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CENTROSYMMETRIC UNIVERSAL REALIZABILITY∗
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Abstract. A list Λ = {λ1, . . . , λn} of complex numbers is said to be realizable, if it is the spectrum of an entrywise

nonnegative matrix A. In this case, A is said to be a realizing matrix. Λ is said to be universally realizable, if it is realizable

for each possible Jordan canonical form (JCF) allowed by Λ. The problem of the universal realizability of spectra is called the

universal realizability problem (URP). Here, we study the centrosymmetric URP, that is, the problem of finding a nonnegative

centrosymmetric matrix for each JCF allowed by a given list Λ. In particular, sufficient conditions for the centrosymmetric

URP to have a solution are generated.
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1. Introduction. A list Λ = {λ1, . . . , λn} of complex numbers is said to be realizable, if Λ is the

spectrum of an n × n entrywise nonnegative matrix A. In this case, A is said to be a realizing matrix for

Λ. The problem of the realizability of spectra has been solved for n = 3 by Loewy and London [12] and, for

n = 4, by Meehan [13] and independently by Torre-Mayo et al. [20]. For n ≥ 5, the problem remains open. Λ

is said to be universally realizable (UR), if there is a realizing matrix for each possible Jordan canonical form

(JCF) allowed by Λ. The problem of the universal realizability of spectra is called the universal realizability

problem (URP).

The first known results on the URP or the nonnegative inverse elementary divisors problem, as it was

named formerly, are due to Minc [14]. In terms of the URP, Minc proved that if a list Λ of complex numbers

is the spectrum of a diagonalizable positive matrix, then Λ is UR. The conditions that a realizing matrix

be diagonalizable and positive are necessary for Minc’s proof. Minc [14] says that “it is not known if the

theorem holds for a general nonnegative matrix.” Recently, two extensions of Minc’s result were obtained in

[3] and [7]. In particular, in [3] the authors proved that if a list Λ of complex numbers is the spectrum of

a diagonalizable nonnegative matrix A with constant row sums λ1 and a positive row or column, then Λ is

UR. In [7], the authors proved that if a list Λ of complex numbers is diagonalizably ODP realizable, that is,

Λ is the spectrum of a diagonalizable nonnegative matrix with only off-diagonal positive entries (zero entries

are allowed on the diagonal), then Λ is also UR.

Throughout the paper, if Λ = {λ1, . . . , λn} is realizable by A, then λ1 = ρ(A) = max{|λi| : λi ∈ Λ} is

the Perron eigenvalue of A. A
T

, ek, and J denote the transpose of A, the k-th canonical vector, and the

counteridentity matrix (that is, J = [en | en−1 | · · · | e1]), respectively. We define the matrix

(1) E =
∑
i∈K

Ei,i+1, K ⊂ {2, . . . , n− 1},
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where Ei,j denotes the matrix with one in position (i, j) and zeros elsewhere. The set of all n×n real matrices

with constant row sums equal to α is denoted by CSα. It is clear that for any matrix in CSα, e
T

= [1, . . . , 1] is

an eigenvector corresponding to the eigenvalue α. The importance of matrices with constant row sums is due

to the well-known fact that the problem of finding a nonnegative matrix A with spectrum Λ = {λ1, . . . , λn}
is equivalent to the problem of finding a nonnegative matrix A ∈ CSλ1 with spectrum Λ [6].

In [10], it was proved that lists of nonnegative real numbers are always realizable by centrosymmetric

matrices and, on the other hand, lists of complex numbers of Sulĕımanova type [19], that is, λ1 > 0,

Re(λi) ≤ 0, |Re(λi)| ≥ |Im(λi)|, i = 2, . . . , n, are centrosymmetrically realizable, except if they have only

one real number (the Perron eigenvalue) and m pairs of conjugated complex numbers, with m being odd.

For more general spectra, sufficient conditions were also obtained in [10].

In this paper, we study the centrosymmetric URP, that is, the problem of determining conditions for

the existence and construction of a centrosymmetric realizing matrix, for each possible JCF allowed by

a given list Λ of complex numbers. Centrosymmetric matrices have applications in many fields, such as

physics, communication theory, differential equations, numerical analysis, engineering, and statistics. In

particular, they are used in probability calculus and time series analysis, namely the transition matrices

for the classification of states of periodic Markov chains and the smoothing matrices for signal extraction

problems [4].

Outline of the paper: In Section 2, we introduce some background results. In Section 3, we start

by showing a necessary condition for the 4 × 4 centrosymmetric realizability problem to have a solution.

Based on it, we prove a necessary and sufficient condition for lists of four complex numbers of the form

{λ1, λ2, a + ib, a − ib} with λ1 > 0, λ2, a ≤ 0, and b > 0, to be centrosymmetrically realizable. In

particular, this result allows us to state that lists of complex numbers of Šmigoc type [16], that is, λ1 > 0,

Re(λi) ≤ 0,
√

3|Re(λi)| ≥ |Im(λi)|, i = 2, . . . , n, are not necessarily centrosymmetrically realizable. We also

prove a centrosymmetric version of a result by Rado, published by Perfect in [15]. Finally, we give sufficient

conditions for the centrosymmetric URP to have a solution.

2. Background results. We start this section by giving the definition and certain properties of real

centrosymmetric matrices.

Definition 1. An n × n real matrix C = [cij ] is said to be centrosymmetric, if its entries satisfy the

relation cij = cn−i+1,n−j+1, or equivalently if JCJ = C.

Definition 2. An n-dimensional vector x is said to be symmetric if Jx = x and it is said to be skew-

symmetric if Jx = −x. For any n-dimensional vector y, y+ = 1
2 (y+Jy) is symmetric and y− = 1

2 (y−Jy)

is skew-symmetric.

The following results, some of which constitute important spectral properties of centrosymmetric matri-

ces [2], will be applied to obtain our results.

Theorem 3 ([2]). Let C be an n× n centrosymmetric matrix.

(i) If n = 2m, then C can be written as C =

[
A JBJ

B JAJ

]
, where A,B and J are m×m matrices. More-

over, C is orthogonally similar to the matrix

[
A+ JB

A− JB

]
and the eigenvectors corresponding

to the eigenvalues of A + JB can be chosen to be symmetric, while the eigenvectors corresponding
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to the eigenvalues of A− JB can be chosen to be skew-symmetric. If C is nonnegative, with Perron

eigenvalue λ1, then λ1 is the Perron eigenvalue of A+ JB.

(ii) If n = 2m + 1, then C can be written as C =

 A x JBJ

y
T

c y
T
J

B Jx JAJ

, where A,B and J are m × m

matrices, x and y are m-dimensional vectors, and c is a real number. Moreover, C is orthogonally

similar to the matrix  c
√

2y
T

√
2x A+ JB

A− JB

 ,

and the eigenvectors corresponding to the eigenvalues of

[
c

√
2y

T

√
2x A+ JB

]
can be chosen to be sym-

metric, while the eigenvectors corresponding to the eigenvalues of A − JB can be chosen to be

skew-symmetric. If C is nonnegative with Perron eigenvalue λ1, then λ1 is the Perron eigenvalue

of

[
c

√
2y

T

√
2x A+ JB

]
.

Theorem 4 ([1]). Let A be an n × n matrix with eigenvalues λ1, . . . , λn. Let v
T

= [v1, . . . , vn] be an

eigenvector of A corresponding to the eigenvalue λk and let q be any n-dimensional vector. Then the matrix

A+ vq
T

has eigenvalues λ1, . . . , λk−1, λk + v
T
q, λk+1, . . . , λn.

Lemma 5 ([17]). Let q
T

= [q1, . . . , qn] be an arbitrary n-dimensional vector and let E11 be an n ×
n matrix with 1 in position (1, 1) and zeros elsewhere. Let A ∈ CSλ1

with JCF J(A) = S−1AS =

diag{J1(λ1), Jn2
(λ2), . . . , Jnk

(λk)}. If λ1 +
∑n
i=1 qi 6= λi, i = 2, . . . , n, then the matrix A + eq

T
has JCF

J(A) + (
∑n
i=1 qi)E11. In particular, if

∑n
i=1 qi = 0, then A and A+ eq

T
are similar.

3. Centrosymmetric universal realizability. We start this section with a necessary condition for a

list Λ = {λ1, λ2, a+ ib, a− ib} be centrosymmetrically realizable.

Lemma 6. Let Λ = {λ1, λ2, a+ ib, a− ib} be a list of complex numbers, such that λ1 > 0, b > 0. If Λ is

centrosymmetrically realizable, then
(
λ1+λ2

2

)2 − b2 − λ1λ2 ≥ 0 and λ1 + λ2 − 2a ≥ 0.

Proof. Let C =

[
A JBJ

B JAJ

]
be a nonnegative centrosymmetric matrix with spectrum Λ, such that

(2) A+ JB =

[
p q

r s

]
and A− JB =

[
p1 q1
r1 s1

]
.

From (2)

p+ s = λ1 + λ2(3)

ps− rq = λ1λ2(4)

p1 + s1 = 2a(5)

p1s1 − r1q1 = a2 + b2.(6)
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From (5) and (6), it is clear that q1 6= 0 and

r1 =
(p1 − a)

2
+ b2

−q1
.(7)

Since C is nonnegative,

p ≥ |p1|, q ≥ |q1|, r ≥ |r1| and s ≥ |s1|.

So, the first inequality it follows from (3), (4), r ≥ |r1|, q ≥ |q1|:(
λ1 + λ2

2

)2

− b2 − λ1λ2 =
(p+ s)2

4
− b2 − (ps− rq)

=
(p− s)2

4
− b2 + rq

≥ (p− s)2

4
− b2 + |r1||q1|,

and using (7) completes the proof.

For the second inequality, we have λ1 + λ2 + 2a ≥ 0, that is, the sum of the elements in Λ. If a ≤ 0,

then λ1 + λ2 − 2a ≥ λ1 + λ2 + 2a ≥ 0. If a ≥ 0, then (3), (5), p ≥ |p1|, s ≥ |s1| imply λ1 + λ2 = p + s ≥
|p1|+ |s1| ≥ |p1 + s1| = 2a.

For lists of four complex numbers with λ1 > 0 and Re(λi) ≤ 0, i = 2, 3, 4, we have the following necessary

and sufficient condition:

Proposition 7. Let Λ = {λ1, λ2, a + ib, a − ib} with λ1 > 0, λ2, a ≤ 0, b > 0 and λ1 + λ2 + 2a = 0.

Then Λ is centrosymmetrically realizable if and only if a2 − b2 − λ1λ2 ≥ 0.

Proof. From Lemma 6, the condition is necessary. Suppose that a2 − b2 − λ1λ2 ≥ 0, then the matrices

A+ JB =

[
−a 1

a2 − λ1λ2 −a

]
and A− JB =

[
a −1

b2 a

]
,

have eigenvalues λ1, λ2, and a± ib, respectively. Thus,

A =
1

2

[
0 0

a2 + b2 − λ1λ2 0

]
and B =

1

2
J

[
−2a 2

a2 − b2 − λ1λ2 −2a

]
,

are nonnegative matrices. Therefore, C =

[
A JBJ

B JAJ

]
is nonnegative centrosymmetric with spectrum Λ.

Proposition 7 allows us to show that there are lists which are realizable, but not centrosymmetrically

realizable.

Example 1. The list Λ = {7,−1,−3 + 5i,−3− 5i} is Šmigoc realizable [16] by
0 7 0 0

0 0 7 0

0 0 0 7
34
49

246
49

9
7 0

 .
However, Λ does not satisfy the condition of Proposition 7. Hence, Λ is not centrosymmetrically realizable.
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A perturbation result by Rado, published by Perfect in [15], shows how to change r eigenvalues of an n× n
matrix without changing any of the remaining eigenvalues. Different versions of Rado’s result have been

obtained (see [8, 11, 18]). Here we give a centrosymmetric version:

Theorem 8. Let A be an n× n centrosymmetric matrix with complex eigenvalues λ1, . . . , λn. Let X =

[x1 | · · · | xr] be such that rank(X) = r and Axi = λixi, where the eigenvectors xi are all symmetric or all

skew-symmetric, i = 1, . . . , r. Let J(A) = S−1AS be a JCF of A with

S = [X | Y ] , S−1 =

[
X̃

Ỹ

]
.

Let C be any r × r matrix and Ω = diag{λ1, . . . , λr}. Then, A+XCX̃ is centrosymmetric with eigenvalues

µ1, . . . , µr, λr+1, . . . , λn, where µ1, . . . , µr are eigenvalues of the matrix Ω + C.

Proof. Since S−1S = I, then

X̃X = Ir, X̃Y = 0, Ỹ X = 0, Ỹ Y = In−r.

Moreover, since AX = XΩ we have

S−1AS =

[
X̃

Ỹ

]
A [X | Y ] =

[
Ω X̃AY

0 Ỹ AY

]
,

S−1XCX̃S =

[
X̃

Ỹ

]
XCX̃ [X | Y ] =

[
C 0

0 0

]
,

and

S−1
(
A+XCX̃

)
S =

[
Ω + C X̃AY

0 Ỹ AY

]
.

Since xi are all symmetric (or all skew-symmetric) the rows of X̃ are also all symmetric (or all skew-

symmetric), that is ,JX = X (or JX = −X), X̃J = X̃
(

or X̃J = −X̃
)

. So JXCX̃J = XCX̃, that is, XCX̃

is centrosymmetric and therefore A+XCX̃ is also centrosymmetric with eigenvalues µ1, . . . , µr, λr+1, . . . , λn,

where µ1, . . . , µr are eigenvalues of Ω + C.

Example 2. The centrosymmetric matrix

C =
1

2

[
A JBJ

B JAJ

]
with A =

0 0 3

2 2 6

6 −3 1

 and B =

6 3 −1

2 0 0

6 0 3

 ,
has eigenvalues 6, 1, −3, −3, 1 + 3i, 1− 3i. Suppose we want to change the eigenvalues 6 and 1 by 10 and

−3, respectively.

Since x
T

1 =
[
−1 −1 −1 −1 −1 −1

]
, x

T

2 =
[
0 1 0 0 1 0

]
are eigenvectors associated with

6 and 1, respectively, then

X =
[
x1 | x2

]
, X̃ =

[
− 1

3 0 − 1
6 − 1

6 0 − 1
3

− 1
2

1
2 0 0 1

2 − 1
2

]
, C =

[
0 4

9 0

]
,
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and

C +XCX̃ =
1

2



4 −4 3 3 −4 10

0 −2 3 −3 −4 0

10 −7 1 −1 −1 10

10 −1 −1 1 −7 10

0 −4 −3 3 −2 0

10 −4 3 3 −4 4


,

is centrosymmetric with eigenvalues 10,−3,−3,−3, 1 + 3i, 1− 3i.

Next, we adapt a well-known lemma by Fiedler [5], to the centrosymmetric case to obtain the following

corollary, which gives a procedure to construct centrosymmetric realizations of complex numbers.

Corollary 9. Let Λ = {λ1, λ2, α2, α3 . . . , αn
2
, α2, α3 . . . , αn

2
} be a realizable list of complex numbers

with even n and λ1, λ2 being real numbers. If Λ1 = {µ, α2, α3, . . . , αn
2
} is realizable, where 2µ = λ1 + λ2,

then Λ is centrosymmetrically realizable.

Proof. Let A1 be a realizing matrix for Λ1. Without loss of generality, we assume that A1 ∈ CSµ, that

is, A1e =µe. Then, the matrix

A =

[
A1

2
nρee

T

2
nρee

T
JA1J

]
,

is nonnegative centrosymmetric with spectrum Λ, where ρ ≥ 0 and

[
µ ρ

ρ µ

]
has eigenvalues λ1, λ2.

Example 3. Consider the Šmigoc type list

Λ = {10,−2,−2 + 3i,−2− 3i,−2 + 3i,−2− 3i},

with Λ1 = {4,−2 + 3i,−2− 3i} being the spectrum of

A1 =

 0 4 0

0 0 4
13
4

3
4 0

 .
Then, ρ = 6 and

A =

[
A1 2ee

T

2ee
T

JA1J

]
=



0 4 0 2 2 2

0 0 4 2 2 2
13
4

3
4 0 2 2 2

2 2 2 0 3
4

13
4

2 2 2 4 0 0

2 2 2 0 4 0


,

is nonnegative centrosymmetric with spectrum Λ.

The odd case n = 2m+ 1 comes trivially from Corollary 9, by taking an appropriate direct sum with a

1× 1 matrix.

The following two results about centrosymmetric URP use ODP matrices, that is, nonnegative matrices

having all their off-diagonal entries being positive (see [7]). ODP matrices are important, not only because

they allow that spectra of nonnegative matrices become UR, but also because they allow proving that a
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certain list Λ = {λ1, . . . , λn} of complex numbers with
n∑
i=1

λi = 0 can be shown to be UR, which is not

possible using Minc’s result [14]. These conditions are constructive in the sense that if they are satisfied,

then a centrosymmetric realizing matrix with spectrum Λ can be constructed for each JCF associated

with Λ.

Theorem 10. Let Λ = {λ1, . . . , λn} be a realizable list of complex numbers with λ1 simple, n = 2m.

Suppose Λ = Λ1 ∪ Λ2 with Λ1 ∩ Λ2 = ∅, where Λ1 is diagonalizably realizable by an m ×m matrix W1 and

Λ2 is the spectrum of an m×m real diagonalizable matrix W2 (not necessarily nonnegative). If W1 +W2 is

ODP and W1 −W2 is positive, then Λ is centrosymmetrically UR.

Proof. Since the n× n centrosymmetric matrix

C =
1

2

[
W1 +W2 (W1 −W2)J

J(W1 −W2) J(W1 +W2)J

]
,

is orthogonally similar to [
W1 0

0 W2

]
,

C has spectrum Λ1∪Λ2 = Λ. Moreover, as W1 and W2 are diagonalizable with W1 +W2 ODP and W1−W2

positive, C is a centrosymmetric ODP matrix with diagonal JCF J(C) = S−1CS. As C is ODP, we may

assume without loss of generality that C ∈ CSλ1
and S can be chosen with its first column being the vector

e. Let J(C) +E = diag{λ1, Jn2(λ2), . . . , Jnk
(λk)} be any desired JCF allowed by Λ, where E is the matrix

in (1), that is, E =
∑
i∈K

Ei,i+1, K ⊂ {2, . . . , n − 1} with 1′s in certain desired positions (i, i + 1) and zeros

elsewhere. Then,

J(C) + E = S−1CS + E = S−1(C + SES−1)S.

Observe that S has complex entries. Then, for an adequate ordering of the columns of S (eigenvectors of C)

it is always possible to obtain SES−1 as a real matrix. This was proved by Minc [14].

It is clear that C+SES−1 has spectrum Λ and the desired JCF, although C+SES−1 is not necessarily

nonnegative, and tr(SES−1) = 0. Now we have two situations: if SES−1 has all its diagonal entries

equal to zero then, for ε > 0 small enough the matrix C + εSES−1 is nonnegative and has the same

eigenvalues as C, but the desired JCF. If SES−1 has negative entries on its main diagonal, we define

q
T

= [q1, . . . , qn] = −d, where d is the vector of diagonal entries of SES−1 and therefore e
T
q = 0. Since

Se1 = e, SES−1 ∈ CS0. Then, from Theorem 4, SES−1 +eq
T

has all its diagonal entries equal to zero and

therefore C + ε(SES−1 + eq
T

), for ε > 0 small enough, is nonnegative. Note that C + ε(SES−1) ∈ CSλ1

with JCF J(C) + E, then from Lemma 5 C + ε(SES−1) and C + ε(SES−1 + eq
T

) are similar, that is,

C + ε(SES−1 + eq
T

) has the desired JCF J(C) + E.

It remains showing that C+εSES−1 and C+ε(SES−1 +eq
T

) are both centrosymmetric. We only need

to prove that SES−1 and SES−1 + eq
T

are both centrosymmetric. From Theorem 3, S has m symmetric

columns and m skew-symmetric columns. It is clear that if S has its first m columns being symmetric,

then S−1 has its first m rows being also symmetric. Observe that if E = Ei,i+1 for some i ∈ K fixed,

K ⊂ {2, . . . , n − 1}, then SES−1 = uv
T

where u is the i-th column of S and v
T

is the (i + 1)-th row of
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S−1. Thus, since Λ1 ∩ Λ2 = ∅, u and v
T

are both symmetric or skew-symmetric. Therefore, J(SES−1)J =

J(uv
T

)J = (Ju)(v
T
J) = uv

T
= SES−1, that is, SES−1 is centrosymmetric and so C + εSES−1 is also

centrosymmetric. If E =
∑
i∈K

Ei,i+1,K ⊂ {2, . . . , n−1}, SES−1 will also be centrosymmetric because it is the

sum of centrosymmetric matrices. Finally, since SES−1 is centrosymmetric then d (the vector of diagonal

entries of SES−1) is a symmetric vector and eq
T

is a centrosymmetric matrix. Thus, C + ε(SES−1 + eq
T

)

is also centrosymmetric. Then Λ is centrosymmetrically UR.

Theorem 11. Let Λ = {λ1, . . . , λn} be a realizable list of complex numbers with λ1 simple, n = 2m+ 1.

Suppose Λ = Λ1 ∪Λ2 with Λ1 ∩Λ2 = ∅, where Λ1 is diagonalizably realizable by the (m+ 1)× (m+ 1) ODP

matrix [
W1 a

bT c

]
,

and Λ2 is the spectrum of an m ×m real diagonalizable matrix W2. If W1 + W2 is ODP and W1 −W2 is

positive, then Λ is centrosymmetrically UR.

Proof. Since the n× n centrosymmetric matrix

C =
1

2

 W1 +W2

√
2a (W1 −W2)J

√
2b

T
2c

√
2b

T
J

J(W1 −W2)
√

2Ja J(W1 +W2)J

 ,
is orthogonally similar to W1 a

b
T

c

W2

 .
C has the spectrum Λ1 ∪Λ2 = Λ. As a,b

T
> 0, W1 +W2 is ODP and W1 −W2 is positive with W1 and W2

diagonalizable matrices, then C is a centrosymmetric ODP matrix with diagonal JCF J(C) = S−1CS. To

obtain a nonnegative centrosymmetric matrix with spectrum Λ, for each one of the possible nondiagonal JCF

allowed by Λ, we proceed as in the proof of Theorem 10. Then for an appropriate matrix E =
∑
i∈K

Ei,i+1,K ⊂

{2, . . . , n− 1}, C + εSES−1 and C + ε(SES−1 + eq
T

) are both centrosymmetric with JCF J(C) + E and

therefore Λ is centrosymmetrically UR.

Example 4. Consider the list

Λ = {10,−2,−2,−2,−1 + 2i,−1− 2i,−1 + 2i,−1− 2i}.

We apply Theorem 10 to show that Λ is centrosymmetrically UR. We take

Λ1 = {10,−2,−2,−2}, Λ2 = {−1 + 2i,−1− 2i,−1 + 2i,−1− 2i},

which are the spectrum of

W1 =


1 3 3 3

3 1 3 3

3 3 1 3

3 3 3 1

 and W2 =


−1 −2 0 0

2 −1 0 0

0 0 −1 −2

0 0 2 −1

 ,
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respectively. Next we compute the centrosymmetric ODP matrix

C1 =
1

2

[
W1 +W2 (W1 −W2)J

J(W1 −W2) J(W1 +W2)J

]
=

1

2



0 1 3 3 3 3 5 2

5 0 3 3 3 3 2 1

3 3 0 1 5 2 3 3

3 3 5 0 2 1 3 3

3 3 1 2 0 5 3 3

3 3 2 5 1 0 3 3

1 2 3 3 3 3 0 5

2 5 3 3 3 3 1 0


,

with diagonal JCF. Now, we compute a centrosymmetric ODP matrix C2 with JCF

J(C2) = diag{J1(10), J2(−2), J1(−2), J2(−1 + 2i), J2(−1− 2i)}.

To do this, we first compute the matrix of eigenvectors of C1 :

S =



1 0 0 1 0 −1 0 −1

1 0 1 0 0 −i 0 i

1 1 0 0 −1 0 −1 0

1 −1 −1 −1 −i 0 i 0

1 −1 −1 −1 i 0 −i 0

1 1 0 0 1 0 1 0

1 0 1 0 0 i 0 −i
1 0 0 1 0 1 0 1


.

Then for E = E2,3 + E5,6 + E7,8, we have

SES−1 =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
3
8

3
8 − 1

8 − 1
8 − 1

8 − 1
8

3
8 − 5

8
1
8

1
8

1
8

1
8

1
8

1
8 − 7

8
1
8

1
8 − 7

8
1
8

1
8

1
8

1
8

1
8

1
8

− 5
8

3
8 − 1

8 − 1
8 − 1

8 − 1
8

3
8

3
8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


,

and taking q = −d, where d is the vector of the diagonal entries of SES−1 we obtain that SES−1 + eq
T

has all its diagonal entries being zero. Thus,

C2 = C1 + (SES−1 + eq
T

) =



0 1
2

13
8

11
8

11
8

13
8

5
2 1

5
2 0 13

8
11
8

11
8

13
8 1 1

2
15
8

15
8 0 1

4
9
4 1 15

8
7
8

13
8

13
8

11
4 0 1 3

4
5
8

13
8

13
8

5
8

3
4 1 0 11

4
13
8

13
8

7
8

15
8 1 9

4
1
4 0 15

8
15
8

1
2 1 13

8
11
8

11
8

13
8 0 5

2

1 5
2

13
8

11
8

11
8

13
8

1
2 0


,
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is nonnegative centrosymmetric with spectrum Λ and with the desired JCF J(C2). Applying the same

procedure, changing the matrix E, say by, E1 = E2,3, E2 = E2,3 + E3,4, E3 = E2,3 + E3,4 + E5,6 + E7,8,

E4 = E5,6 + E7,8, we may construct a nonnegative centrosymmetric matrix with spectrum Λ, for each one

of the other four JCF allowed by Λ.

Remark 1. In Example 1, we show that there are spectra that are realizable but not centrosymmetrically

realizable. Moreover, a centrosymmetrically realizable spectrum is not necessarily centrosymmetrically UR.

In fact, the spectrum Λ = {1, 1,−1,−1} is centrosymmetrically realizable by

A =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .
However, it has been shown in [9] that Λ is not UR.

Theorems 10 and 11 allow us to show that certain real spectra of nonnegative numbers and of the Sulĕımanova

type are centrosymmetrically UR (Corollaries 12 and 13 below).

In [15], Perfect introduces the n× n matrix

(8) P =


1 1 · · · 1 1

1 1 · · · 1 −1

1 1 · · · −1 0
...

... · · ·
...

...

1 −1 · · · 0 0

 ,

and she proves that if D = diag{λ1, λ2, . . . , λn} with λ1 > λ2 ≥ · · · ≥ λn ≥ 0, then PDP−1 is a positive

matrix in CSλ1 .

Corollary 12. Let Λ = {λ1, . . . , λn} be a list of nonnegative real numbers with λ1 > λ2 ≥ · · · ≥ λn ≥ 0.

If λm > λm+1 when n = 2m and λm+1 > λm+2 when n = 2m+ 1, then Λ is centrosymmetrically UR.

Proof. For n = 2m, we define the m×m diagonalizable positive matrix with spectrum Λ1 = {λ1, . . . , λm}
as W1 = PDP−1, where D = diag{λ1, . . . , λm} and P is the matrix in (8). Let W2 = diag{λm+1, . . . , λn}
with spectrum Λ2. Note that Λ = Λ1 ∪ Λ2 and since λm > λm+1, Λ1 ∩ Λ2 = ∅. Moreover, it is clear that

W1 +W2 is ODP. On the other hand, in [10, Theorem 3.2], it was proved that if djj , j = 1, 2, . . . ,m, are the

diagonal entries of PDP−1, then djj > λm+j , for all j = 1, 2, . . . ,m. Thus, W1−W2 is positive. Then, from

Theorem 10, Λ is centrosymmetrically UR.

For n = 2m + 1, we define the (m + 1) × (m + 1) diagonalizable positive matrix with spectrum Λ1 =

{λ1, . . . , λm+1} as PDP−1 =

[
W1 a

bT c

]
, where D = diag{λ1, . . . , λm+1} and P is the (m + 1) × (m + 1)

matrix in (8). Let W2 = diag{λm+2, . . . , λn} with spectrum Λ2. Again Λ = Λ1 ∪Λ2, Λ1 ∩Λ2 = ∅, W1 +W2

is ODP and W1 −W2 is positive. Then, from Theorem 11, Λ is centrosymmetrically UR.

Corollary 13. Let Λ = {λ1, . . . , λn} be a realizable list of real numbers with λ1 > 0 > λ2 ≥ · · · ≥ λn.

If λm > λm+1 when n = 2m and λm+1 > λm+2 when n = 2m+ 1, then Λ is centrosymmetrically UR.
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Proof. We assume without loss of generality that
n∑
i=1

λi = 0. For n = 2m, we define

W1 =


λ1

λ1 − λ2 λ2
...

...
. . .

λ1 − λm 0 · · · λm

+ eq
T

=


−λm+1 −λm+2 − λ2 · · · −λn − λm

−λm+1 − λ2 −λm+2 · · · −λn − λm
...

...
. . .

...

−λm+1 − λm −λm+2 − λ2 · · · −λn

 ,

where q
T

= [−λm+1 − λ1,−λm+2 − λ2, · · · ,−λn − λm]. Note that W1 is an m ×m diagonalizable positive

matrix with spectrum Λ1 = {λ1, . . . , λm}. Let W2 = diag{λm+1, . . . , λn} with spectrum Λ2. It is clear that

Λ = Λ1 ∪ Λ2 and since λm > λm+1, Λ1 ∩ Λ2 = ∅. Moreover,

W1 +W2 =


0 −λm+2 − λ2 · · · −λn − λm

−λm+1 − λ2 0 · · · −λn − λm
...

...
. . .

...

−λm+1 − λm −λm+2 − λ2 · · · 0

 ,
is ODP and

W1 −W2 =


−2λm+1 −λm+2 − λ2 · · · −λn − λm
−λm+1 − λ2 −2λm+2 · · · −λn − λm

...
...

. . .
...

−λm+1 − λm −λm+2 − λ2 · · · −2λn

 ,
is positive. Then, from Theorem 10, Λ is centrosymmetrically UR.

For n = 2m + 1, we define the (m + 1) × (m + 1) diagonalizable nonnegative matrix with spectrum

Λ1 = {λ1, . . . , λm+1} as

[
W1 a

b
T

c

]
=


λ1

λ1 − λ2 λ2
...

...
. . .

λ1 − λm 0 · · · λm
λ1 − λm+1 0 · · · 0 λm+1

+ eq
T

=


−λm+2 −λm+3 − λ2 · · · −λn − λm −λm+1

−λm+2 − λ2 −λm+3 · · · −λn − λm −λm+1

...
...

. . .
...

...

−λm+2 − λm −λm+3 − λ2 · · · −λn −λm+1

−λm+2 − λm+1 −λm+3 − λ2 · · · −λn − λm 0

 ,

where q
T

= [−λm+2 − λ1,−λm+3 − λ2, · · · ,−λn − λm,−λm+1].

Let W2 = diag{λm+2, . . . , λn} with spectrum Λ2. Then from Theorem 11, the result follows.
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