as persymmetric) matrices, bisymmetric non-
negative definite matrices and so on, we refer the reader to [14-17].

For the case the unknown A is anti-symmetric ortho-symmetric, [18] has discussed
the inverse problem AX = B. However, for this case, the inverse problem AT XA = D

has not been dealt with yet. This problem will be considered here.
Definition 1.1. A matrix P ∈ Rn×n is said to be a symmetric orthogonal matrix

if PT = P, PT P = In.
In this paper, without special statement, we assume that P is a given symmetric

orthogonal matrix.
Definition 1.2. A matrix X ∈ Rn×n is said to be a anti-symmetric ortho-

symmetric matrix if XT = −X, (PX)T = PX. We denote the set of all n × n

anti-symmetric ortho-symmetric matrices by ASRn
P .

The problem studied in this paper can now be described as follows.
Problem I. Given matrices A ∈ Rn×m and D ∈ Rm×m, find an anti-symmetric

ortho-symmetric matrix X such that

AT XA = D.

In this paper, we discuss the solvability of this problem and an expression for its
solution is presented.

The optimal approximation problem of a matrix with the above-given matrix
restriction comes up in the processes of test or recovery of a linear system due to
incomplete data or revising given data. A preliminary estimate X̃ of the unknown
matrix X can be obtained by the experimental observation values and the information
of statistical distribution. The optimal estimate of X is a matrix X̂ that satisfies the
given matrix restriction for X and is the best approximation of X̃, see [19-21].

In this paper, we will also consider the so-called optimal approximation problem
associated with AT XA = D. It reads as follows.

Problem II. Given matrix X̃ ∈ Rn×n, find X̂ ∈ SE such that

‖X̃ − X̂‖ = inf
X∈SE

‖X̃ − X‖,

where SE is the solution set of Problem I.
We point out that if Problem I is solvable, then Problem II has a unique solution,

and in this case an expression for the solution can be derived.
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The paper is organized as follows. In Section 2, we obtain the general form of SE

and the sufficient and necessary conditions under which Problem I is solvable mainly
by using the structure of ASRn

P and orthogonal projection matrices. In Section 3,
the expression for the solution of the matrix nearness problem II will be provided.

2. The expression of the general solution of problem I. In this section we
first discuss some structure properties of symmetric orthogonal matrices. Then, given
such a matrix P , we consider structural properties of the subset ASRn

P of Rn×n.
Finally, we present necessary and sufficient conditions for the existence of and the
expressions for the anti-symmetric ortho-symmetric (with respect to the given P )
solutions of problem I.

Lemma 2.1. Assume P is a symmetric orthogonal matrix of size n, and let

P1 =
1

2
(In + P ), P2 =

1

2
(In − P ).(2.1)

Then P1 and P2 are orthogonal projection matrices satisfying P1+P2 = In, P1P2 = 0.
Proof. By direct computation.

Lemma 2.2. Assume P1 and P2 are defined as (2.1) and rank(P1) = r. Then

rank(P2) = n − r, and there exist unit column orthogonal matrices U1 ∈ Rn×r and

U2 ∈ Rn×(n−r) such that

P1 = U1U
T
1 , P2 = U2U

T
2 , P = U1U

T
1 − U2U

T
2 , UT

1 U2 = 0.

Proof. Since P1 and P2 are orthogonal projection matrices satisfying P1 + P2 =
In, P1P2 = 0, the column space R(P2) of the matrix P2 is the orthogonal complement
of the column space R(P1) of the matrix P1, in other words, Rn = R(P1) ⊕ R(P2).
Hence, if rank(P1) = r, then rank(P2) = n − r. On the other hand, rank(P1) = r,
rank(P2) = n − r, and P1 , P2 are orthogonal projection matrices. Thus there exist
unit column orthogonal matrices U1 ∈ Rn×r and U2 ∈ Rn×(n−r) such that P1 =
U1U

T
1 , P2 = U2U

T
2 . Using Rn = R(P1) ⊕ R(P2), we have UT

1 U2 = 0. Substituting
P1 = U1U

T
1 , P2 = U2U

T
2 into (2.1), we have P = U1U

T
1 − U2U

T
2 .

Elaborating on Lemma 2.2 and its proof, we note that U = (U1, U2) is an orthog-
onal matrix and that the symmetric orthogonal matrix P can be expressed as

P = U

(

Ir 0
0 −In−r

)

UT .(2.2)

Lemma 2.3. The matrix X ∈ ASRn
P if and only if X can be expressed as

X = U

(

0 F

−FT 0

)

UT ,(2.3)

where F ∈ Rr×(n−r) and U is the same as (2.2).
Proof. Assume X ∈ ASRn

P . By Lemma 2.2 and the definition of ASRn
P , we have

P1XP1 =
I + P

2
X

I + P

2
=

1

4
(X + PX + XP + PXP ) =

1

4
(PX + XP ),

P2XP2 =
I − P

2
X

I − P

2
=

1

4
(X − PX − XP + PXP ) = −

1

4
(PX + XP ).
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Hence,

X = (P1 + P2)X(P1 + P2) = P1XP1 + P1XP2 + P2XP1 + P2XP2

= P1XP2 + P2XP1 = U1U
T
1 XU2U

T
2 + U2U

T
2 XU1U

T
1 .

Let F = UT
1 XU2, G = UT

2 XU1, it is easy to verify that FT = −G. Then we
have

X = U1FUT
2 + U2GUT

1 = U

(

0 F

G 0

)

UT = U

(

0 F

−FT 0

)

UT

Conversely, for any F ∈ Rr×(n−r), let

X = U

(

0 F

−FT 0

)

UT .

It is easy to verify that XT = −X. Using (2.2), we have

PXP = PU

(

0 F

−FT 0

)

UT P

= U

(

Ir 0
0 −In−r

)

UT U

(

0 F

−FT 0

)

UT U

(

Ir 0
0 −In−r

)

UT

= U

(

0 −F

FT 0

)

UT = −X.

This implies that X = U

(

0 F

−FT 0

)

UT ∈ ASRn
P .

Lemma 2.4. Let A ∈ Rn×n, D ∈ ASRn×n and assume A−AT = D. Then there

is precisely one G ∈ SRn×n such that

A = LD + G,

and G = 1
2 (A + AT ) − 1

2 (LD + LT
D) .

Proof. For given A ∈ Rn×n, D ∈ ASRn×n and A − AT = D, it is easy to
verify that there exist unique G = 1

2 (A + AT ) − 1
2 (LD + LT

D) ∈ SRn×n, and we have
A = 1

2 (A−AT )+ 1
2 (A+AT ) = 1

2 (LD −LT
D)+ 1

2 (A+AT ) = LD + 1
2 (A+AT )− 1

2 (LD +
LT

D) = LD + G.

Let A ∈ Rn×m and D ∈ Rm×m, U defined in (2.2). Set

UT A =

(

A1

A2

)

, A1 ∈ Rr×m, A2 ∈ R(n−r)×m.(2.4)

The generalized singular value decomposition (see [11,12,13]) of the matrix pair
[AT

1 , AT
2 ] is

AT
1 = MΣA1

WT , AT
2 = MΣA2

V T ,(2.5)
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where W ∈ Cm×m is a nonsingular matrix, W ∈ ORr×r, V ∈ OR(n−r)×(n−r) and

ΣA1
=













Ik

S1

O1

· · · · · · · · · · · · · · ·
O













k

s

t − k − s

m − t

,(2.6)

ΣA2
=













O2

S2

It−k−s

· · · · · · · · · · · · · · ·
O













k

s

t − k − s

m − t

,(2.7)

where

t = rank(AT
1 , AT

2 ), k = t − rank(AT
2 ),

s = rank(AT
1 ) + rank(AT

2 ) − t

S1 = diag(α1, · · · , αs), S2 = diag(β1, · · · , βs),

with 1 > α1 ≥ · · · ≥ αs > 0, 0 < β1 ≤ · · · ≤ βs < 1, and α2
i + β2

i = 1, i = 1, · · · , s.
O, O1 and O2 are corresponding zero submatrices.
Then we can immediately obtain the following theorem about the general solution

to Problem I.

Theorem 2.5. Given A ∈ Rn×m and D ∈ Rm×m, U defined in (2.2), and UT A

has the partition form of (2.4), the generalized singular value decomposition of the

matrix pair [AT
1 , AT

2 ] as (2.5). Partition the matrix M−1DM−T as

M−1DM−T =









D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44









k

s

t − k − s

m − t

,

k s t − k − s m − t ,

then the problem I has a solution X ∈ ASRn
P if and only if

DT = −D,D11 = O,D33 = O,D41 = O,D42 = O,D43 = O,D44 = O.(2.8)

In that case it has the general solution

X = U

(

0 F

−FT 0

)

UT ,(2.9)

where

F = W





X11 D12S
−1
2 D13

X21 S−1
1 (LD22

+ G)S−1
2 S−1

1 D23

X31 X32 X33



 V T ,(2.10)

with X11 ∈ Rr×(n−r+k−t), X21 ∈ Rs×(n−r+k−t), X31 ∈ R(r−k−s)×(n−r+k−t), X32 ∈
R(r−k−s)×s, X33 ∈ R(r−k−s)×(t−k−s) and G ∈ SRs×s are arbitrary matrices.
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Proof. The necessity. Assume Eq.(1.1) has a solution X ∈ ASRn
P . By the

definition of ASRn
P , it is easy to verify that DT = −D, and we have from Lemma 2.3

that X can be expressed as

X = U

(

0 F

−FT 0

)

UT .(2.11)

where F ∈ Rr×(n−r).
Note that U is an orthogonal matrix, and the definition of Ai(i = 1, 2), Eq.(1.1)

is equivalent to

AT
1 FA2 − AT

2 FA1 = D.(2.12)

Substituting (2.5) into (2.12), then we have

ΣA1
(WT FV )ΣT

A2
− ΣA2

(WT FV )T ΣT
A1

= M−1DM−T ,(2.13)

Partition the matrix WT FV as

WT FV =





X11 X12 X13

X21 X22 X23

X31 X32 X33



 ,(2.14)

where X11 ∈ Rr×(n−r+k−t), X22 ∈ Rs×s, X33 ∈ R(r−k−s)×(t−k−s).
Taking WT FV and M−1DM−T into (2.13), we have









0 X12S2 X13 0
−S2X

T
21 S1X22S2 − (S1X22S2)

T S1X23 0
−XT

13 −XT
23S1 0 0

0 0 0 0









=









D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44









.

(2.15)

Therefore (2.15) holds if and only if (2.8) holds and

X12 = D12S
−1
2 , X13 = D13, X23 = S−1

1 D23

and

S1X22S2 − (S1X22S2)
T = D22.

It follows from Lemma 2.4 that X22 = S−1
1 (LD22

+ G)S−1
2 , where G ∈ SRs×s is

arbitrary matrix. Substituting the above into (2.14), (2.11), thus we have formulation
(2.9) and (2.10).

The sufficiency. Let

FG = W





X11 D12S
−1
2 D13

X21 S−1
1 (LD22

+ G)S−1
2 S−1

1 D23

X31 X32 X33



 V T .

Obviously, FG ∈ Rr×(n−r). By Lemma 2.3 and

X0 = U

(

0 FG

−FT
G 0

)

UT ,
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we have X0 ∈ ASRn
P . Hence

AT X0A = AT UUT X0UUT A = (AT
1 AT

2 )

(

0 FG

−FG 0

)(

A1

A2

)

= (AT
2 (−FG) AT

1 FG )

(

A1

A2

)

= AT
2 (−FG)A1 + AT

1 FGA2

= M









0 D12S
T
2 D13 0

−S2D
T
12 LD22

− LT
D22

D23 0
−DT

13 −DT
23 0 0

0 0 0 0









MT = D.

This implies that X0 = U

(

0 FG

−FT
G 0

)

UT ∈ ASRn
P is the anti-symmetric ortho-

symmetric solution of Eq. (1.1). The proof is completed.

3. The expression of the solution of Problem II. To prepare for an explicit
expression for the solution of the matrix nearness problem II, we first verify the
following lemma.

Lemma 3.1. Suppose that E,F ∈ Rs×s, and let Sa = diag(a1, · · · , as) > 0,
Sb = diag(b1, · · · , bs) > 0. Then there exist a unique Ss ∈ SRs×s and a unique

Sr ∈ ASRs×s such that

‖SaSSb − E‖2 + ‖SaSSb − F‖2 = min(3.1)

and

Ss = Φ ∗ [Sa(E + F )Sb + Sb(E + F )T Sa],(3.2)

Sr = Φ ∗ [Sa(E + F )Sb − Sb(E + F )T Sa],(3.3)

where

Φ = (ψij) ∈ SRs×s, ψij =
1

2(a2
i b

2
j + a2

jb
2
i )

, 1 ≤ i, j ≤ s.(3.4)

Proof. We prove only the existence of Sr and (3.3). For any S = (sij) ∈ ASRs×s,
E = (eij), F = (fij) ∈ Rs×s, since sii = 0, sij = −sji,

‖SaSSb − E‖2 + ‖SaSSb − F‖2 =
∑

1≤i,j≤s

[(aibjsij − eij)
2 + (aibjsij − fij)

2]

=
∑

1≤i<j≤s

[(aibjsij − eij)
2 + (−ajbisij − eji)

2 + (aibjsij − fij)
2 + (−ajbisij − fji)

2] +

+
∑

1≤i≤s

(e2
ij + e2

ij).

Hence, there exists a unique solution Sr = (ŝij) ∈ ASRs×s for (3.1) such that

ŝij =
aibj(eij + fij) − ajbi(eji + fji)

2(a2
i b

2
j + a2

jb
2
i )

, 1 ≤ i, j ≤ s.
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This amounts to the same as (3.3).

Theorem 3.2. Let X̃ ∈ Rn×n, the generalized singular value decomposition of

the matrix pair [AT
1 , AT

2 ] as (2.5), let

UT X̃U =

(

Z∗
11 Z∗

12

Z∗
21 Z∗

22

)

,(3.5)

WT Z∗
12V =





X∗
11 X∗

12 X∗
13

X∗
21 X∗

22 X∗
23

X∗
31 X∗

32 X∗
33



 , WT Z∗T
21 V =





Y ∗
11 Y ∗

12 Y ∗
13

Y ∗
21 Y ∗

22 Y ∗
23

Y ∗
31 Y ∗

32 Y ∗
33



 ,(3.6)

if Problem I is solvable, then Problem II has a unique solution X̂, which can be

expressed as

X̂ = U

(

0 F̃

−F̃T 0

)

UT ,(3.7)

where

F̃ = W





1
2 (X∗

11 − Y ∗
11) D12S

−1
2 D13

1
2 (X∗

21 − Y ∗
21) S−1

1 (LD22
+ G̃)S−1

2 S−1
1 D23

1
2 (X∗

31 − Y ∗
31)

1
2 (X∗

32 − Y ∗
32)

1
2 (X∗

33 − Y ∗
33)



 V T ,

G̃ = Φ∗ [S−1
1 (X∗

22−Y ∗
22−2S−1

1 LD22
S−1

2 )S−1
2 +S−1

2 (X∗
22−Y ∗

22−2S−1
1 LD22

S−1
2 )T S−1

1 ],

with

Φ = (ψij) ∈ SRs×s, ψij =
a2

i a
2
jb

2
i b

2
j

2(a2
i b

2
j + a2

jb
2
i )

, 1 ≤ i, j ≤ s.

Proof. Using the invariance of the Frobenius norm under unitary transformations,
from (2.9), (3.5) and (3.6) we have

||X − X̃||2 = ||Z∗
11||

2 + ||F − Z∗
12||

2 + || − FT − Z∗
21||

2 + ||Z∗
22||

2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





X11 D12S
−1
2 D13

X21 S−1
1 (LD22

+ G)S−1
2 S−1

1 D23

X31 X32 X33



 − WT Z∗
12V

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

+ ||Z∗
11||

2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





X11 D12S
−1
2 D13

X21 S−1
1 (LD22

+ G)S−1
2 S−1

1 D23

X31 X32 X33



 + WT Z∗T
21 V

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

+ ||Z∗
22||

2.

Thus

‖X̃ − X̂‖ = inf
X∈SE

‖X̃ − X‖

is equivalent to

‖ X11 − X∗
11 ‖2 + ‖ X11 + Y ∗

11 ‖2= min, ‖ X21 − X∗
21 ‖2 + ‖ X21 + Y ∗

21 ‖2= min,
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‖ X31 − X∗
31 ‖2 + ‖ X31 + Y ∗

31 ‖2= min, ‖ X32 − X∗
32 ‖2 + ‖ X32 + Y ∗

32 ‖2= min,

‖ X33 − X∗
33 ‖2 + ‖ X33 + Y ∗

33 ‖2= min,

||S−1
1 GS−1

2 − (X∗
22 − S−1

1 LD22
S−1

2 )||2 + ||S−1
1 GS−1

2 + (Y ∗
22 + S−1

1 LD22
S−1

2 )||2 = min.

From Lemma 3.1 we have X11 = 1
2 (X∗

11 − Y ∗
11), X21 = 1

2 (X∗
21 − Y ∗

21), X31 = 1
2 (X∗

31 −
Y ∗

31), X32 = 1
2 (X∗

32 − Y ∗
32), X33 = 1

2 (X∗
33 − Y ∗

33) and

G = Φ∗ [S−1
1 (X∗

22−Y ∗
22−2S−1

1 LD22
S−1

2 )S−1
2 +S−1

2 (X∗
22−Y ∗

22−2S−1
1 LD22

S−1
2 )T S−1

1 ].

Taking X11,X21,X31,X32,X33 and G into (2.9), (2.10), we obtain that the solution
of (the matrix nearness) Problem II can be expressed as (3.7).
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