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Abstract. The smallest number of steps needed to reach all nonnegative local states of a

positive two-dimensional (2-D) system is the local reachability index of the system. The study of

such a number is still an open problem which seems to be a hard task. In this paper, an expression

depending on the dimension n as well as an upper bound on the local reachability index of a special

class of systems are derived. Moreover, this reachability index is greater than any other bound

proposed in previous literature.
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1. Introduction. Positive two-dimensional systems have received considerable
attention in the last decade, as they naturally arise in different physical problems
such as the pollutant diffusion in a river (see [16]), gas absorption and water stream
heating (see [25]), among others. The structural properties of these 2-D state-space
models have been recently analyzed in [18], [21] and [22].

One of the most frequent representations of positive 2-D systems is the Fornasini-
Marchesini state-space model (see [17] and [18]) which is as follows:

xi+1,j+1 = A1xi+1,j +A2xi,j+1 +B1ui+1,j +B2ui,j+1(1.1)

with local states x·,· ∈ R
n
+, inputs u·,· ∈ R

m
+ , state matrices A1, A2 ∈ R

n×n
+ , input

matrices B1, B2 ∈ R
n×m
+ and initial global state χ0 := {xh,k : (h, k) ∈ C0} being

the separation set C0 := {(h, k) : h, k ∈ Z, h+ k = 0}. Let us denote this system by
(A1, A2, B1, B2).

If any nonnegative local state is achieved from the zero initial global state choosing
a nonnegative input sequence, then the system is said to be locally reachable. Local
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‡Institut de Matemàtica Multidisciplinar. Departament de Matemàtica Aplicada, Universitat
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reachability is equivalent to the possibility, in a finite number of steps, of attaining
each vector of the standard basis of R

n or alternatively a positive multiple of the
aforementioned vectors (see [18]).

The smallest number of steps needed to reach all local states of the system is the
local reachability index of that system. This index plays an important role because
it enables us to determine in a finite number of steps whether a system is locally
reachable or not. Moreover, once this index is obtained, several new open problems
could be addressed such as the study of reachability algorithms (see [4], [11] and [24]),
of a canonical form by means of an appropriated positive similarity ([5] and [7]), of
the definition of the pertaining complete sequence of invariants (see [5], [8] and [10])
as well as the analysis of this property under feedback ([6] and [20]) and so on.

The reachability index for positive 1-D systems has been studied in [5], [9], [14],
[15] and [26] among others, and it is always bounded by n (see [12] and [13]). However,
despite the numerous research efforts, an upper bound on such a number for a positive
2-D system is still an unanswered question.

With regard to this subject, different studies such as [18] and [23] have provided
the first results, which have been revised in [2] and [3]. Lately, in [1], the local
reachability index has been characterized for a particular class of positive 2-D systems,
which are a generalization of the systems presented in [2] and [3], and an upper bound
on this index has been derived which even turns to be (n+1)2

4 in suitable conditions.
However, it is worth mentioning that the obtained upper bound is valid for this class
of chosen systems but not in general.

This work has been organized as follows: Section II presents some notations and
basic definitions. Finally, in Section III, a special class of positive 2-D systems is
shown to be always (positively) locally reachable. Moreover, an expression depending
on the dimension n for the corresponding indices is deduced as well as its associated
tight upper bound.

2. Notations and Preliminary Definitions. We denote by �z� the lower
integer-part of z ∈ R and by colj(A) the jth column of the matrix A.

Definition 2.1. The Hurwitz products of the n × n matrices A1 and A2 are
defined as follows:

• A1
i��jA2 = 0, when either i or j is negative,

• A1
i��0A2 = Ai

1, if i ≥ 0, A1
0��jA2 = Aj

2, if j ≥ 0,
• A1

i��jA2 = A1(A1
i−1��jA2) +A2(A1

i��j−1A2), if i, j > 0.

Note that
∑

i+j=�

A1
i��jA2 = (A1 +A2)�.
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Definition 2.2. (see [18]) A 2-D state-space model (1.1) is (positively) locally
reachable if, upon assuming χ0 = 0, for every state x∗ ∈ R

n
+, there exists (h, k) ∈ Z×Z,

h+ k > 0, and a nonnegative input sequence u·,· such that xh,k = x∗. When so, the
state is said to be (positively) reachable in h+ k steps. The smallest number of steps
allowing to reach all nonnegative local states represents the local reachability index
ILR of such a system.

Characterizations of the local reachability of the positive 2-D systems (1.1) can
be established in terms of the reachability matrix of the quadruple (A1, A2, B1, B2).
The reachability matrix in k-steps is given by

Rk = [B1 B2 A1B1 A1B2 +A2B1 A2B2 A2
1B1 · · · Ak−1

2 B2 ]

= [ (A1
i−1��jA2)B1 + (A1

i��j−1A2)B2 ]i,j≥0, 0<i+j≤k

where k belongs to N. It is known (see [18]) that the local reachability property
holds if and only if there are n pairs (hi, ki) ∈ N × N, i = 1, . . . , n, and n indices
j = j(i) ∈ {1, 2, . . . ,m} such that (A1

hi−1��kiA2)colj(B1) + (A1
hi��ki−1A2)colj(B2)

is a positive ith monomial vector, that is, there exists k ∈ N such that Rk contains
an n× n monomial matrix. We recall that a positive ith monomial vector (or simply
i-monomial vector throughout this paper) is a positive multiple of the ith unit vector
of R

n. In the same way, a monomial matrix is a nonsingular matrix having a unique
positive entry in each row and column.

To study the properties of the local reachability index we use digraph theory.
Namely, we consider a family of coloured digraphs constructed from the matrices of
the system (A1, A2, B1, B2) as follows:

Definition 2.3. (see [18]) Associated with system (1.1), a directed digraph
called 2-D influence digraph is defined. It is denoted by D(2)(A1, A2, B1, B2) and it
is given by (S, V,A1,A2,B1,B2), where S = {s1, s2, . . . , sm} is the set of sources,
V = {v1, v2, . . . , vn} is the set of vertices, A1 and A2 are subsets of V × V whose
elements are named A1-arcs and A2-arcs (or simply 1-arcs and 2-arcs) respectively,
while B1 and B2 are subsets of S ×V whose elements are tagged B1-arcs and B2-arcs
(or simply 1-arcs and 2-arcs) respectively. There is an A1-arc (A2-arc) from vj to vi

if and only if the (i, j)th entry of A1 (A2) is nonzero. There is a B1-arc (B2-arc) from
s� to vi if and only if the (i, �)th entry of B1 (B2) is nonzero.

Definition 2.4. A path in D(2)(A1, A2, B1, B2) from vi1 to vip is an alternat-
ing sequence of vertices and arcs {vi1 , (vi1 , vi2 ), vi2 , . . . , (vip−1 , vip), vip} such that
(vik

, vik+1) ∈ A1 ∪ A2 ∪ B1 ∪ B2 for all k = 1, 2, . . . , p− 1. A path is termed closed
if the initial and final vertices coincide. In accordance with reference [18], an s�-path
is a path where vi1 = s�. The path length is defined to be equal to the number of
arcs it contains, that is, p+ q being p (q) the number of 1-arcs (2-arcs) occurring in
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the path P . Furthermore, the pair (p, q) is called the composition of P . Finally, for
abbreviation, a circuit is a closed path and if each vertex appears exactly once as the
first vertex of an arc, then the circuit is said to be a cycle.

Remark 2.5. Let P and Q be two paths {vi1 , (vi1 , vi2), vi2 , . . . , (vip−1 , vip), vip}
and {vj1 , (vj1 , vj2), vj2 , . . . , (vjq−1, vjq ), viq} such that vip = vj1 . To shorten, we
denote the path from vi1 to vjq consisting of the suitable adjacent joint of P and Q
briefly by P �Q. Besides that, if C is a cycle, from now on, ηC stands for the circuit
resulting of doing η laps around the cycle, η being a positive integer.

Remark 2.6. In the sequel, to avoid ambiguities, we will write an 1-arc (2-arc)
connecting two consecutive vertices vk and vk+1 simply as vk −→ vk+1 (vk ��� vk+1),
that is, using continuous arrows (dashed arrows).

Definition 2.7.(see [18] and [19]) If there exists an s�-path inD(2)(A1, A2, B1, B2)
from the source s� to the vertex vi, then vi is said to be reachable from s�. Besides
that, if for any � ∈ {1, . . . ,m}, all s�-paths of composition (p, q) end in the same
vertex v ∈ V , then v is said to be deterministically reachable from the source s� with
composition (p, q).

The shortest length of the s�-paths deterministically reaching v is called the �-
index of v, i.e. I�(v) =
min{p+ q | (p, q)� is the composition of an s� − path deterministically reaching v}.
The determination index of v is ID(v) = min

�=1,...,m
{I�(v)}.

We observe that ID(v) stands for the minimum number of steps where a positive
multiple of the vth vector of the standard basis of R

n is deterministically reachable.
Therefore, taking into account that the system is locally reachable when each one of
the vth vectors for any v ∈ V is deterministically reachable (see [18]), then, obviously,
the local reachability index ILR of a positive 2-D system is the maximum of the
determination indices v for all v ∈ V , that is, ILR = max

v∈V
{ID(v)}.

3. Local Reachability Index for a new family of systems. In [3], the
authors showed with the following example that the local reachability index can be
greater than (n+1)2

4 :

Example 3.1. Let (A1, A2, B1, B2) be a positive 2-D system given by

(A1, A2, B1, B2) =







0 0 0

1 1 0

0 1 0


 ,




0 1 0

0 0 0

0 0 1


 ,




1

0

0


 ,




0

0

0






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with a 2-D influence digraph corresponding to Fig. 3.1 where continuous arrows
(dashed arrows) represent 1-arcs (2-arcs). Thus, the system is locally reachable with
ILR = 6, while (n+1)2

4 = 4 for n = 3.

s
1
v

2
v

3
v

Fig. 3.1. Digraph for the system in example 3.1

On the basis of this example, we have obtained a new family of systems whose
local reachability index largely exceeds the prior upper bound.

Let us consider an nth order positive 2-D system (A1, A2, B1, B2) with n ≥ n1 ≥
3, B2 = O, where O is the zero matrix of an appropriate size, B1 = [αe1 ] with α > 0
(that is, a 1-monomial column vector) and 2-D influence digraph given in Fig. 3.2
where the vertices v1, v2, . . . , vn have been relabeled as the subindices 1, 2, . . . , n to
simplify. The preceding replacement is also carried out throughout this paper.

Therefore, the matrices of the system (A1, A2, B1, B2) are given as follows:

A1 =




Â′
11 Â′

12

O O


 , A2 =




Â′′
11 O

Â′′
21 Â′′

22


 , B1 = [αe1 ] andB2 = [O ](3.1)

where

Â′
11 =




0 0 · · · 0 0 0
+ 0 · · · 0 0 0

0 +
.. .

...
...

...
... 0

. . . 0 0 0
...

...
. . . + + 0

0 0 · · · 0 + 0



∈ R

n1×n1 , Â′
12 =




0 · · · 0 0
0 · · · 0 +
0 · · · 0 0
...

...
...

...
0 · · · 0 0



∈ R

n1×(n−n1),

Â′′
11 =




0 + 0 · · · 0 0
0 0 0 · · · 0 0

0 0
. . . . . .

...
...

... 0
. . . 0 0 0

...
...

. . . 0 0 0
0 0 · · · 0 0 +



∈ R

n1×n1 , Â′′
21 =




+ 0 · · · 0
0 0 · · · 0
...

... · · · ...
0 0 · · · 0


 ∈ R

(n−n1)×(n1),
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s 1 2 n
1
-2 n

1
-1 n

1

nn
1
+1 n

1
+2

3

Fig. 3.2. Digraph for the new family of systems.

and

Â′′
22 =




0 0 · · · 0 0
+ 0 · · · 0 0

0 +
. . .

...
...

...
. . . . . . 0

...
0 · · · 0 + 0



∈ R

(n−n1)×(n−n1),

+ denoting a strictly positive entry.

Notice that we may consider for the sake of simplicity all strictly positive entries
equal to one. Furthermore, it is worth pointing out that we may assume that the
digraph for this family of systems is reduced to be the digraph given in Fig. 3.3 in
the case n = n1. Then, we observe that the matrices of the system given in example
3.1 are structured as those seen above for n = 3 and n1 = 3. It is convenient to
establish now two preliminary technical lemmas in order to get an expression of the
local reachability index for this class of systems.

s 1 2 n-2 n-1 n3

Fig. 3.3. Digraph for the new family of systems in the case n = n1.

Preliminarily, to simplify notation, we define the paths (see Fig. 3.2) P0 ≡
{s −→ 1}, Pk

1 ≡ {1 −→ 2 −→ · · · −→ k} for 2 ≤ k ≤ n1 − 1, P1 = Pn1−1
1 ,

Pj
2 ≡ {1 ��� (n1+1) ��� · · · ��� j} for n1+1 ≤ j ≤ n, P2 = Pn

2 , P3 ≡ {n −→ 2 ��� 1}
and P4 ≡ {(n1 − 1) −→ n1} whose compositions are (1, 0), (k − 1, 0), (n1 − 2, 0),
(0, j − n1), (0, n− n1), (1, 1) and (1, 0) respectively. In the same way, we define the
cycles C1 ≡ {1 −→ 2 ��� 1}, C2 ≡ {(n1 − 1) −→ (n1 − 1)}, C3 ≡ {n1 ��� n1} and
C4 = P2 � P3 with respective compositions (1, 1), (1, 0), (0, 1) and (1, n− n1 + 1).

Lemma 3.2. If there exists an s-path of composition (p, q) ending in vertex 1,
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then there is at least an s-path of composition (p + λ, q + δ) terminating at a vertex
belonging to V \ {n1} for every λ and δ ∈ Z+ such that 0 ≤ δ ≤ n− n1 + λ.

Proof. Firstly, assuming that we have an s-path P of composition (p, q) ending
in vertex 1, then the cycle C1 allows us to affirm that for all η ∈ Z+ there is also an
s-path of composition (p+η, q+η) terminating at vertex 1 since this cycle adds (η, η)
to the composition of the initial path after doing η laps.

Combining these s-paths P � ηC1 with both the paths Pk
1 for 2 ≤ k ≤ n1 − 1

and the path P1 and the cycle C2, it is immediately seen that for all α ∈ Z+ we
can find s-paths of composition (p + η + α, q + η) ending in a vertex belonging to
V1 = {1, 2, 3, . . . , n1 − 1}. Thus, taking λ = η + α and δ = η, it is inferred that there
are s-paths of composition (p+ λ, q + δ) terminating at a vertex belonging to V1 for
every λ ∈ Z+ and 0 ≤ δ ≤ λ.

Consequently, if n1 = n ≥ 3, then the assertion of this theorem is established
because, in this case, the inequality 0 ≤ δ ≤ n− n1 + λ is reduced to 0 ≤ δ ≤ λ and
V \ {n1} = V1.

Secondly, if n > n1 ≥ 3, the paths Pj
2 , n1 + 1 ≤ j ≤ n, allow us to claim that for

all β ∈ Z+ satisfying 1 ≤ β ≤ n−n1 there is an s-path of composition (p+η, q+η+β)
terminating at a vertex belonging to V2 = {n1+1, n1+2, . . . , n}. Choosing λ = η and
δ = η+β, we have an s-path of composition (p+λ, q+δ) ending in a vertex belonging
to V2 for all λ, δ ∈ Z+ with λ+ 1 ≤ δ ≤ n− n1 + λ. Hence, since V \ {n1} = V1 ∪ V2

the statement of this lemma is easily derived from.

Remark 3.3. In the event that n > n1, we stress that for a fixed value p ∈ N

the s-paths consisting exactly of p 1-arcs which terminate at vertex 1 are only those
equal to P0 �αC1 � βC4 with α+ β +1 = p (except for some other rearrangements of
the same cycles, for instance, P0 � C4 � C1 � (β − 1)C4 � (α− 1)C1). With respect to
their lengths, the longest path is clearly P0 � (p− 1)C4. Then, P0 � (p− 1)C4 � P2 is
the greatest in length among those s-paths consisting precisely of p 1-arcs which end
in a vertex belonging to V \ {n1} and this vertex is n.

Analogously, P0 � (p − 1)C1 is the longest s-path among those of composition
consisting precisely of p 1-arcs which terminate at V \{n1}, namely at vertex 1, when
n = n1.

Lemma 3.4. Let p be any natural number, then there is an s-path of composition
(p, β), β ∈ Z+, ending in a vertex belonging to V \ {n1} if and only if 0 ≤ β <

(n−n1+1)p. Besides that, there is a unique s-path of composition (p, (n−n1+1)p−1)
terminating at a vertex belonging to V \ {n1}.

Proof. Case n > n1 ≥ 3: The proof is by induction on p. Initially, Lemma 3.2
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enables us to assert that we can find s-paths of composition (1, β) with 0 ≤ β <

n− n1 − 1 ending in a vertex of V \ {n1} because the path P0 terminates at vertex 1
and has composition (1, 0). Conversely, according to the 2-D influence digraph given
in Fig. 3.2, the s-paths of composition (1, β) are only P0 (with β = 0) and P0� Pn1+β

2

where 1 ≤ β ≤ n− n1. We observe that each of them ends in a vertex belonging to
V \ {n1} and in addition, for β = n−n1, the corresponding s-path is exactly P0 �P2

whose final vertex is n. Hence, the assertion of this lemma for p = 1 is proven.

Let us assume that the same statement holds for p = α, that is,

• There exist s-paths of composition (α, β) ending in a vertex of V \ {n1} if
and only if

0 ≤ β < (n− n1 + 1)α.(3.2)

• There is a unique s-path of composition (α, (n − n1 + 1)α − 1) ending in a
vertex belonging to V \{n1}. In fact, this s-path is precisely P0�(α−1)C4�P2

which terminates at vertex n.

Let us take now the case in which p = α+1. We know that for every t ∈ N there
exist s-paths P0�(t−1)C4 of composition (t, (t−1)(n−n1+1)) terminating at vertex
1. In particular for each t ∈ N satisfying 1 ≤ t ≤ α + 1, we can apply successively
Lemma 3.2 to each one of these paths, taking p = t, q = (t − 1)(n − n1 + 1) and
setting λ = α+1− t, that is, such that p+λ = α+1. Hence, we can find at least an
s-path of composition (α+ 1, β) ending in a vertex of V \ {n1} for each β ∈ Z+ such
that q ≤ β ≤ q + n− n1 + λ, so:

(t− 1)(n− n1 + 1) ≤ β ≤ t(n− n1 + 1) + α− t .(3.3)

Plugging the different values of t into equation (3.3), we can assure that there is
at least an s-path of composition (α + 1, β) for each 0 ≤ β < (n − n1 + 1)(α + 1)
terminating at a vertex belonging to V \ {n1}.

Let us suppose that there exists an s-path of composition (α + 1, β) ending in
a vertex of V \ {n1} with β ≥ (n − n1 + 1)(α + 1) and that such a vertex is v. If
v ∈ V1 then we could construct an s-path of composition (α, β) for this same β simply
removing the last 1-arc of the initial path. This contradicts our inductive assumption.
If v ∈ V2 then v = n1 + k where k ∈ {1, . . . , n− n1}. Hence, the path constructed by
eliminating the last k 2-arcs of the starting path terminates at vertex 1. Moreover, it
has composition (α+ 1, β − k) with β − k ≥ (n− n1 + 1)(α+ 1)− k > α(n− n1 + 1)
but this is impossible since P ′ := P0 � αC4 of composition (α + 1, α(n − n1 + 1)) is
the longest among those s-paths consisting of α+1 1-arcs and ending in vertex 1 (see
remark 3.3).
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We also conclude from remark 3.3 that P ′ � P2 = P0 � αC4 � P2 is the greatest
in length among those s-paths consisting exactly of α + 1 1-arcs which terminate at
vertex n. Thus, the proof is complete.

Case n = n1 ≥ 3: The same conclusion can be drawn for this situation, with
the s-paths P0 � (p − 1)C4 replaced by the s-paths P0 � (p − 1)C1. It deserves to be
mentioned that the unique s-path of composition (α, (n− n1 + 1)α− 1) = (α, α− 1)
ends in vertex 1 instead of vertex n.

The following theorem provides us an expression of the reachability index for the
specific class of systems we are considering in this paper.

Theorem 3.5. Let (A1, A2, B1, B2) be a positive 2-D system given as in (3.1).
Then, it is (positively) locally reachable and its local reachability index ILR is:

ILR = n1(n− n1 + 2).(3.4)

Proof. Case n > n1 ≥ 3: Let us examine the deterministically reachable vertices v
and their corresponding determination indices ID(v). In particular, let us check that
every vertex is deterministically reachable and that ID(n1) provides the maximum
determination index, that is, ID(n1) = ILR.

We start by noting that we can find a unique path of composition (�, 0) ending in
�, for all � ∈ V1 = {1, . . . , n1 − 1}. Then each �, � ∈ V1, is deterministically reachable
with composition (�, 0). In fact,

(A1
�−1��0A2)B1 = (A1

�−1��0A2)αe1 = βe�.

where β > 0.

Likewise, every vertex � with � ∈ V2 = {n1 + 1, . . . , n} is deterministically reach-
able with composition (1, �− n1) since

(A1
0���−n1A2)B1 = (A1

0���−n1A2)αe1 = γe�.

where γ > 0. That is, there exists a unique path of composition (1, �−n1) terminating
at �, for all � ∈ V2. Hence, obviously

ID(1) = 1 , ID(2) = 2 , . . . , ID(n1 − 1) = n1 − 1,
ID(n1 + 1) = 2 , ID(n1 + 2) = 3, . . . , ID(n) = n− n1 + 1.

(3.5)

Therefore, to complete the local reachability analysis of this system, it is necessary
to analyze whether the vertex n1 is deterministically reachable or not as well as
to evaluate its determination index ID(n1) if possible. For this immediate purpose
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we must calculate the shortest length among those s-paths of 2-D influence digraph
deterministically reaching n1.

In order to obtain an s-path ending in vertex n1, we emphasize that an s-path
may end in vertex n1 only if it contains at least n1 1-arcs. Notice that the s-path
P0�P1�P4 of composition (n1, 0) terminates at vertex n1. Furthermore, in accordance
with Lemma 3.4, there is an s-path of composition (n1 + λ, β) ending in V \ {n1}
if and only if 0 ≤ β < (n1 + λ)(n − n1 + 1). Hence, if there exists an s-path of
composition (n1 + λ, β) with β ≥ (n1 + λ)(n − n1 + 1), then this one can terminate
uniquely at vertex n1. Note that it is straightforward that if there is an s-path of
composition (n1, n1(n − n1 + 1)) then it is the shortest among those s-paths of the
2-D influence digraph deterministically reaching n1. Such an s-path of composition
(n1, n1(n−n1 +1)) deterministically reaching n1 is P0 �P1 �P4 � (n1(n−n1 +1))C3.
Thus, ID(n1) = n1 + (n− n1 + 1)n1 = n1(n− n1 + 2). Consequently, all vertices are
deterministically reachable and the system is locally reachable. It is obvious that the
determination index ID(n1) is greater than the determination indices found in (3.5).
Hence,

ILR = ID(n1) = n1 + n1(n− n1 + 1) = n1(n− n1 + 2),

which completes the proof.

Case n = n1 ≥ 3: The details are left to the reader since similar considerations
as formerly indicated show that

ID(1) = 1 , ID(2) = 2 , . . . , ID(n− 1) = n− 1, ID(n) = ID(n1) = 2n.

and hence the theorem follows.

From this result we conclude:

Corollary 3.6. The maximum local reachability index ILR for a positive 2-D
system given as in (3.1) for a natural number n1 is attained at




n1 =
n

2
+ 1 if n is an even natural number and

n1 =
n+ 1
2

or
n+ 3
2

if n is an odd natural number.
(3.6)

Hence, the maximum ILR is achieved for those systems satisfying n1 =
⌊

n
2

⌋
+ 1 and

can be written uniformly like:

ILR =
(⌊n

2

⌋
+ 1

)(
n+ 1−

⌊n

2

⌋)
.(3.7)

Moreover, ILR is upper bounded by (n+2)2

4 .
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Proof. For a fixed natural number n, we obtain that n1 = (n+2)
2 is the point of

maximum of the function ILR = ID(n1) = n1(n − n1 + 2), since its derivative with
respect to n1,

dID(n1)
dn1

, is positive for n1 < (n+2)/2 and negative for n1 > (n+2)/2.

Thus, if n is an even natural number then, n1 = (n+2)
2 = n

2 + 1 =
⌊

n
2

⌋
+ 1, but

if n is an odd natural number then n1 cannot take the value (n+2)
2 , since it is not

a natural number and in this case, we deduce that the vertex n1 has to be n+1
2 =⌊

n
2

⌋
+1 or n+3

2 =
⌊

n
2

⌋
+2, studying the closest natural values in this parabola to the

aforementioned one corresponding to n1 which is the desired initial assertion. In fact,

ID(
n + 1

2
) =

n + 1

2
(n− n + 1

2
+ 2) =

(n + 1)

2

(n + 3)

2
=

n + 3

2
(n− n + 3

2
+ 2) = ID(

n + 3

2
).

In addition, it is clear that if n is an even natural number, an upper bound on ILR

given in expression (3.7) is (n+2)2

4 . In the same way, if n is an odd natural number,

an upper bound on ILR given in expression (3.7) is (n+1)(n+3)
4 . Hence ILR ≤ (n+2)2

4

since (n+ 2)2 = (n+ 1)(n+ 3) + 1 which proves this corollary.

Dimension n 4 5 6 7 10 11 15 20
ILR

(⌊
n
2

⌋
+ 1

) (
n+ 1− ⌊

n
2

⌋)
9 12 16 20 36 42 72 121

Table 3.1

Minimum values corresponding to the upper bounds on ILR for any positive 2-D system.

Remark 3.7. As a consequence of the preceding corollary, we can state that an
upper bound on ILR for any (positively) locally reachable 2-D system must be greater
than or equal to (n+2)2

4 .

The study of an upper bound on the whole is still an open problem.
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