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OPERATOR NORMS OF WORDS FORMED FROM
POSITIVE-DEFINITE MATRICES∗

S.W. DRURY†

Abstract. Let α1, α2, . . . , αn, β1, β2, . . . , βn be strictly positive reals with α1 +α2 + · · ·+ αn =

β1 + β2 + · · · + βn = s. In this paper, the inequality

|||Aα1Bβ1Aα2 · · ·AαnBβn ||| ≤ |||AB|||s
when A and B are positive-definite matrices is studied. Related questions are also studied.
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1. Introduction. Let A and B be positive-definite matrices of the same shape
and let W be a word formed from A and B containing p A’s and q B’s. Then we may
ask whether necessarily |||W ||| ≤ |||ApBq|||. Here we have denoted ||| · ||| the operator
norm.

For example we have |||(AB)k||| ≤ |||AkBk||| for k a nonnegative integer. To see
this we assume without loss of generality that we have the normalization |||AkBk||| =
1, which amounts to AkB2kAk ≤L I or B2k ≤L A−2k. From this it follows that
B2 ≤L A−2 since the map u �→ u

1
k is matrix monotone. The reader should consult

[1] for facts about matrix monotone functions. We can then deduce that |||AB||| ≤ 1
and thence |||(AB)k||| ≤ 1.

This method, which we will call the monotonicity trick, works in many situations,
for example |||A2B2A||| ≤ |||A3B2|||. We normalize as before and obtain B4 ≤L A−6

and A6 ≤L B−4 whence

AB2A4B2A ≤L AB2B− 8
3B2A = AB

4
3A ≤L AA−2A = I

as required. The monotonicity trick also shows that |||A2B2AB2A2B2A2||| ≤ |||A7B6|||.
However, it does not work for all words. An example where it fails is A2BAB2.

More generally, and after replacing the matrices A and B by suitable positive pow-
ers we may pose the following question. Let α1, α2, . . . , αn, β1, β2, . . . , βn be strictly
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positive reals with α1 +α2 + · · ·+αn = β1 +β2 + · · ·+βn = s. When is it necessarily
true that

|||Aα1Bβ1Aα2 · · ·AαnBβn ||| ≤ |||AB|||s(1.1)

for all pairs of positive-definite matrices A and B of the same shape? Colloquially,
we may state the main result of this article by saying that if (1.1) can be proved by
the monotonicity trick, then it is true and otherwise it is false (for some choice of A
and B).

0 ≤ βn ≤ 1 βn ≥ 0
0 ≤ αn − βn ≤ 1 αn + β1 + · · ·+ βn−1 ≥ s

0 ≤ βn−1 + βn − αn ≤ 1 α1 + · · ·+ αn−1 + βn−1 + βn ≥ s
...

...
0 ≤ β2 + · · ·+ βn − α3 − · · · − αn ≤ 1 α1 + α2 + β2 + · · ·+ βn ≥ s

0 ≤ α2 + · · ·+ αn − β2 − · · · − βn ≤ 1 β1 + α2 + · · ·+ αn ≥ s

0 ≤ β1 + · · ·+ βn − α2 − · · · − αn ≤ 1 α1 ≥ 0

Table 1

2. The Main Theorem. Our main result is the following.

Theorem 2.1. The inequality (1.1) is true for all pairs of positive-definite matri-
ces A and B of the same shape if and only if the inequalities in the left-hand column
of Table 1 are satisfied.

We remark that the hypothesis that α1, α2, . . . , αn, β1, β2, . . . , βn are strictly pos-
itive is unfortunately necessary. For example, it is easy to see that |||AB2A2B||| =
|||(AB)(BA)(AB)||| ≤ |||AB|||3. Now consider AB2A0B0A2B. Then the left inequality
in 0 ≤ β2 + β3 − α3 ≤ 1 fails since β2 + β3 − α3 = −1.

Proof. Let W = Aα1Bβ1Aα2 · · ·AαnBβn , then it is routine to check that the
inequalities necessary for the application of the monotonicity trick applied to WW 	

are precisely those in the left-hand column of Table 1. If one attempts to apply
the monotonicity trick applied to W 	W , then one gets the same inequalities in an
equivalent form and in the reverse order. For the reverse implication, we need to
show that if (1.1) is true for all pairs of positive-definite matrices A and B then the
inequalities in the left-hand column of Table 1 are satisfied.

To tackle the right-hand inequalities, we use infinitessimal methods. Let B =
diag(b1, . . . , bd) where bk = epk for k = 1, . . . , d. Let P = diag(p1, . . . , pd) and A(t) =
exp(−P − tQ) where Q is a d× d matrix to be specified later. Then A(0) = B−1 and
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we have

A(t)α = B−α + t

[
e−αpj − e−αpk

pj − pk
qj,k

]
j,k

+ O(t2)

where the quotient
e−αpj − e−αpk

pj − pk
is interpreted as a divided difference (evaluating

to −αe−αpj ) in case pj = pk. Now let H be an arbitrary positive-definite d×d matrix
and define Q by

qj,k = − pj − pk

e−2pj − e−2pk
hj,k

then it follows that A(t)2 = B−2−tH+O(t2) ≤L B−2 for t ≥ 0 sufficiently small. Let
W (t) = A(t)α1Bβ1A(t)α2 · · ·A(t)αnBβn , then W (0) = I and so that by hypothesis
|||W (t)||| ≤ 1 for 0 ≤ t small and therefore

d

dt t=0
W (t)W (t)	 ≤L 0.

A calculation shows that

d

dt t=0
W (t)W (t)	 = −

[
hj,k

(
n∑

�=1

b−α�

j − b−α�

k

b−2
j − b−2

k

(
bγ�

j bα�−γ�

k + bγ�

k bα�−γ�

j

))]
j,k

where the γ� are linear combinations of α1, α2, . . . , αn, β1, β2, . . . , βn to be specified
later. It follows that the matrix M given by

mj,k =
n∑

�=1

b−α�
j − b−α�

k

b−2
j − b−2

k

(
bγ�

j bα�−γ�

k + bγ�

k bα�−γ�

j

)

is a Schur multiplier of positive-definite matrices to positive-semidefinite matrices
and therefore M is itself positive-semidefinite. However, the expression b−1

j b−1
k mj,k

which is also positive-semidefinite is a function of bj/bk for all choices of positive (bj)
and hence arises as a continuous positive-definite function on the group (0,∞) with
multiplication as the group operation. Written as a positive-definite function on the
line this is

ϕ(u) =
d∑

�=1

sinh(α�u
2 )

sinh(u)
cosh

(
α� − 2γ�

2
u

)
.

It is well-known [3] that such a function has to be bounded, in fact we must have
|ϕ(u)| ≤ ϕ(0). However, each of the terms in the sum is nonnegative and it follows
that ∣∣∣α�

2

∣∣∣+ ∣∣∣∣α� − 2γ�

2

∣∣∣∣ ≤ 1

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 13-20, January 2009



ELA

16 S.W. Drury

or equivalently

α� − γ� ≤ 1 and γ� ≤ 1

for all � = 1, 2, . . . , n. We have γ1 = 0 so that 0 ≤ 1 and α1 ≤ 1, γ2 = β1 −α1 so that
β1 − α1 ≤ 1 and α1 + α2 − β1 ≤ 1 etc. obtaining the 2n − 1 right-hand inequalities
from the left-hand column of Table 1 reading upwards.

Next we tackle the left-hand inequalities in the left-hand column of Table 1 and
these have been rewritten in an equivalent form in the right-hand column of the table.
The first and last inequalities are therefore evident. A continuity argument allows us
to assume that (1.1) is true for all pairs of positive-semidefinite matrices A and B.
Let us define

A =


 1 0 0

0 p p

0 p p


 and B =


 p p 0

p p 0
0 0 1


 ,

with p small and positive to be determined. Then we have

Ax =


 1 0 0

0 2x−1px 2x−1px

0 2x−1px 2x−1px


 and Bx =


 2x−1px 2x−1px 0

2x−1px 2x−1px 0
0 0 1


 ,

provided that x > 0, but not for x = 0. Then

(AB)(AB)	 =


 2p2 2p3 2p3

2p3 p2 + 2p4 p2 + 2p4

2p3 p2 + 2p4 p2 + 2p4


 .

It follows that

|||AB||| = p

√
2
(
1 + p2 +

√
p4 + 2 p2

)
= O(p).

Clearly W has rank two and it follows that

1
2
tr(W 	W ) ≤ |||W |||2 ≤ tr(W 	W )

leading to tr(W 	W ) = O(p2s). Also, with p chosen small and positive, all the terms
comprising tr(W 	W ) are nonnegative and hence each individual term in the expansion
of tr(W 	W ) is O(p2s). There are two types of inequalities remaining to be discussed.

Case 1. The inequality β1 + · · ·+ βk + αk+1 + · · ·+ αn ≥ s for k = 1, . . . , n− 1. We
consider the individual term zz where

z = Aα1
1,1B

β1
1,1 · · ·Aαk

1,1B
βk

1,2A
αk+1
2,3 B

βk+1
3,3 · · ·Bβn

3,3 = Cpβ1+···+βk+αk+1+···+αn .
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Since |z|2 = O(p2s) as p ↓ 0, we get the desired inequality.

Case 2. The inequality α1 + · · · + αk + βk + · · · + βn ≥ s for k = 2, . . . , n− 1. We
consider the individual term zz where

z = Aα1
3,3B

β1
3,3 · · ·Bβk−1

3,3 Aαk
3,2B

βk

2,1A
αk+1
1,1 B

βk+1
1,1 · · ·Bβn

1,1 = Cpα1+···+αk+βk+···+βn .

Since |z|2 = O(p2s) as p ↓ 0, we get the desired inequality.

3. Remarks and Comments. In light of the strict positivity assumption, it is
instructive to observe that there is a corresponding result for words of odd length.

0 ≤ αn ≤ 1 αn ≥ 0
0 ≤ βn−1 − αn ≤ 1 α1 + · · ·+ αn−1 + βn−1 ≥ s

0 ≤ αn−1 + αn − βn−1 ≤ 1 αn−1 + αn + β1 + · · ·+ βn−2 ≥ s
...

...
0 ≤ β2 + · · ·+ βn−1 − α3 − · · · − αn ≤ 1 α1 + α2 + β2 + · · ·+ βn−1 ≥ s

0 ≤ α2 + · · · + αn − β2 − · · · − βn−1 ≤ 1 β1 + α2 + · · ·+ αn ≥ s

0 ≤ β1 + · · ·+ βn−1 − α2 − · · · − αn ≤ 1 α1 ≥ 0

Table 2

Theorem 3.1. Let α1, α2, . . . , αn, β1, β2, . . . , βn−1 be strictly positive reals with
α1 + α2 + · · ·+ αn = β1 + β2 + · · · + βn−1 = s. Then

|||Aα1Bβ1Aα2 · · ·Bβn−1Aαn ||| ≤ |||AB|||s

is true for all pairs of positive-definite matrices A and B of the same shape if and
only if the inequalities in the left-hand column of Table 2 are satisfied.

We omit the proof since it is very similar to the proof of Theorem 2.1.

A case of some interest is Theorem 2.1 for n = 2, α1 = β2 = x, α2 = β1 = 2y, i.e.
when does |||AxB2yA2yBx||| ≤ |||AB|||x+2y hold for all A and B positive-definite? An
equivalent formulation is to ask when we have A−yBxA−y ≤L B−yAxB−y given that
A and B are positive-definite and that B ≤L A. Theorem 2.1 gives that this holds if
and only if either of the following conditions holds

• y = 0 and 0 ≤ x ≤ 1,
• 0 ≤ x ≤ 1 and 1

2x ≤ y ≤ 1
2 (1 + x).

Note that the region 0 < x ≤ 1, 0 < y < 1
2x is excluded. This brings into sharp

focus the necessity of insisting on strict positivity in Theorems 2.1 and 3.1.
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It is amusing that one can give a precise answer to the infinitessimal question in
this case. Precisely, this asks whether

d

dt t=0

(
B−yA(t)xB−y −A(t)−yBxA(t)−x

) ≥L 0(3.1)

given that A(0) = B and
d

dt t=0
A(t) ≥L 0.

Following the method of Theorem 2.1, we conclude that infinitessimal question is
satisfied if and only if the function ϕ given by

ϕ(u) =
2 sinh(xu) − sinh((x− 2y)u)

sinh(u)

is positive-definite on R. According to Bochner’s Theorem [3], the continuous function
ϕ is positive-definite if and only if it is the Fourier transform of a positive measure.

According to [2, page 1148] the inverse Fourier transform of u �→ sinh(xu)
sinh(u)

is ξ �→
π sin(πx)

cosh(πξ) + cos(πx)
in case |x| < 1 and is a point mass at 0 in case x = ±1.
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-0.2
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Fig. 3.1. Region for the infinitessimal question.

Theorem 3.2. Let x and y be real. Then the infinitessimal question (3.1) is
satisfied if and only if all of the following hold.

• x ≥ 2y − 1,
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• x ≤ 1,
• 2 sin(πx) ≥ sin(π(x − 2y)),

• y ≥ x

2
− 1

π
arctan

(
2 tan

(πx
2

))
.

The region of validity is depicted in Figure 3.1 and includes an area where x < 0
and an area where y < 0.

Proof. Case |x| < 1 and |x− 2y| < 1. It follows from Bochner’s Theorem that

we must have that for all ξ

2
π sin(πx)

cosh(πξ) + cos(πx)
≥ π sin(π(x − 2y))

cosh(πξ) + cos(π(x − 2y))
.

This holds for all ξ if and only if it holds for ξ = 0 and also in the limit as ξ → ∞.
The two conditions boil down to

2 tan
(πx

2

)
≥ tan

(
π(x− 2y)

2

)
and 2 sin(πx) ≥ sin(π(x − 2y)).

Case |x| = 1 and |x− 2y| = 1. We see that if |x| = 1, then necessarily x = 1 or else
ϕ cannot be nonnegative. The two points (x, y) = (1, 1) and (1, 0) corresponding to
|x− 2y| = 1 are both admissible.

Case |x| = 1 and |x− 2y| < 1. Then we must have x = 1 and

π sin(π(x− 2y))
cosh(πξ) + cos(π(x − 2y))

≤ 0

for all ξ which occurs for x = 1 and 1
2 ≤ y < 1.

Case |x| < 1 and |x− 2y| = 1. Then we must have x − 2y = −1 for else the point
mass will have a negative sign. We also require for all ξ that

2
π sin(πx)

cosh(πξ) + cos(πx)
≥ 0

which occurs for 0 ≤ x < 1.

Some additional work is required to show that these constraints reduce to the
ones given in the theorem.
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