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REAL EQUIVALENCE OF COMPLEX MATRIX PENCILS AND
COMPLEX PROJECTIONS OF REAL SEGRE VARIETIES∗
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Abstract. Quadratically parametrized maps from a product of real projective spaces to a com-

plex projective space are constructed as the composition of the Segre embedding with a projection.

A classification theorem relates equivalence classes of projections to equivalence classes of complex

matrix pencils. One low-dimensional case is a family of maps whose images are ruled surfaces in the

complex projective plane, some of which exhibit hyperbolic CR singularities. Another case is a set

of maps whose images in complex projective 4-space are projections of the real Segre threefold.
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1. Introduction. We consider maps into a complex projective space, of the
form

([u0 : u1 : · · · : u�], [v0 : v1 : · · · : vm]) �→ [P0 : P1 : · · · : Pn],

where the uj and vj are real homogeneous coordinates, and each Pk is a bihomo-
geneous quadratic polynomial with complex coefficients, linear in uj and vj sepa-
rately. Outside the common zero locus of P0, . . . , Pn, such a parametrization defines
a smooth map RP � × RPm → CPn. A natural classification of such maps is to
say that two are equivalent if they are related by real linear coordinate changes in
the domain and a complex linear transformation of the target. After a brief review
of the necessary fundamentals in Section 2, the practical approach to the equiva-
lence of these quadratic parametrizations will be its relationship to the equivalence
of matrix pencils; see Proposition 2.11. Section 3 gives an overview of the geomet-
ric features of quadratically parametrized subsets of CPn, which can include sin-
gularities, self-intersections, complex tangents, and more subtle projective-geometric
properties. Some low-dimensional cases will be investigated in detail, namely, maps
RP 1 × RP 1 → CP 2 in Section 4, and RP 2 × RP 1 → CP 4 in Section 5.

The constructions of this article are related to those of [5, 6], where other kinds
of quadratically parametrized real subvarieties of complex projective space are classi-
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fied algebraically and analyzed geometrically. The geometric motivation for the pro-
gram of studying such real rational maps is to find interesting, naturally occurring,
concretely expressible examples of real subvarieties of high codimension in complex
manifolds, which are either totally real, or which have CR singularities.

2. The projective geometric construction.

2.1. General background. Most of the maps and objects to be used are stan-
dard in elementary projective geometry and have appeared in [5] or [6], and we briefly
recall them here to fix notation. To start, let K be a field, which later will be either R

or C, and let KPn be the set of one-dimensional subspaces of Kn+1, so that a non-zero
column vector z = (z0, . . . , zn)T ∈ Kn+1 spans a line z = [z0 : · · · : zn] ∈ KPn.

For whole numbers �, m, the following map is formed by all the (� + 1)(m + 1)
quadratic monomials ziwj in the components of two vectors z and w:

s�m
K : K

�+1 × K
m+1 → K

(�+1)(m+1) :

(z,w) �→ (z0w0, z0w1, . . . , z0wm, . . . , z�w0, . . . , z�wm)T .

Since it has the property that s�m
K

(λ z, µw) = λµ s�m
K

(z,w) �= 0 for all λ, µ ∈ K\ {0},
(z,w) ∈ (K�+1 \ {0})× (Km+1 \ {0}), it induces a map:

s�mK : KP � × KPm → KP �m+�+m :

(z, w) �→ [z0w0 : z0w1 : · · · : z0wm : · · · : z�w0 : · · · : z�wm],

called the Segre map. Define a vector space isomorphism from the space of c × d

matrices to the space of column (c d)-vectors by stacking the columns of the matrix

vec :M(c× d,K) → K
c d :

[
z1 · · · zd

]
c×d

�→




z1

...
zd




(c d)×1

.

This is the well-known vectorization map from matrix algebra [14]. Denote its inverse
by k : Kc d →M(c× d,K).

The composition of the map s�m
K

with the isomorphism k (in the case c = m+1,
d = �+ 1) has the following interpretation in terms of matrix multiplication:

(k ◦ s�m
K )(z,w) = wzT .(2.1)

The transpose zT is a row vector; the RHS is a (m+ 1)×(�+ 1) matrix of rank ≤ 1.
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2.2. Complex projective geometry. We continue here with some elementary
constructions, as in the previous subsection, but with K = C, so we are in the familiar
territory of complex projective geometry. We also will consider projective spaces
with their usual topological and analytic structure; for example, the Segre map s�m

C
:

CP � ×CPm → CP �m+�+m is a holomorphic embedding of complex manifolds [12]. It
will sometimes be convenient to abbreviate s�m

C
= s and s�m

C
= s.

The next ingredients in the construction are an integer n such that 0 ≤ n ≤
�m+ �+m, and a (n + 1) × (� + 1)(m + 1) matrix P with complex entries and full
rank n+ 1 ≤ (�+ 1)(m+ 1), called the coefficient matrix. The linear transformation
C(�+1)(m+1) → Cn+1 (also denoted by P) induces a projection map P : CP �m+�+m →
CPn, which is well-defined for all elements in the domain except those lines in the
kernel of P.

So, the composition P ◦ s is a well-defined map CP � ×CPm → CPn if the image
of s�m

C
contains no lines in the kernel of P. When the (n+1)(�+1)(m+1) entries of

the matrix P are used as complex coefficients pi,j
k of quadratic polynomials

Pk =
m∑

j=0

�∑
i=0

pi,j
k ziwj ,

the map P ◦ s is of the form

([z0 : · · · : z�], [w0 : · · · : wm]) �→ [P0 : · · · : Pn].

It will be convenient to follow some of the recent literature on implicitization
(e.g., [1, 3, 9]), and borrow some terminology from the classical (and not unrelated;
see [15, §III.1]) theory of linear systems of quadrics.

Definition 2.1. Given a coefficient matrix P, if z and w are non-zero vectors
such that (P ◦ s)((z,w)) = 0 ∈ Cn+1, then the point (z, w) ∈ CP � × CPm will be
called a base point of the composite map P ◦ s.

We will continue to call CP � ×CPm the domain of the parametric map P ◦s, but
with the understanding that if (z, w) is a base point, then (P ◦s)((z, w)) is undefined,
in the sense that (z, w) has no image in the target CPn. We will also continue to call
(P ◦ s)(CP � ×CPm) = {(P ◦ s)((z, w)) ∈ CPn : (z, w) is not a base point} the image
of P ◦ s, even though it may not be a closed subset of the target if there are base
points.

Example 2.2. The � = m = 1, n = 2 case is in the assumed dimension range. A
3×4 matrix P with rank 3 has a kernel equal to a line in C4, or a single point x ∈ CP 3.
P ◦ s : CP 1 ×CP 1 → CP 2 is well-defined at every point in the domain if the point x
is not an element of the image of s(([z0 : z1], [w0 : w1])) = [z0w0 : z0w1 : z1w0 : z1w1],
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a complex surface in CP 3. Otherwise, there is exactly one base point, and P ◦ s is
defined on the complement of that point in CP 1 × CP 1.

The following proposition for maps without base points is an analogue of Theorem
2.2 of [6], and the proof given there, which uses a little complex analysis, can be easily
adapted.

Proposition 2.3. Suppose P and Q are coefficient matrices so that the induced
maps P ◦ s and Q ◦ s are equal, and well-defined at every point of CP � ×CPm. Then,
there exists a non-zero constant ν ∈ C so that P = νQ.

Example 2.4. In general, to establish that P = νQ, it is not enough to check
that P ◦ s = Q ◦ s only on some open set. For example, with � = m = n = 1, the
coefficient matrix

P =
[
1 0 i 0
0 1 0 i

]
,

defines a composite map P ◦ s : ([z0 : z1], [w0 : w1]) �→ [(z0 + iz1)w0 : (z0 + iz1)w1],
which is not defined on the line {([1 : i], [w0 : w1])} (the base point locus). For

Q =
[
1 0 −i 0
0 1 0 −i

]
,

the composite map is Q ◦ s : ([z0 : z1], [w0 : w1]) �→ [(z0 − iz1)w0 : (z0 − iz1)w1]. Its
base point locus is the line {([1 : −i], [w0 : w1])}, but (Q ◦ v)((z, w)) = (P ◦ v)((z, w))
for every (z, w) ∈ CP 1 × CP 1 where both maps are defined.

Definition 2.5. For fixed whole numbers �, m, n, two coefficient matrices P and
Q are c-equivalent if there exist three invertible matrices, A1 ∈ GL(� + 1,C), A2 ∈
GL(m+1,C), B ∈ GL(n+1,C) such that for all (z,w) ∈ (C�+1 \{0})×(Cm+1\{0}),

Q (s((z,w))) = BP (s((A1 z,A2 w))) ∈ C
n+1.

The following proposition is an analogue of Corollary 2.7 of [6], and a similar
proof can be given, using Proposition 2.3 above.

Proposition 2.6. Given matrices P and Q, let P and Q be the induced projec-
tions. If P and Q are c-equivalent, then there exist automorphisms A1 ∈ PGL(� +
1,C), A2 ∈ PGL(m+ 1,C), B ∈ PGL(n+ 1,C) such that

(Q ◦ s)((z, w)) = B ((P ◦ s)((A1 z,A2w)))

for all (z, w) ∈ CP � × CPm where both sides are defined. Conversely, if there exist
A1, A2, and B such that Q and P satisfy the above equation at every point (z, w) ∈
CP � × CPm, then P and Q are c-equivalent.
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The geometric idea is that the compositions Q ◦ s and P ◦ s are related by a
re-parametrization (A1, A2) of the domain, CP � × CPm, and a coordinate change
B of the target, CPn. The converse part of the above proposition does not apply
when either P ◦ s or Q ◦ s has a base point. Whether or not there are base points,
the composite map P ◦ s may not be one-to-one, and may also have singular points,
where its (complex) Jacobian has rank less than �+m.

The next proposition, relating c-equivalence to equivalence of matrix pencils, was
stated and proved in [5] for the case � = m, and that proof can be easily adapted for
the more general case.

Proposition 2.7. P and Q are c-equivalent if and only if there exist A1 ∈
GL(�+1,C), A2 ∈ GL(m+1,C) such that the following (�m+�+m−n)-dimensional
subspaces of M((m+ 1)× (�+ 1),C) are equal:

k(ker(P)) = A2 (k(ker(Q)))AT
1 .

Recall that rectangular matrices R,S ∈ M(c × d,C) are said to be equivalent
[13] if there exist invertible complex matrices A1, A2 such that R = A2 SAT

1 . For
each D, there is an obviously analogous relation on the set of D-dimensional complex
linear subspaces of M(c × d,C): given subspaces U , V of M(c × d,C), if there exist
invertible complex matrices A1, A2 such that for any S ∈ U , A2 SAT

1 ∈ V , then U
and V will also be called equivalent.

In the case � = m = 1, n = 2, the c-equivalence classes of 3 × 4 coefficient
matrices can be found by noticing that there are only two equivalence classes of one-
dimensional subspaces ofM(2×2,C): the class of pencils spanned by a rank 1 matrix,
and the class of pencils spanned by a rank 2 matrix. This easy calculation appears in
[5].

In terms of the geometry of the map P ◦s, the two c-equivalence classes correspond
to the two well-known ways [12] to project the complex Segre surface in CP 3 to a
complex projective plane: the center of projection can be either on the surface or off
the surface, as mentioned in Example 2.2.

Example 2.8. In the rank 1 case, the map P ◦s : CP 1×CP 1 → CP 2 has exactly
one base point; since k(ker(P)) is in the image of s, it is equivalent to

{
λ

[
1 0
0 0

]
: λ ∈ C

}
.
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By Proposition 2.7, P is c-equivalent to

Q =


 0 1 0 0

0 0 1 0
0 0 0 1


 .

The composite map, Q ◦ s : ([z0 : z1], [w0 : w1]) �→ [z0w1 : z1w0 : z1w1], has its base
point at ([1 : 0], [1 : 0]). Its restriction to an affine neighborhood is one-to-one and
nonsingular: ([z : 1], [w : 1]) �→ [z : w : 1], but one of the two lines outside this
neighborhood is mapped to a point: ([1 : 0], [w : 1]) �→ [1 : 0 : 0]; similarly, the other
line is mapped to another point: ([z : 1], [1 : 0]) �→ [0 : 1 : 0]. The singular locus can
be described with a bihomogeneous expression:

Σ1 = {z1w1 = 0} \ {([1 : 0], [1 : 0])}.

The image of Q ◦ s in CP 2 is the set {[Z0 : Z1 : 1]} ∪ {[1 : 0 : 0], [0 : 1 : 0]}.

Example 2.9. In the rank 2 case, P ◦ s is a well-defined map from CP 1 × CP 1

onto CP 2, and k(ker(P)) is equivalent to{
λ

[
1 0
0 1

]
: λ ∈ C

}
.

By Proposition 2.7, P is c-equivalent to

Q =


 1 0 0 −1

0 1 0 0
0 0 1 0


 .

The singular locus of Q ◦ s is

Σ2 = {z0w0 + z1w1 = 0},

and outside Σ2, Q ◦ s is two-to-one:

(Q ◦ s)(([z0 : z1], [w0 : w1])) = [z0w0 − z1w1 : z0w1 : z1w0]

= (Q ◦ s)(([−w1 : w0], [−z1 : z0])).

Let σ : CP 1 × CP 1 → CP 1 × CP 1 : ([z0 : z1], [w0 : w1]) �→ ([−w1 : w0], [−z1 : z0]), so
σ is a holomorphic involution such that Q ◦ s = Q ◦ s ◦ σ, and its fixed point set is
exactly Σ2.

2.3. Real projective geometry. The maps to be introduced in this subsection
are the inclusion

δm : R
m+1 → C

m+1 : (u0, . . . , um)T �→ (u0 + 0i, . . . , um + 0i)T
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and the real linear involution of Cm+1 defined by entrywise complex conjugation:

Cm : C
m+1 → C

m+1 : (z0, . . . , zm)T �→ (z̄0, . . . , z̄m)T .

The image of δm is exactly the fixed point set of Cm. Both maps induce well-defined
maps of projective spaces:

δm : RPm → CPm, Cm : CPm → CPm.

As shown in [6, §2.3], the image δm(RPm) is a smoothly embedded submanifold of
CPm, and it is the fixed point set of the involution Cm.

Using the product map

δ� × δm : RP � × RPm → CP � × CPm,

the composition s�m
C

◦ (δ� × δm) : RP � ×RPm → CP �m+�+m is also a smooth embed-
ding. It has the following form, for u = [u0 : · · · : u�] ∈ RP � and v = [v0 : · · · : vm] ∈
RPm:

(u, v) �→ [u0v0 : u0v1 : · · · : u0vm : · · · : u�v0 : u�v1 : · · · : u�vm].

The image of s�m
C

◦ (δ� × δm) is the real Segre variety named in the title, and by
the obvious equality s�m

C
◦ (δ� × δm) = δ�m+�+m ◦ s�m

R
, the image is contained in

a real projective space δ�m+�+m(RP �m+�+m) ⊆ CP �m+�+m. It will be convenient to
abbreviate this map as s�m

C
◦(δ�×δm) = s◦(δ×δ) when the dimensions are clear from

context. Given a coefficient matrix P, the composition P ◦ s◦ (δ× δ) : RP � ×RPm →
CPn is smooth at points where it is well-defined, but it is not necessarily one-to-one
or nonsingular. It is possible that P ◦ s ◦ (δ × δ) is well-defined, or an embedding,
even if P ◦ s is neither. We will also use the conventions mentioned after Definition
2.1 about the domain and image of maps P ◦ s ◦ (δ × δ) when there are base points.

As mentioned in the introduction, the composition P ◦ s ◦ (δ × δ) is of the form

(u, v) �→ [P0 : P1 : · · · : Pn],

with complex coefficients pi,j
k on quadratic terms in real variables:

Pk =
m∑

j=0

�∑
i=0

pi,j
k uivj .

Maps of the form P ◦ s ◦ (δ × δ) will be the main objects of interest in subsequent
sections. These real analytic parametrizations do not behave exactly like the complex
analytic maps P ◦s. For instance, in contrast with Proposition 2.3, the matrices from
Example 2.4 show that two maps P ◦ s ◦ (δ × δ), Q ◦ s ◦ (δ × δ) : RP 1 × RP 1 → CP 1

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 651-698, December 2008



ELA

658 Adam Coffman

can be equal at every point in the domain, but P and Q are not related by scalar
multiplication.

In the rest of this section, we will develop a notion of equivalence for coefficient
matrices P which will be useful in studying the geometry of maps P ◦ s ◦ (δ× δ). The
geometric idea is to consider real linear automorphisms of the domain RP � × RPm,
or equivalently, complex automorphisms of CP � × CPm that fix (as a set) the image
of δ� × δm.

Definition 2.10. For fixed whole numbers �, m, n, two (complex) coefficient
matrices P and Q are r-equivalent if there exist matrices A1 ∈ GL(� + 1,C), A2 ∈
GL(m+ 1,C), B ∈ GL(n+ 1,C) such that A1 = C� ◦A1 ◦C�, A2 = Cm ◦A2 ◦Cm,
and for all (z,w) ∈ (C�+1 \ {0})× (Cm+1 \ {0}),

Q (s((z,w))) = BP (s((A1 z,A2 w))).

The following propositions are analogues of Theorem 2.15 and Corollary 2.16 in
[6], and they have analogous proofs.

Proposition 2.11. Given coefficient matrices P and Q, the following are equiv-
alent:

1. P and Q are r-equivalent.
2. There exist A1 ∈ GL(� + 1,C), A2 ∈ GL(m + 1,C), B ∈ GL(n + 1,C)
such that A1 = C� ◦ A1 ◦ C�, A2 = Cm ◦ A2 ◦ Cm, and for all (u,v) ∈
(R�+1 \ {0})× (Rm+1 \ {0}),

Q ((s ◦ (δ × δ))((u,v))) = BP (s((A1 δ(u),A2 δ(v)))).

3. There exist A1 ∈ GL(�+ 1,R), A2 ∈ GL(m+ 1,R), B ∈ GL(n+ 1,C) such
that for all (u,v) ∈ (R�+1 \ {0})× (Rm+1 \ {0}),

Q ((s ◦ (δ × δ))((u,v))) = BP ((s ◦ (δ × δ))((A1 u,A2 v))).

4. There exist A1 ∈ GL(� + 1,C) and A2 ∈ GL(m + 1,C) such that A1 =
C� ◦ A1 ◦ C�, A2 = Cm ◦ A2 ◦ Cm and

k(ker(P)) = A2 (k(ker(Q)))AT
1 .

Proposition 2.12. Given coefficient matrices P and Q, let P and Q be the
induced projections. If P and Q are r-equivalent, then there exist automorphisms
A1 ∈ PGL(� + 1,C), A2 ∈ PGL(m + 1,C), B ∈ PGL(n + 1,C) such that A1 =
C� ◦A1 ◦ C�, A2 = Cm ◦A2 ◦ Cm, and

(Q ◦ s)((z, w)) = B ((P ◦ s)((A1 z,A2w)))
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for all (z, w) ∈ CP �×CPm where both sides are defined. Conversely, if there exist A1,
A2, and B such that A1 = C� ◦A1 ◦C�, A2 = Cm ◦A2 ◦Cm, and Q and P satisfy the
above equation at every point (z, w) ∈ CP � × CPm, then P and Q are r-equivalent.

The relation (1) ⇐⇒ (4) of Proposition 2.11 reduces the r-equivalence classifica-
tion of coefficient matrices to the problem of finding the classes of complex subspaces
of M((m+ 1)× (�+ 1),C), under left and right multiplication by invertible real ma-
trices. This is the real equivalence of complex matrix pencils named in the title, and
it will be the main tool for the classifications in Sections 4 and 5.

In contrast with Proposition 2.6, the existence of A1 : RP � → RP �, A2 : RPm →
RPm and B : CPn → CPn such that

Q ◦ s ◦ (δ × δ) = B ◦ P ◦ s ◦ ((δ ◦A1)× (δ ◦A2)) : RP � × RPm → CPn

at every point of RP � ×RPm is, in general, not enough to establish the r-equivalence
of P and Q. The following example shows that such an equality of maps does not
even imply c-equivalence of coefficient matrices.

Example 2.13. Consider the case � = m = 1, n = 0, so a coefficient matrix
P1×4 = [1, i, i,−2] defines a parametric map

P ◦ s : CP 1 × CP 1 → CP 0 : ([z0 : z1], [w0 : w1]) �→ [z0w0 − 2z1w1 + i(z0w1 + z1w0)].

Since the target space is just a point, the image of the map is not very interesting.
However, the base point locus of P ◦ s is an interesting complex subvariety, corre-
sponding to the intersection of the three-dimensional kernel of P and the image of
the Segre map.

k(ker(P)) =
{
λ

[
1 0
i 0

]
+ µ

[
1 i

0 0

]
+ ν

[
2 0
0 1

]
: λ, µ, ν ∈ C

}
,

and an element of this subspace of M(2× 2,C) has rank ≤ 1 if and only if λµ+ λν +
µν + 2ν2 = 0. The set of singular matrices is irreducible as an affine subvariety of
k(ker(P)). Another coefficient matrix of the same size is Q1×4 = [1, i, i,−1], which
defines a parametric map

Q ◦ s : ([z0 : z1], [w0 : w1]) �→ [z0w0 − z1w1 + i(z0w1 + z1w0)] = [(z0 + iz1)(w0 + iw1)].

k(ker(Q)) =
{
λ

[
1 0
i 0

]
+ µ

[
1 i

0 0

]
+ ν

[
1 0
0 1

]
: λ, µ, ν ∈ C

}
,

and an element of this subspace of M(2× 2,C) has rank ≤ 1 if and only if λµ+ λν +
µν + ν2 = (λ + ν)(µ + ν) = 0. This set of singular matrices is not irreducible. The
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equivalence automorphism of the space M(2× 2,C), S �→ A2 SAT
1 as in Proposition

2.7, is linear and rank-preserving. So, there can be no equivalence transformation
taking the subspace k(ker(Q)), which contains a pair of planes of singular matrices,
to k(ker(P)), which does not. By Proposition 2.7, P and Q are not c-equivalent
matrices.

However, it is straightforward to see that both P ◦s◦ (δ×δ) and Q◦s◦ (δ×δ) are
well-defined at every point of RP 1 ×RP 1, so they define the same (constant) map.

3. Equivalence of parametrizations. In the next two sections, we will con-
sider maps of the form P ◦ s ◦ (δ × δ) : RP � × RPm → CPn, for specific choices
of �, m, n. Recall that coefficient matrices have size (n + 1) × (� + 1)(m + 1), and
are full rank, with complex scalar multiples of a matrix P defining exactly the same
projection P . So, the parameter space of projection matrices is a dense open sub-
set of CP (�+1)(m+1)(n+1)−1, which has real dimension 2(� + 1)(m + 1)(n + 1) − 2.
The group acting on the matrix space, whose orbits are the r-equivalence classes,
is PGL(� + 1,R) × PGL(m + 1,R) × PGL(n + 1,C), which has real dimension(
(�+ 1)2 − 1

)
+

(
(m+ 1)2 − 1

)
+ 2

(
(n+ 1)2 − 1

)
. The difference between these two

dimensions is the expected number of real moduli:

M(�,m, n) = 2(�+ 1)(m+ 1)(n+ 1)− 2− (�2 + 2�+m2 + 2m+ 2n2 + 4n)

= 2�mn+ 2�m+ 2�n+ 2mn− �2 −m2 − 2n2 − 2n.

However, the calculations of the next section will show that this dimension count is too
näıve. For example, when � = m = 1 and n = 2, PGL(2,R)×PGL(2,R)×PGL(3,C),
a 22-dimensional group, acts on the 22-dimensional space of coefficient matrices, so
M(1, 1, 2) = 0, but there will still be a one-parameter family of inequivalent matrices.
Instead of trying to solve the r-equivalence classification problem for all (�,m, n), the
next two sections will cover only the simplest interesting cases: (�,m, n) = (1, 1, 2),
and (2, 1, 4). We will find the real equivalence classes of complex matrix pencils, to
get a representative of each of the r-equivalence classes of coefficient matrices, and to
see how the algebraic invariants of P correspond to geometric properties of the maps
P ◦ s ◦ (δ × δ) and P ◦ s.

It can happen, in some examples, that the image of δ× δ may contain base points
of P ◦ s, in which case P ◦ s ◦ (δ × δ) is not defined on all of RP � × RPm. Other
examples will show some of the distinguishing geometric features that the image
(P ◦ s ◦ (δ × δ))(RP � × RPm) may have: differential-topological singularities, or a
locus of self-intersection. As remarked earlier, such points do not occur in the image
of s ◦ (δ × δ), but they could occur after the projection by P .

In addition to the differential topology of maps P ◦s◦ (δ×δ), it will be important
to consider their interaction with the complex structure on the target space CPn.
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A real submanifold M (dimR = m) of a complex manifold (dimC = n with complex
structure operator J on the tangent bundle) satisfies the following property at all
points x: dimC(TxM ∩ JTxM) ≥ max{0,m − n}. If M is in general position, then
that dimension achieves its minimum (0 or m−n) at most points x (forming a dense
open subset of M). The exceptional points x ∈M , where the tangent space contains
a complex (J-invariant) subspace of greater dimension than this minimum are called
CR singular points.

The image of s ◦ (δ × δ) : RP � × RPm → CP �m+�+m is a real submanifold, and
at each point, the tangent space contains no complex lines, so it is called totally real.
There could be CR singular points after the projection by P , and the locus of such
points will be another interesting feature to see when classifying maps P ◦ s ◦ (δ× δ).
If (u, v) is an element of RP � × RPm, and P ◦ s is nonsingular at (δ × δ)((u, v)) ∈
CP � ×CPm, then P ◦ s will be a complex analytic diffeomorphism of a neighborhood
of (δ×δ)((u, v)) onto a neighborhood in (P ◦s)(CP �×CPm), and since (δ×δ)(RP �×
RPm) is totally real near (δ × δ)((u, v)), the image (P ◦ s ◦ (δ × δ))(RP � × RPm)
will also be totally real near (P ◦ s ◦ (δ × δ))((u, v)). So, the only candidates for CR
singularities in the image of P ◦ s ◦ (δ × δ) will be images of singular points of P ◦ s,
and this phenomenon will be observed in the next sections.

We will, further, be considering the projective-geometric properties of the map
P ◦s◦(δ×δ), in particular, how the image of the map intersects complex lines in CPn.
The CR singular points, where the complex lines are tangent to the image, are an
example of this, but the geometric invariants of these intersections under the action
of PGL(n+ 1,C) will also be useful in distinguishing different equivalence classes of
totally real embeddings.

4. Ruled surfaces in the complex projective plane. In the case � = m = 1,
n = 2, a 3×4 matrix P with rank 3 determines a map P ◦s◦(δ×δ) : RP 1×RP 1 → CP 2,
of the form

([u0 : u1], [v0 : v1]) �→ [P0 : P1 : P2],

where each Pk has complex coefficients:

Pk = p0,0
k u0v0 + p

0,1
k u0v1 + p

1,0
k u1v0 + p

1,1
k u1v1.

The images of such bihomogeneous quadratic parametrizations will generally be sur-
faces doubly ruled by real lines, although this must be taken in the sense of circles
or lines as in the inversive geometry of a complex projective line. It will turn out
(Corollary 4.10) that there is always some affine neighborhood in which the double
ruling is actually by straight lines.

The solution of the c-equivalence problem for 3×4 coefficient matrices was recalled
in Section 2.2. Under the smaller group, where only real changes of variables in the
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domain are allowed, there will be more equivalence classes. The rank 1 case, where
P ◦ s is undefined at one point, will split into four cases, depending on whether this
point is in the image of δ × δ (Example 4.2), IdCP 1 × δ (Example 4.3), δ × IdCP 1

(Example 4.4), or none of these (Example 4.8). The rank 2 case will split into some
one-parameter families.

The following theorem gives the real equivalence classes of one-dimensional matrix
pencils. Its list of normal forms resembles, but is not exactly the same as the results
from [16], which considered the real congruence classes of complex symmetric matrix
subspaces, and [5], which considered the Hermitian congruence classes of subspaces of

M(2× 2,C). For example, the complex pencils spanned by
[
1 0
0 1

]
and

[
1 0
0 −1

]
are in the same real equivalence class, but not the same real congruence class. One
step of the proof will use the classification of [16].

Theorem 4.1. If K is a non-zero matrix in M(2 × 2,C), then there is exactly
one matrix in the list below equal to λA2 KAT

1 for some nonsingular real matrices
A1, A2, and non-zero complex scalar λ.

1.
[
1 0
0 0

]
;

2.
[
1 i

0 0

]
;

3.
[
1 0
i 0

]
;

4.
[

0 1/2
1/2 i

]
;

5.
[
1 0
0 α

]
, α = cos(θ) + i sin(θ), 0 ≤ θ ≤ π

2 ;

6.
[

−it2 1
1 i

]
, 0 < t ≤ 1.

Proof. Let K ∈M(2× 2,C), with real and imaginary parts:

K =
[
a+ ib c+ id
e+ if g + ih

]
= Re(K) + iIm(K).

For the first of two main cases, suppose det(Re(λK)) = 0 for all λ = x+ iy ∈ C. This
implies that the equation

det(Re(K))x2 + det(Im(K))y2 + (−ah− bg + fc+ ed)xy = 0(4.1)

holds for all x, y, so its coefficients, det(Re(K)), det(Im(K)), −ah− bg+ fc+ ed, are
all zero. If Re(K) is the zero matrix, then K is a complex scalar multiple of a real
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rank 1 matrix, which is in the same real equivalence class as case (1) of the theorem.
If Re(K) �= 0, then K is in the same real equivalence class as

[
1 + ib id

if ih

]
,

where the entries b, d, f , h may have changed, but we follow a convention of using the
same letters as place-holders. Equation (4.1) implies h = 0 and df = 0. If d = f = 0,
K is in case (1) again. When f = 0 and d �= 0,

[
1 + ib id

0 0

] [
1 0
− b

d
1
d

]
=

[
1 i

0 0

]
,

and when d = 0 and f �= 0,[
1 − b

f

0 1
f

] [
1 + ib 0
if 0

]
=

[
1 0
i 0

]
,

yielding cases (2) and (3) of the theorem. It is a straightforward calculation to check
that cases (1), (2), (3) are in three different real equivalence classes.

The second main case is when some complex scalar multiple of K has real part
with rank 2. By multiplication on one side by the inverse of that real part, the
complex line spanned by K is in the same real equivalence class as the span of[

1 0
0 1

]
+ i

[
b d

f h

]
,

and a real similarity transformation fixes the real part and puts the imaginary part
into its real Jordan canonical form [13], exactly one of the following cases:

[
1 0
0 1

]
+ i

[
b 0
0 h

]
, b ≥ h

[
1 0
0 1

]
+ i

[
b 1
0 b

]
,

[
1 0
0 1

]
+ i

[
b d

−d b

]
, d > 0.

In the case of the diagonal canonical form, a complex re-scaling by (1+ ib)−1 puts K

in the form
[
1 0
0 α

]
, where α can be equal to 1 or any complex number with a non-

zero imaginary part. Left multiplication by
[
1 0
0 |α|−1

]
puts entry α on the unit
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circle. Left and right multiplication by
[
0 1
1 0

]
, and another complex re-scaling,

switches α to 1
α , and a left multiplication can also switch α to −α; using these as

necessary gives case (5) of the theorem. It is easy to check that for each α, this rank
2 pencil is not in the same real equivalence class as any of the other representatives
in case (5), nor in any of the rank 1 classes.

In the repeated eigenvalue case, the calculation[
0 1

2
√

1+b2√
1 + b2 −b√

1+b2

] [
1 i

1+ib

0 1

] [
1

2
√

1+b2
0

0
√
1 + b2

]
=

[
0 1

2
1
2 i

]

shows that any such pencil is in the same real equivalence class as case (4) of the
theorem. It is easy to check that the matrix from case (4) is not in the same real
equivalence class as any diagonal matrix, so the representatives in cases (4) and (5)
are in distinct equivalence classes.

In the last case, where the imaginary part has non-real eigenvalues, consider the
following calculation:

A2 KAT
1 =

[
p q

r s

] [
1 + ib id

−id 1 + ib

] [
w x

y z

]

=
[
wp+ yq + i(wpb− wqd + ypd+ yqb) xp+ zq + i(xpb− xqd+ zpd+ zqb)
wr + ys+ i(wrb − wsd+ yrd+ ysb) xr + za+ i(xrb− xsd+ zrd+ zsb)

]
.

If the upper left entry of the product were zero, then wp+yq = 0, and also −wq+yp =
0, since d > 0. This is impossible, since the only real solutions of this system of
equations are {w = 0, y = 0} or {p = 0, q = 0}, both of which contradict the
requirement that A2 and A1 are invertible. Analogous calculations show that the
matrix K is not in the same real equivalence class as any matrix with any zero
entries, and so K is not in cases (1) through (5) of the theorem.

However, K is in the same real equivalence class as a symmetric matrix, K′; for
example,

K′ =
[
d− b d+ b
1 −1

] [
1 + ib id

−id 1 + ib

] [
d− b 1
−b− d 1

]

=
[

−4bd− 2idb2 − 2id3 2d
2d 2id

]
.

According to the classification result of [16], there exist a real matrixA, a complex
number λ and a real number t ∈ (0, 1], such that

λAK′ AT =
[

−it2 1
1 i

]
,
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a matrix we will denote by K(t). The only such matrix with rank 1 is K(1). To prove
the theorem, it remains only to show that for s, t ∈ (0, 1), if the pencils spanned by
K(s) and K(t) are in the same real equivalence class, then s = t.

So, suppose there exist L,R ∈ GL(2,R) and a non-zero complex number x + iy
so that LK(t)R = (x+ iy)K(s). Taking the real and imaginary parts of both sides
implies

LRe(K(t))R = Re((x + iy)K(s)),

or

L
[
0 1
1 0

]
R = Re((x+ iy)K(s)),

or

L = Re((x + iy)K(s))R−1

[
0 1
1 0

]
,

and

L Im(K(t))R = Im((x + iy)K(s)),

or

Re((x+ iy)K(s))R−1

[
0 1
1 0

]
Im(K(t))R = Im((x + iy)K(s)),

or

R−1

[
0 1
1 0

]
Im(K(t))R = (Re((x + iy)K(s)))−1 Im((x + iy)K(s)),

or

R−1

[
0 1

−t2 0

]
R =

[
ys2 x

x −y

]−1 [
−xs2 y

y x

]
.

Since
[

0 1
−t2 0

]
and the product on the RHS are similar, they have the same eigen-

values:

{±it} =
{
(1− s2)xy ± is(x2 + y2)

x2 + y2s2

}
.

Because we are assuming 0 < s < 1, the only way the real part of each of the
eigenvalues can be zero is when x = 0 or y = 0. Then, comparing the imaginary
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parts, if x = 0, then t = ± 1
s , and if y = 0, then t = ±s, so the only solution in (0, 1)

is t = s.

In the following list of examples, we will consider the various geometric properties
of maps of the form Q ◦ s ◦ (δ × δ), for each of the r-equivalence classes of matrices
Q, corresponding to the normal forms of the previous theorem.

The two cases where the kernel is spanned by a real matrix ((1), and (5) with
θ = 0) represent projections where the center of projection is in δ3(RP 3) ⊆ CP 3, and
so the image of Q ◦ s ◦ (δ× δ) is contained in a real projective plane, (Q ◦ δ3)(RP 3) =
δ2(RP 2) ⊆ CP 2 (see Figure 4).

In the remaining cases, the center of projection is outside δ3(RP 3), and the image
of Q ◦ s ◦ (δ × δ) is contained in (Q ◦ δ3)(RP 3) ⊆ CP 2. In each of the examples, it
will be easy to pick at least one complex affine neighborhood U ⊆ CP 2 such that
U ∩ ((Q ◦ δ3)(RP 3)) is a real affine 3-space in U , allowing us to visualize U ∩ ((Q ◦
s ◦ (δ × δ))(RP 1 × RP 1)). While Q ◦ δ3 : RP 3 → CP 2 is one-to-one on some affine
neighborhoods, it is not an immersion of RP 3, since in each case there is a real line
which is collapsed to a point.

It will also be useful to observe how complex projective lines in CP 2 meet the
surface, and the set (Q ◦ δ3)(RP 3) that contains the surface. In a complex affine
neighborhood U whose intersection with (Q ◦ δ3)(RP 3) is a real affine 3-space, that
3-space will contain a parallel family of complex affine lines, and every other complex
line in U will either be disjoint from the 3-space, or will meet it transversely in a real
affine line. In some other complex affine neighborhood V , those complex lines still
look like complex lines, but V ∩ ((Q ◦ δ3)(RP 3)) may not be a real affine space. It
contains a family of complex lines, but the previously mentioned transverse intersec-
tions with complex lines may transform from lines to circles or lines, since the action
of PGL(3,C) on CP 2 restricts to a PGL(2,C) action on each complex line.

Let CP 2 have homogeneous coordinates [Z0 : Z1 : Z2], with Zj = Xj + iYj.

Example 4.2. The rank 1 matrix in case (1) of Theorem 4.1 has already appeared
in Example 2.8; using the matrix Q from that example, the map

Q ◦ s ◦ (δ × δ) : RP 1 × RP 1 → CP 2 : ([u0 : u1], [v0 : v1]) �→ [u0v1 : u1v0 : u1v1]

has geometric properties analogous to those of Q ◦ s. It is undefined at one point of
the domain: the base point of Q ◦ s is an element of the image of δ × δ. The image
of Q ◦ s ◦ (δ × δ) is contained in δ2(RP 2) ⊆ CP 2, so Q ◦ s ◦ (δ × δ) is a smooth but
singular map from a punctured torus to, but not onto, a real projective plane.

Example 4.3. Another rank 1 matrix in Theorem 4.1 is case (2), where a repre-

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 651-698, December 2008



ELA

Complex Matrix Pencils and Real Segre Varieties 667

sentative coefficient matrix, i.e., a matrix with a kernel spanned by vec
([

1 i

0 0

])
,

is

Q =


 1 0 i 0

0 1 0 0
0 0 0 1


 .

The induced map is

Q ◦ s ◦ (δ × δ) : ([u0 : u1], [v0 : v1]) �→ [u0v0 + iu1v0 : u0v1 : u1v1],

which is defined on all of RP 1 × RP 1, but Q ◦ s has a base point at ([1 : i], [1 : 0]) ∈
CP 1 × CP 1. The singular locus of Q ◦ s is, as in Example 2.8,

Σ1 = {w1(z0 + iz1) = 0} \ {([1 : i], [1 : 0])}.

The line {([u0 : u1], [1 : 0])} is the intersection of the image of δ× δ with Σ1, and it is
mapped to a point: Q ◦ s ◦ (δ × δ) : {([u0 : u1], [1 : 0])} �→ [1 : 0 : 0]. Away from this
line, Q ◦ s ◦ (δ × δ) is a totally real immersion.

Q ◦ s ◦ (δ × δ) restricts to a parametric map R2 → R3, in the {([u : 1], [v : 1])},
{[X0+iY0 : X1 : 1]} neighborhoods: (u, v) �→ (X0, Y0, X1) = (uv, v, u). The image is a
hyperbolic paraboloid in the X0, Y0, X1 3-space (Figure 4.1). All of the complex lines
contained in the X0, Y0, X1 3-space are of the form {X1 = c} = {[Z0 : cZ2 : Z2]}; each
meets the surface in a straight line (from the real ruling). In CP 2, all these complex
lines meet at infinity, at the point [1 : 0 : 0], which is the differential-topological
singularity of the surface.

To get an idea of the shape of the singularity, consider a restriction to a dif-
ferent affine neighborhood: Q ◦ s ◦ (δ × δ) : ([1 : u], [1 : v]) �→ [1 + iu : v : uv] =[
1 : v

1+iu : uv
1+iu

]
, or (u, v) �→ (X1, Y1, X2, Y2) =

(
v

1+u2 ,
−uv
1+u2 ,

uv
1+u2 ,

−u2v
1+u2

)
. The image

in the X1, Y1, X2, Y2 4-space satisfies the implicit equations X1Y2+X2
2 = Y1+X2 = 0,

so it is a cone contained in a 3-space. The complex lines in the real 3-space Y1+X2 = 0
are of the form Z1 + iZ2 = r, for r ∈ R, and they meet the cone in a set of circles,
collapsing to a point at the vertex. These circles are one of the two real rulings of the
surface; since they are contained in complex lines, they are projectively equivalent to
some of the straight lines observed in the original affine neighborhood.

Example 4.4. The rank 1 matrix in case (3) of Theorem 4.1 has a representative
coefficient matrix

P =


 1 i 0 0

0 0 1 0
0 0 0 1


 ,
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Fig. 4.1. A hyperbolic paraboloid, meeting complex lines in real lines, as in Examples 4.3 and 4.4.

and the induced map is

P ◦ s ◦ (δ × δ) : ([u0 : u1], [v0 : v1]) �→ [u0v0 + iu0v1 : u1v0 : u1v1].

If ϕ : CP 1 × CP 1 → CP 1 × CP 1 is the holomorphic involution ϕ : (z, w) �→ (w, z),
then ϕ fixes, as a set, the image of δ× δ, and the matrix P is related to the matrix Q
in Example 4.3 by the equation P ◦ s = Q ◦ s ◦ϕ. We can conclude that P ◦ s ◦ (δ× δ)
and Q ◦ s ◦ (δ × δ) have exactly the same image, and the maps differ only in which
line, from the first or second RP 1 factor, is mapped to a point.

Example 4.5. The exceptional rank 2 matrix
[

0 1/2
1/2 i

]
in case (4) of The-

orem 4.1 has a representative coefficient matrix

Q =


 1 0 0 0

0 1 −1 0
0 0 2 i


 .

The induced map is

Q ◦ s ◦ (δ × δ) : ([u0 : u1], [v0 : v1]) �→ [u0v0 : u0v1 − u1v0 : 2u1v0 + iu1v1].

The singular locus of Q ◦ s is

Σ2 = {2z0w0 + i(z0w1 + z1w0) = 0},
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and the involution σ is given by

σ : ([z0 : z1], [w0 : w1]) �→ ([w0 : 2iw0 − w1], [z0 : 2iz0 − z1]).

One real line in δ3(RP 3) is projected by Q to a point: Q : {[0 : u1 : u1 : u3]} �→ [0 :
0 : 1], and this line meets the image of s ◦ (δ × δ) exactly once, at (s ◦ (δ × δ))(([0 :
1], [0 : 1])) = [0 : 0 : 0 : 1].

The image of δ×δ in CP 1×CP 1 intersects Σ2 in exactly one point, ([0 : 1], [0 : 1]),
so we can conclude that on the complement of that point, Q ◦ s ◦ (δ × δ) is a totally
real immersion. The same point, ([0 : 1], [0 : 1]), is also the only point of intersection
of the image of δ × δ with the image of σ ◦ (δ × δ), and it is fixed by σ, so we can
further conclude that Q ◦ s ◦ (δ× δ) is a one-to-one map. It remains only to check the
behavior of Q ◦ s ◦ (δ × δ) at the point ([0 : 1], [0 : 1]), and in fact it has a singularity
there as a smooth map, where the rank of the (real) Jacobian drops to 1 at that point.

The map Q◦s◦(δ×δ) restricts to a parametric map R
2 → R

3, in the {([1 : u], [1 :
v])}, {[1 : X1 : X2 + iY2]} neighborhoods: (u, v) �→ (X1, X2, Y2) = (v − u, 2u, uv).
The image of Q ◦ s ◦ (δ × δ) is the hyperbolic paraboloid 4Y2 = X2(2X1 + X2) in
this neighborhood (Figure 4.2). All of the complex lines contained in the X1, X2, Y2

3-space are of the form {X1 = c} = {[Z0 : cZ0 : Z2]}; each meets the surface
in a parabola, and none is a tangent plane, so the surface is totally real in this
neighborhood. In CP 2, all these complex lines meet at infinity, at the point [0 : 0 : 1],
which is the differential-topological singularity of the surface. The point [0 : 0 : 1] is
also the cusp singularity of each of the parabola-shaped intersections, which have a
cardioid shape in a complex projective line [6, 8].

The two lines outside the {([1 : u], [1 : v])} neighborhood in the domain are
mapped to straight lines, ([u0 : u1], [0 : 1]) �→ [0 : u0 : iu1] and ([0 : 1], [v0 : v1]) �→ [0 :
−v0 : 2v0 + iv1], which meet at [0 : 0 : 1]. There is another affine neighborhood where
the surface looks like a hyperboloid of one sheet in R3 (Figure 4.3). The complex
lines contained in that R3 meet the surface in parabolas, except for one complex line
which meets it in a pair of parallel lines.

A restriction to a different affine neighborhood will show the singularity: Q ◦ s ◦
(δ × δ) : ([u : 1], [v : 1]) �→ [uv : u − v : 2v + i] =

[
uv

2v+i :
u−v
2v+i : 1

]
, or (u, v) �→

(X0, Y0, X1, Y1) =
(

2uv2

4v2+1 ,
−uv

4v2+1 ,
2v(u−v)
4v2+1 ,

v−u
4v2+1

)
. The image in the X0, Y0, X1, Y1

4-space satisfies the implicit equations

0 = X2
1 + 2X3

1 + 4X0X1Y1 + 2X1Y
2
1 + 4Y0Y

2
1 ,

0 = X0X1 + 2X0X
2
1 + 4X2

0Y1 + 4Y 2
0 Y1 + 2X0Y

2
1 ,

0 = X2
0 + 2X2

0X1 + 4X2
0Y0 + 4Y 3

0 + 2X0Y0Y1,

0 = X1Y0 −X0Y1.
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Fig. 4.2. A hyperbolic paraboloid, meeting complex lines in parabolas, as in Example 4.5.

A computation checks that these equations define a two-dimensional real variety with
a singularity only at the origin.

Example 4.6. The matrix in case (5), with α = 1, has a real representative
coefficient matrix, which has already appeared in Example 2.9. The map Q◦s◦(δ×δ)
is defined on all of RP 1 × RP 1. Its singular locus is a real curve in the domain,
and it is two-to-one outside this locus. Its image is contained in, but not equal to,
δ2(RP 2) ⊆ CP 2, so it can be considered as a real projection of the real Segre variety
to a real projective plane (Figure 4.4), and as the θ → 0+ limiting case of the complex
projections in the next example.

Example 4.7. The remaining matrices in case (5), with α = eiθ, 0 < θ ≤ π
2 ,

correspond to representative coefficient matrices of the form:

Qα =


 α 0 0 −1

0 1 0 0
0 0 1 0


 .

For each α, the induced map is

Qα ◦ s ◦ (δ × δ) : ([u0 : u1], [v0 : v1]) �→ [αu0v0 − u1v1 : u0v1 : u1v0].

The singular locus of Qα ◦ s is

Σ2 = {αz0w0 + z1w1 = 0},
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Fig. 4.3. A hyperboloid, meeting complex lines in parabolas and a pair of lines, as in Example

4.5.

Fig. 4.4. The real Segre surface in R3 (center), with its two types of real projections, as in

Examples 4.2 (below) and 4.6 (left).
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and the involution σ is given by

σ : ([z0 : z1], [w0 : w1]) �→ ([−w1 : αw0], [−z1 : αz0]).

One real line in δ3(RP 3) is projected by Qα to a point: Qα : {[u0 : 0 : 0 : u3]} �→ [1 :
0 : 0], and this line meets the image of s ◦ (δ × δ) twice, at (s ◦ (δ × δ))(([0 : 1], [0 :
1])) = [0 : 0 : 0 : 1], and (s ◦ (δ × δ))(([1 : 0], [1 : 0])) = [1 : 0 : 0 : 0].

The image of δ×δ in CP 1×CP 1 intersects Σ2 in exactly two points, ([1 : 0], [0 : 1])
and ([0 : 1], [1 : 0]), so we can conclude that on the complement of these two points,
Qα ◦ s ◦ (δ × δ) is a totally real immersion. The image of δ × δ meets the image of
σ ◦ (δ × δ) in exactly four points: the two points ([1 : 0], [0 : 1]) and ([0 : 1], [1 : 0])
are fixed by σ, and the two points ([0 : 1], [0 : 1]) and ([1 : 0], [1 : 0]) are interchanged
by σ, so we can further conclude that Qα ◦ s ◦ (δ× δ) is one-to-one except for exactly
one double point, where

(Qα ◦ s ◦ (δ × δ))(([0 : 1], [0 : 1])) = (Qα ◦ s ◦ (δ × δ))(([1 : 0], [1 : 0])) = [1 : 0 : 0].

Restricting Qα ◦ s ◦ (δ × δ) to some affine neighborhoods shows what’s going on
near the singular points of Q ◦ s. Considering

Qα ◦ s ◦ (δ × δ) : ([1 : u], [v : 1]) �→ [αv − u : 1 : uv]

as a map from R2 to the X0, Y0, X2 3-space, this restriction is a smooth embedding,
and its tangent plane at (X0, Y0, X2) = (0, 0, 0) is the complex line X2 = 0. This is
the only complex tangent in this affine neighborhood, the surface being totally real
at the other points. For α = a+ ib with b > 0, the surface is a hyperbolic paraboloid
(Figure 4.5), given by the equation

X2 =
1
b2
(aY 2

0 − bX0Y0) =
1
4b2

(2aZ0Z̄0 − ᾱZ2
0 − αZ̄2

0 ).

The ratio of coefficients β =
∣∣−α

2a

∣∣ is the well-known Bishop invariant, and it is a
local biholomorphic invariant of the surface near the CR singularity [4]. So, there is
a one-to-one correspondence between α = eiθ, 0 < θ ≤ π/2, and all the values of the
Bishop invariant in the set

(
1
2 ,∞

]
.

All of the complex lines contained in this 3-space are of the form {X2 = c} =
{[Z0 : Z1 : cZ1]}; one is the complex tangent plane, but the rest meet the surface
in hyperbolas, with a constant eccentricity. In CP 2, all these complex lines meet at
infinity, at the point [1 : 0 : 0], which is the point of self-intersection of the surface.
The point [1 : 0 : 0] is also the self-intersection point of each of the hyperbola-shaped
intersections, which have a lemniscate shape in a complex projective line [6, 8].

In another affine neighborhood, the parametric map restricts to

Qα ◦ s ◦ (δ × δ) : ([u : 1], [1 : v]) �→ [αu − v : uv : 1].
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Fig. 4.5. A hyperbolic paraboloid, meeting complex lines in hyperbolas, and tangent to one

complex line, as in Example 4.7.

The image is another hyperbolic paraboloid in the X0, Y0, X1 space, with a CR sin-
gularity at the origin, a point that was not an element of the previous affine neigh-
borhood. The two singularities have the same Bishop invariant.

There are other complex affine neighborhoods whose intersection with the surface
looks like a one-sheeted hyperboloid, showing both CR singular points (Figure 4.6).

It is interesting that the r-equivalence class of Qα can be detected by a local
biholomorphic invariant at one of the distinguished points in the image of Qα ◦ s ◦
(δ × δ).

Example 4.8. The remaining rank one equivalence class in Theorem 4.1 is case
(6), with t = 1. A representative coefficient matrix is

Q1 =


 1 0 0 1

0 1 −1 0
0 0 1 i


 .

The induced map is

Q1 ◦ s ◦ (δ × δ) : ([u0 : u1], [v0 : v1]) �→ [u0v0 + u1v1 : u0v1 − u1v0 : u1v0 + iu1v1].

The composite Q1 ◦ s has a base point at ([1 : i], [1 : i]), and its singular locus is

Σ1 = {(z0 + iz1)(w0 + iw1) = 0} \ {([1 : i], [1 : i])}.
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Fig. 4.6. A hyperboloid, meeting complex lines in hyperbolas, and tangent to two complex lines,

as in Example 4.7.

One real line in δ3(RP 3) is projected by Q1 to a point: Q1 : {[u0 : u1 : u1 : −u0]} �→
[0 : 0 : 1], but this line does not meet the image of s ◦ (δ × δ).

The image of δ×δ in CP 1×CP 1 is disjoint from Σ1, and Q1 ◦s◦ (δ×δ) is defined
at every point of RP 1 ×RP 1, so we can conclude that Q1 ◦ s ◦ (δ× δ) is a totally real
embedding.

The intersection of the image of Q1 ◦ s ◦ (δ × δ) with the Z0 = 1 neighborhood
is contained in the real 3-space with coordinates X1, X2, Y2, and is given by the
equation X2

2 + X1X2 + Y 2
2 − Y2 = 0. This is a hyperboloid of one sheet, with no

tangent planes parallel to the complex line X1 = 0. In fact, the only complex lines
in that 3-space are of the form X1 = c, and the intersection of the plane X1 = c

with the surface is a circle. Similarly, in the Z1 = 1 neighborhood, the image is the
hyperboloid X2

2 +X2 + Y 2
2 −X0Y2 = 0 in the X0, X2, Y2-space, whose intersections

with the complex lines X0 = c are circles. The real lines which rule the surface are
also equal to the intersection of the surface with complex lines. These two complex
affine neighborhoods cover the image of Q1 ◦ s ◦ (δ × δ), which does not contain the
point [0 : 0 : 1] ∈ CP 2.

This surface has the property that if it meets a complex line in a curve, then that
curve is a circle or line, and this property is invariant under the action of PGL(3,C).
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Example 4.9. The last family of equivalence classes appearing in Theorem 4.1
is in case (6), with 0 < t < 1. Representative coefficient matrices are of the form:

Qt =


 1 0 0 t2

0 1 −1 0
0 0 1 i


 .

For each t, the induced map is

Qt ◦ s ◦ (δ × δ) : ([u0 : u1], [v0 : v1]) �→ [u0v0 + t2u1v1 : u0v1 − u1v0 : u1v0 + iu1v1].

The singular locus of Qt ◦ s is

Σ2 = {z0w0 + iz0w1 + iz1w0 − t2z1w1 = 0},

and the involution σ is given by

σ : ([z0 : z1], [w0 : w1]) �→ ([−iw0 + t2w1 : w0 + iw1], [−iz0 + t2z1 : z0 + iz1]).

One real line in δ3(RP 3) is projected by Qt to a point: Qt : {[u0 : u1 : u1 : −u0/t
2]} �→

[0 : 0 : 1], but this line does not meet the image of s ◦ (δ × δ).

The image of δ × δ in CP 1 × CP 1 is disjoint from Σ2, so we can conclude that
Qt ◦ s ◦ (δ × δ) is a totally real immersion. The image of δ × δ is also disjoint from
the image of σ ◦ (δ× δ), so we can further conclude that Qt ◦ s ◦ (δ× δ) is one-to-one,
and a totally real embedding.

The intersection of the image of Qt ◦ s ◦ (δ × δ) with the Z0 = 1 neighborhood
is contained in the real 3-space with coordinates X1, X2, Y2, and is given by the
equation X2

2 +X1X2+ t2Y 2
2 −Y2 = 0 (Figure 4.7). This is a hyperboloid of one sheet,

with no tangent planes parallel to the complex line X1 = 0. All of the complex lines in
that 3-space have the form X1 = c, and each intersects the surface in an ellipse with
eccentricity

√
1− t2, independent of c. Similarly, in the Z1 = 1 neighborhood, the

image is the hyperboloid X2
2 +X2 + t2Y 2

2 −X0Y2 = 0 in the X0, X2, Y2-space, whose
intersections with the complex lines X0 = c are ellipses with eccentricity

√
1− t2.

These two complex affine neighborhoods cover the image of Qt ◦ s ◦ (δ × δ), which
does not contain the point [0 : 0 : 1] ∈ CP 2.

It was remarked in [6] and proved in [8] that the eccentricity of an ellipse in a
complex projective line is a complex projective (PGL(2,C)) invariant, so that number
is a PGL(3,C) invariant of these surfaces, also. Any complex projective line meeting
the surface in a curve will meet either in a circle or line (from the real ruling), or in
a curve projectively equivalent to an ellipse, with a unique eccentricity.

Examples 4.8 and 4.9 show that for 0 < t ≤ 1, the value of t, and therefore
the r-equivalence class of the matrix Qt, can be detected by looking at the image of
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Fig. 4.7. A hyperboloid, meeting complex lines in ellipses, as in Example 4.9.

Qt ◦s◦(δ×δ). In fact, these surfaces can be distinguished in a local way by looking at
a neighborhood of any point and how it intersects all the complex lines through that
point. However, these surfaces cannot be distinguished by local biholomorphic invari-
ants; since they are totally real and real analytic, they are locally biholomorphically
equivalent.

The following corollaries of Theorem 4.1 summarize some of the observations from
the previous examples.

Corollary 4.10. Let V0 be the affine neighborhood {Z0 = 1}. Given a coefficient
matrix P3×4, there exists B ∈ PGL(3,C) and a real affine hyperplane H ⊆ V0 such
that the intersection of the image (B ◦P ◦s◦ (δ× δ))(RP 1×RP 1) and V0 is contained
in a doubly ruled real affine quadric surface in H (a plane, a hyperbolic paraboloid,
or a hyperboloid of one sheet).

The next two corollaries strengthen the converse part of Proposition 2.12 in the
� = m = 1, n = 2 case.

Corollary 4.11. Given coefficient matrices P3×4 and Q3×4, if there exist A1,
A2 ∈ PGL(2,C), and B ∈ PGL(3,C) such that A1 = C1 ◦A1 ◦C1, A2 = C1 ◦A2 ◦C1,
and

(Q ◦ s)((δ(u), δ(v))) = B ((P ◦ s)((A1 (δ(u)), A2 (δ(v)))))
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at every point (u, v) ∈ RP 1 × RP 1 where both sides are defined, then P and Q are
r-equivalent.

Corollary 4.12. Given coefficient matrices P3×4 and Q3×4, if there exists
B ∈ PGL(3,C) such that the images of Q ◦ s ◦ (δ × δ) and B ◦ P ◦ s ◦ (δ × δ) are the
same, then either P and Q are r-equivalent, or one falls in case (2) of Theorem 4.1
while the other falls in case (3).

5. Complex projections of the real Segre threefold. The next simplest
case is � = 2, m = 1, n = 4, corresponding to the Segre 3-manifold embedded in CP 5,
and its projections to CP 4. Let CP 4 have homogeneous coordinates [Z0 : Z1 : Z2 :
Z3 : Z4], with Zj = Xj + iYj.

As in the previous section, the rational maps P ◦ s : CP 2 ×CP 1 → CP 4 are easy
to describe and classify, and there are only two c-equivalence classes of coefficient
matrices P. By Proposition 2.7, the c-equivalence class of P5×6 is determined by
the equivalence class of the complex subspace k(ker(P)) in M(2 × 3,C). Since the
only invariant under equivalence of 2× 3 matrices is the rank [13], there are only two
equivalence classes of one-dimensional subspaces of M(2 × 3,C): the class of pencils
spanned by a rank 1 matrix, and the class of pencils spanned by a rank 2 matrix.
Geometrically, the two c-equivalence classes correspond to the two ways to project
the complex Segre threefold in CP 5 to CP 4: the center of projection can be either on
the variety or off the variety.

Example 5.1. In the rank 1 case, the map P ◦s : CP 2×CP 1 → CP 4 has exactly
one base point; since k(ker(P)) is in the image of s, it is equivalent to{

λ

[
1 0 0
0 0 0

]
: λ ∈ C

}
.

By Proposition 2.7, P is c-equivalent to

Q =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 .

The composite map

Q ◦ s : ([z0 : z1 : z2], [w0 : w1]) �→ [z0w1 : z1w0 : z1w1 : z2w0 : z2w1]

has its base point at ([1 : 0 : 0], [1 : 0]). Its restriction to an affine neighborhood is
one-to-one and nonsingular: ([z0 : z1 : 1], [w : 1]) �→ [z0 : z1w : z1 : w : 1], but one of
the lines outside this neighborhood is mapped to a point X , ([1 : 0 : 0], [w : 1]) �→ [1 :
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0 : 0 : 0 : 0]. There is also a (punctured projective) plane that is mapped to a line T ,
([z0 : z1 : z2], [1 : 0]) �→ [0 : z1 : 0 : z2 : 0]. The singular locus can be described with a
bihomogeneous expression:

Σ3 = {z1w1 = z2w1 = 0} \ {([1 : 0 : 0], [1 : 0])}.

The image of Q ◦ s is contained in the hypersurface {Z1Z4 − Z2Z3 = 0}, but is not
equal to it; for example, the hypersurface contains the plane {Z2 = Z4 = 0}, but the
image intersects this plane only in the previously noted point X and line T .

Example 5.2. In the rank 2 case, P ◦ s is a well-defined map from CP 2 × CP 1

to CP 4, and k(ker(P)) is equivalent to{
λ

[
0 1 0
0 0 1

]
: λ ∈ C

}
.

By Proposition 2.7, P is c-equivalent to

Q =




0 0 1 0 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


 .

The singular locus of

Q ◦ s : ([z0 : z1 : z2], [w0 : w1]) �→ [z1w0 − z2w1 : z0w0 : z0w1 : z1w1 : z2w0]

is the curve

Σ4 = {z0 = z1w0 + z2w1 = 0}.

On the subset {z0 = 1} ∼= C
2 × CP 1, Q ◦ s is one-to-one and non-singular. The

restriction to the subset Θ = {z0 = 0} ∼= CP 1 × CP 1,

Q ◦ s : ([0 : z1 : z2], [w0 : w1]) �→ [z1w0 − z2w1 : 0 : 0 : z1w1 : z2w0],

is exactly as in Example 2.9, two-to-one except along the set Σ4, and the image of
this restriction is disjoint from (Q ◦ s)({z0 = 1}). The image of Q ◦ s is the complex
projective hypersurface

{Z0Z1Z2 + Z2
2Z4 − Z2

1Z3 = 0},(5.1)

whose singular locus is the complex projective plane {Z1 = Z2 = 0} = (Q ◦ s)(Θ).
The cubic hypersurface (5.1) is exactly the same as the one considered by [2, §3.4,
Eq. (3.47)].
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The main problem now is to find the r-equivalence classes of coefficient matrices
P5×6. As in the previous section, the strategy is to classify one-dimensional complex
matrix pencils up to real equivalence, and to apply Proposition 2.11. We can also say
something about the geometry of the maps P ◦ s ◦ (δ × δ) before doing the algebra.
We again expect the rank 1 case to break into at least four r-equivalence classes,
depending on how the image of δ × δ meets the base point and the singular locus
of P ◦ s (it will turn out to be exactly four classes again). In the rank 2 case, we
expect the generic situation to be that the three-dimensional image of δ×δ misses the
singular locus Σ4, so that P ◦ s ◦ (δ × δ) will be a totally real embedding. In general,
the CR singular locus of a (n − 1)-dimensional real submanifold of a n-dimensional
complex manifold is expected to have real codimension 4 [5], and this is consistent
with our expectation that most of the images of RP 2 × RP 1 will be totally real in
CP 4, and that CR singularities will occur only in exceptional cases.

To start with the linear algebra, we first consider the problem of finding repre-
sentatives for pairs of real matrices (C,D), under simultaneous equivalence by real
transformations. This is called by [11] the strict equivalence of matrix pencils C+λD,
with representatives in the Kronecker canonical form. The following list of canonical
forms for the 2× 3 case is adapted from [10], and we use notation similar to theirs for
the cases. The important part of the proposition is that only real matrices are used,
and some of the cases (5a, 5b, 5c) require the real Jordan normal form, as in the proof
of Theorem 4.1.

Proposition 5.3. The list below includes all matrices of the specified form,
with γ, δ, ε, ζ ∈ R such that γ �= 0, δ �= 0, γ ≥ δ and ε > 0. Given (C,D) ∈
M(2×3,R)×M(2×3,R), there exists exactly one pair of matrices (E,F) from the list
which is equal to (A2 CA1,A2 DA1) for some A1 ∈ GL(3,R) and A2 ∈ GL(2,R).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 651-698, December 2008



ELA

680 Adam Coffman

E F E F

1
[
0 1 0
0 0 1

] [
1 0 0
0 1 0

]
9

[
0 0 0
0 0 1

] [
0 0 0
0 0 γ

]

2
[
0 0 0
0 0 1

] [
1 0 0
0 1 0

]
10

[
0 1 0
0 0 1

] [
0 0 0
0 1 0

]

3
[
0 0 0
0 0 0

] [
0 1 0
0 0 1

]
11

[
0 1 0
0 0 1

] [
0 0 0
0 0 0

]

4
[
0 0 0
0 0 1

] [
0 0 1
0 1 0

]
12

[
0 0 0
0 0 1

] [
0 0 0
0 0 0

]

5a
[
0 1 0
0 0 1

] [
0 γ 0
0 0 δ

]
13

[
0 0 0
0 0 0

] [
0 0 0
0 0 0

]

5b
[
0 1 0
0 0 1

] [
0 γ 1
0 0 γ

]
1′

[
0 1 0
0 0 1

] [
1 0 0
0 0 γ

]

5c
[
0 1 0
0 0 1

] [
0 ζ ε

0 −ε ζ

]
10′

[
0 1 0
0 0 1

] [
0 0 0
0 0 γ

]

6
[
0 1 0
0 0 1

] [
1 0 0
0 0 0

]
4′

[
0 0 0
0 0 1

] [
0 1 0
0 0 γ

]

7
[
0 0 0
0 0 1

] [
0 1 0
0 0 0

]
7′

[
0 0 0
0 0 1

] [
0 0 0
0 1 0

]

8
[
0 0 0
0 0 0

] [
0 0 1
0 0 0

]
9′

[
0 0 0
0 0 1

] [
0 0 1
0 0 0

]

It is also remarked in [10], and easy to check, that case 1 of the above proposition
is the generic case; the set of matrix pairs (C,D) which are equivalent to the pair in
case 1 is a dense open subset of M(2× 3,R)×M(2× 3,R).

The next step in the r-equivalence classification is to find the real equivalence
classes of one-dimensional complex subspaces of M(2 × 3,C). Proposition 5.3 and
Theorem 4.1 will be used to prove the following result.

Theorem 5.4. If K is a non-zero matrix in M(2 × 3,C), then there is exactly
one matrix in the list below equal to λA2 KAT

1 for some nonsingular real matrices
A1, A2, and non-zero complex scalar λ.

1.
[
0 1 0
0 0 0

]
;

2.
[
0 1 i

0 0 0

]
;

3.
[
0 1 0
0 i 0

]
;

4.
[
0 0 1/2
0 1/2 i

]
;
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5.
[
0 1 0
0 0 α

]
, α = cos(θ) + i sin(θ), 0 ≤ θ ≤ π

2 ;

6.
[
0 −it2 1
0 1 i

]
, 0 < t ≤ 1;

7.
[
i 1 0
0 0 1

]
;

8.
[
i 1 0
0 i 1

]
.

Proof. Let K ∈ M(2 × 3,C), with real and imaginary parts: K = C + iD. By
Proposition 5.3, there exists a real equivalence transformation taking K to E+ iF, for
some real pair (E,F) in the proposition’s list of canonical forms. Since K is non-zero,
we can ignore the proposition’s case 13.

For the first of two main parts of the proof, suppose K has rank 1. Since the
rank is invariant under real equivalence, we only need to inspect the list of canonical
forms to find pairs (E,F) so that E + iF is a rank 1 complex matrix. Clearly, the
proposition’s cases 8, 9, and 12 span complex pencils which fall into the theorem’s
case (1). The proposition’s cases 7′ and 9′ correspond to the theorem’s cases (2) and
(3), respectively. The only remaining rank 1 combination E + iF in the proposition
is case 5c, with ζ = 0 and ε = 1, and a calculation shows this corresponds to the
theorem’s case (6) with t = 1. More calculations will check that these rank 1 pencils
indeed form four different real equivalence classes.

The second main part of the proof is to sort the remaining fourteen rank 2 cases
of the proposition into real equivalence classes of complex subspaces.

Let K1 =
[
i 1 0
0 i 1

]
, from the generic case 1 of the proposition, and case (8)

of the theorem. For each γ ∈ R, let K2(γ) =
[
i 1 0
0 0 1 + iγ

]
, in cases 1′ and 6 of

the proposition.

Rather than going through all the matrix calculations, some of which are not
much more than verification of uniqueness claims from Proposition 5.3, we will just
briefly work out one case and even more briefly sketch the rest, leaving the details to
the reader. The following calculation will show that the complex pencil spanned by
K1 is not in the same real equivalence class as any pencil spanned by a matrix with
0 entries in the (2, 1) and (2, 2) positions. Suppose there were real invertible matrices

L =
[
�1,1 �1,2

�2,1 �2,2

]
, and R3×3, with nonzero columns (r1, r2, r3), and a nonzero λ ∈ C
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such that [
k1,1 k1,2 k1,3

0 0 k2,3

]
= λL

[
i 1 0
0 i 1

]
R.

Comparing the left two columns implies

λ−1

[
k1,1 k1,2

0 0

]
= L

[
i 1 0
0 i 1

]
(r1, r2)3×2,

and considering the real and imaginary parts of the lower row gives

[
0 0

]
= (�2,1, �2,2)

[
0 1 0
0 0 1

]
(r1, r2) = (�2,1, �2,2)

[
1 0 0
0 1 0

]
(r1, r2).

Since there are linearly independent vectors (0, �2,1, �2,2) and (�2,1, �2,2, 0) in the left
kernel of (r1, r2), it has rank 1, which contradicts the requirement that R is invertible.
The conclusion is that the complex pencil spanned by K1 is not in the same real
equivalence class as the complex pencil spanned by K2(γ), for any γ.

Another calculation, left to the reader, will show that the pencil spanned by K1

is not in the same real equivalence class as any pencil spanned by a matrix with a
zero column, and similarly, for any γ ∈ R, neither is the pencil spanned by K2(γ).

The pencil spanned by
[
i 0 0
0 i 1

]
in case 2 of the proposition is in the same real

equivalence class as the pencil spanned by K2(0). In fact, all the matrices K2(γ) are
equivalent to a nonzero complex scalar multiple of K2(0):

[
i 1 0
0 0 1 + iγ

] 
 1 γ 0

−γ 1 0
0 0 1


 = (1 + iγ)

[
i 1 0
0 0 1

]
,

and this gives case (7) of the theorem.

The rest of the cases of the proposition, 3, 4, 5a, 5b, 5c, 7, 10, 11, 10′, 4′, all
give E+ iF with rank 2 and a zero first column, so they do not fall in the previously
covered cases (1), (2), (3), (7), or (8) of the theorem, nor in case (6) with t = 1. By
Theorem 4.1, if E+ iF is a complex matrix with rank 2 and a zero first column, then
there exist 2× 2 invertible real matrices A3 and A4 and a nonzero λ ∈ C so that

λA3(E+ iF)




1

A4




equals one of the matrices in this theorem’s cases (4), (5) and (6). It remains only to
check the claim that those classes, with their invariants θ and t, are still distinct. It
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is easily checked that there exist A5 ∈ GL(2,R), A6 ∈ GL(3,R) and a nonzero λ ∈ C

such that

λA5

[
0 e f

0 g h

]
A6 =

[
0 p q

0 r s

]

if and only if there exist A7,A8 ∈ GL(2,R) and a nonzero µ ∈ C such that

µA7

[
e f

g h

]
A8 =

[
p q

r s

]
.

For this, one can choose λ = µ, A5 = A7, and A8 equal to the lower right 2× 2 block
of A6. The claim now follows from Theorem 4.1.

Although not necessary for the above proof, it is easy to check that cases 3, 5a,
7, 11, 10′, 4′ of the proposition fall into case (5) of Theorem 4.1, cases 4, 5b, 10 of the
proposition fall into case (4) of the theorem, and the rank 2 case of 5c corresponds to
the rank 2 case of (6).

In the following list of examples, we will consider the various geometric properties
of maps of the form Q ◦ s ◦ (δ × δ), for each of the r-equivalence classes of matrices
Q, corresponding to the normal forms in the previous theorem.

The two cases where the kernel is spanned by a real matrix ((1), and (5) with
θ = 0) represent projections where the center of projection is in δ5(RP 5) ⊆ CP 5,
and so the image of Q ◦ s ◦ (δ × δ) is contained in some real projective 4-space,
(Q ◦ δ5)(RP 5) = δ4(RP 4) ⊆ CP 4.

In the remaining cases, the center of projection is outside δ5(RP 5), and the image
of Q ◦ s ◦ (δ × δ) is contained in (Q ◦ δ5)(RP 5) ⊆ CP 4. In each of the examples, it
will be easy to pick at least one complex affine neighborhood U ⊆ CP 4 such that
U ∩ ((Q ◦ δ5)(RP 5)) is a real affine 5-space in U , but this won’t help as much with
the visualization as it did in the previous section. While Q ◦ δ5 : RP 5 → CP 4 is
one-to-one on some affine neighborhoods, it is not an immersion of RP 5, since in each
case there is at least one real line which is collapsed to a point.

It will also be useful to observe how complex projective lines in CP 4 meet the
three-dimensional image of Q ◦ s ◦ (δ × δ), and the set (Q ◦ δ5)(RP 5) which contains
the real threefold. In a complex affine neighborhood U whose intersection with (Q ◦
δ5)(RP 5) is a real affine 5-space, that 5-space will contain a parallel family of complex
affine lines, and every other complex line in U will either be disjoint from the 5-
space, or will meet it in a point or a real affine line. In some other complex affine
neighborhood V , those complex lines still look like complex lines, but V ∩ ((Q ◦
δ5)(RP 5)) may not be a real affine space. It contains a family of complex lines, but
the previously mentioned real affine lines inside complex lines may transform from
lines to circles or lines.
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It will be convenient to label some of the affine neighborhoods in the domain and
the target:

U00 = {([1 : u1 : u2], [1 : v1])},
U10 = {([u0 : 1 : u2], [1 : v1])},
U20 = {([u0 : u1 : 1], [1 : v1])},
U01 = {([1 : u1 : u2], [v0 : 1])},
U11 = {([u0 : 1 : u2], [v0 : 1])},
U21 = {([u0 : u1 : 1], [v0 : 1])} ⊆ RP 2 × RP 1,

V0 = {[1 : Z1 : Z2 : Z3 : Z4]},
...

...

V4 = {[Z0 : Z1 : Z2 : Z3 : 1]} ⊆ CP 4.

Example 5.5. The rank 1 matrix in case (1) of Theorem 5.4 has already appeared
in Example 5.1; it corresponds to the center of projection being an element of the real
submanifold (s ◦ (δ × δ))(RP 2 × RP 1). Using the matrix Q from that example, the
map

Q ◦ s ◦ (δ × δ) : RP 2 × RP 1 → CP 4 :

([u0 : u1 : u2], [v0 : v1]) �→ [u0v1 : u1v0 : u1v1 : u2v0 : u2v1]

has geometric properties analogous to those of Q ◦ s. It is undefined at one point of
the domain: the base point of Q ◦ s is an element of the image of δ × δ. The image
of Q ◦ s ◦ (δ × δ) is contained in δ4(RP 4) ⊆ CP 4, so Q ◦ s ◦ (δ × δ) is a smooth but
singular map from a punctured RP 2 × RP 1 to a real projective 4-space.

Example 5.6. Another rank 1 matrix in Theorem 5.4 is case (2), where a repre-

sentative coefficient matrix, i.e., one with a kernel spanned by vec
([

0 1 i

0 0 0

])
,

is

Q =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 i 0
0 0 0 1 0 0
0 0 0 0 0 1


 .

The induced map is

Q ◦ s ◦ (δ × δ) : ([u0 : u1 : u2], [v0 : v1]) �→ [u0v0 : u0v1 : u1v0 + iu2v0 : u1v1 : u2v1],
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which is defined on all of RP 2 × RP 1, but Q ◦ s has a base point at ([0 : 1 : i], [1 :
0]) ∈ CP 2 × CP 1. The singular locus of Q ◦ s is, as in Example 5.1,

Σ3 = {z0w1 = (z1 + iz2)w1 = 0} \ {([0 : 1 : i], [1 : 0])}.

The real projective plane {([u0 : u1 : u2], [1 : 0])} is the intersection of the image
of δ × δ with Σ3. The restriction of Q ◦ s ◦ (δ × δ) maps this plane onto a complex
projective line T : Q◦ s◦ (δ× δ) : ([u0 : u1 : u2], [1 : 0]) �→ [u0 : 0 : u1+ iu2 : 0 : 0], and
it is one-to-one except that the line {u0 = 0} is mapped to the point [0 : 0 : 1 : 0 : 0].
Away from this plane, Q ◦ s ◦ (δ × δ) is a totally real immersion.

To get a complete picture of the local geometric properties of the image of Q ◦ s ◦
(δ × δ), we can consider its restrictions to the six affine neighborhoods whose union
covers the domain.

Q ◦ s ◦ (δ× δ) restricts to the U21 → V4 neighborhoods, with the image contained
in a real 5-subspace of V4:

(u0, u1, v0) �→ (X0, X1, X2, Y2, X3) = (u0v0, u0, u1v0, v0, u1).

The image is a totally real polynomial graph over the X1, Y2, X3 subspace. All of the
complex lines contained in this real 5-space are of the form {[r0 : r1 : Z2 : r3 : 1] : Z2 ∈
C} for some real r0, r1, r3. Each complex line of the form {[0 : 0 : Z2 : r3 : 1]} meets
the threefold along a real line {(X0, X1, X2, Y2, X3) = (0, 0, r3v0, v0, r3) : v0 ∈ R}, and
each of the other complex lines in this 5-space meets it in no more than one point.
The restriction to the U11 → V3 neighborhoods is similar.

The restriction of Q ◦ s ◦ (δ × δ) to a parametric map U01 → V1:

(u1, u2, v0) �→ (X0, X2, Y2, X3, X4) = (v0, u1v0, u2v0, u1, u2),

gives a totally real polynomial graph over the X0, X3, X4 subspace. Each complex
line in this 5-space meets the threefold at exactly one point.

Restricting to another affine neighborhood shows part of the image of the singular
locus. Consider the parametric map Q ◦ s ◦ (δ × δ) : U00 → V0:

(u1, u2, v1) �→ (X1, X2, Y2, X3, X4) = (v1, u1, u2, u1v1, u2v1).

Its image is a smoothly embedded graph over the X1, X2, Y2 subspace, and the graph
is tangent at the origin to this subspace. The image of the real plane {v1 = 0} is the
complex line T ∩ V0 = the Z2-axis in V0, which is the CR singular locus of the image
of Q ◦ s ◦ (δ × δ). Each of the other complex lines in this 5-space meets the threefold
at no more than one point.
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In the (Z1, Z2, Z3, Z4) coordinates of V0, the implicit equations for the image are

{
Y1 = 0, Z3 =

1
2
(Z2 + Z̄2)X1, Z4 =

1
2i
(Z2 − Z̄2)X1

}
.

The point at the origin is then seen to be a CR singularity of type (XI) from the
classification of [7], and in fact each of the other points in the CR singular locus is
also of type (XI).

Restricting to the U20 → V2 neighborhoods shows the differential-topological
singularity:

Q ◦ s ◦ (δ × δ) : ([u0 : u1 : 1], [1 : v1]) �→ [u0 : u0v1 : u1 + i : u1v1 : v1]

=
[

u0

u1 + i
:
u0v1
u1 + i

: 1 :
u1v1
u1 + i

:
v1

u1 + i

]
.

This restriction can be written as a real cubic rational parametrization

(u0, u1, v1) �→ (X0, Y0, X1, Y1, X3, Y3, X4, Y4)

=
(
u0u1

u2
1 + 1

,
−u0

u2
1 + 1

,
u0u1v1
u2

1 + 1
,
−u0v1
u2

1 + 1
,
u2

1v1
u2

1 + 1
,
−u1v1
u2

1 + 1
,
u1v1
u2

1 + 1
,

−v1
u2

1 + 1

)
.

The Jacobian of this parametric map has rank 3, except along the line {u0 = v1 = 0},
where it has rank 2, and the map takes all the points on the line to the origin of V2.
The plane {v1 = 0} in the domain is mapped to the Z0-axis of V2, but the points on
the real X0-axis, except for the origin, are not in the image of U20. All the points in
the image of U20 in V2 satisfy the implicit equations:

0 = Y1 +X0X4 + Y0Y4, 0 = X1 −X0X3 +X0Y4, 0 = X2
4 +X3Y4,

0 = Y1X4 −X1Y4, 0 = Y1X3 +X1X4, 0 = Y0X4 −X0Y4,

0 = Y0X3 +X0X4, 0 = Y0X1 −X0Y1, 0 = Y3 +X4.

More than five equations are required to get the smallest three-dimensional real affine
variety in V2 containing the image of U20, but the variety still contains some points
not in the image of U20; specifically, the points on the X0-axis satisfy all the above
equations. In fact, all of the Z0-axis is contained in the image of Q ◦ s ◦ (δ× δ), since
the non-zero points on the X0-axis are in the previously considered image of U00. A
computation checks that the singular locus of the above real variety contains only the
origin. The image of U10 → V2 is similar.

Example 5.7. The rank 1 matrix in case (3) of Theorem 5.4 has a representative
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coefficient matrix

Q =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 i 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 ,

and the induced map is

Q ◦ s ◦ (δ × δ) : ([u0 : u1 : u2], [v0 : v1]) �→ [u0v0 : u0v1 : u1v0 + iu1v1 : u2v0 : u2v1],

which is defined on all of RP 2 × RP 1, but Q ◦ s has a base point at ([0 : 1 : 0], [1 :
i]) ∈ CP 2 × CP 1. The singular locus of Q ◦ s is, as in Example 5.1,

Σ3 = {z0(w0 + iw1) = z2(w0 + iw1) = 0} \ {([0 : 1 : 0], [1 : i])}.

The real projective line {([0 : 1 : 0], [v0 : v1])} is the intersection of the image of δ× δ
with Σ3. Q ◦ s ◦ (δ × δ) maps this line onto the point X = [0 : 0 : 1 : 0 : 0], and away
from this line, Q ◦ s ◦ (δ × δ) is a totally real immersion.

Q ◦ s ◦ (δ × δ) restricts to a parametric map U21 → V4:

(u0, u1, v0) �→ (X0, X1, X2, Y2, X3) = (u0v0, u0, u1v0, u1, v0).

The image is a totally real polynomial graph over the X1, Y2, X3 subspace. All of the
complex lines contained in this real 5-space are of the form {[r0 : r1 : Z2 : r3 : 1] : Z2 ∈
C} for some real r0, r1, r3. Each complex line of the form {[r1r3 : r1 : Z2 : r3 : 1]}
meets the threefold along a real line {(X0, X1, X2, Y2, X3) = (r1r3, r1, r3u1, u1, r3) :
u1 ∈ R}, and each of the other complex lines in this 5-space is disjoint from it. The
restrictions to the U01 → V1, U00 → V0 and U20 → V3 neighborhoods are similar, and
the V0, V1, V3, V4 neighborhoods cover CP 4 except for one point.

Restricting to U11 → V2 shows the differential-topological singularity:

Q ◦ s ◦ (δ × δ) : ([u0 : 1 : u2], [v0 : 1]) �→ [u0v0 : u0 : v0 + i : u2v0 : u2]

=
[
u0v0
v0 + i

:
u0

v0 + i
: 1 :

u2v0
v0 + i

:
u2

v0 + i

]
,

and it can be written as a real cubic rational parametrization

(u0, u2, v0) �→ (X0, Y0, X1, Y1, X3, Y3, X4, Y4)

=
(
u0v

2
0

v2
0 + 1

,
−u0v0
v2
0 + 1

,
u0v0
v2
0 + 1

,
−u0

v2
0 + 1

,
u2v

2
0

v2
0 + 1

,
−u2v0
v2
0 + 1

,
u2v0
v2
0 + 1

,
−u2

v2
0 + 1

)
.
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The Jacobian of this parametric map has rank 3, except along the line {u0 = u2 = 0},
where it has rank 2, and the map takes all the points on the line to the point X =
the origin of V2. The image of U11 in V2 satisfies the homogeneous implicit equations:

0 = X0Y1 +X2
1 , 0 = X3Y4 +X2

4 , 0 = X0X4 −X1X3, 0 = X0Y4 −X3Y1,

0 = X1X4 +X3Y1, 0 = X4Y1 −X1Y4, 0 = X1 + Y0, 0 = X4 + Y3.

A computation verifies that this is a three-dimensional real affine variety with a sin-
gularity only at the origin. The image of U10 → V2 is similar.

Example 5.8. The rank 2 matrix,
[
0 0 1/2
0 1/2 i

]
in case (4) of Theorem 5.4,

has a representative coefficient matrix

Q =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 −1 0
0 0 0 0 2 i


 .

The induced map Q ◦ s ◦ (δ × δ) is given by the formula

([u0 : u1 : u2], [v0 : v1]) �→ [u0v0 : u0v1 : u1v0 : u1v1 − u2v0 : 2u2v0 + iu2v1].

The singular locus of Q ◦ s is, as in Example 5.2:

Σ4 = {z0 = 2z1w0 + i(z1w1 + z2w0) = 0},

and its two-to-one locus Θ is given by {z0 = 0}, so that the restriction of Q ◦ s to Θ
is exactly as in Example 4.5, and we can conclude that Q ◦ s ◦ (δ × δ) is one-to-one.
One real line in δ5(RP 5) is projected by Q to a point: Q : {[0 : 0 : 0 : u3 : u3 :
u5]} �→ [0 : 0 : 0 : 0 : 1], and this line meets the image of s ◦ (δ × δ) exactly once, at
(s ◦ (δ × δ))(([0 : 0 : 1], [0 : 1])) = [0 : 0 : 0 : 0 : 0 : 1].

The image of δ × δ in CP 2 × CP 1 intersects Σ4 in exactly one point, ([0 : 0 :
1], [0 : 1]), so we can conclude that on the complement of that point, Q ◦ s ◦ (δ × δ)
is a totally real immersion. It remains only to check the behavior of Q ◦ s ◦ (δ× δ) at
the point ([0 : 0 : 1], [0 : 1]), and in fact it has a singularity there as a smooth map,
where the rank of the (real) Jacobian drops to 2 at that point.

Q ◦ s ◦ (δ × δ) restricts to a parametric map U10 → V2:

(u0, u2, v1) �→ (X0, X1, X3, X4, Y4) = (u0, u0v1, v1 − u2, 2u2, u2v1).

The image is a totally real polynomial graph over the X0, X3, X4 subspace. All of the
complex lines contained in this real 5-space are of the form {[r0 : r1 : 1 : r3 : Z4] : Z4 ∈
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C} for some real r0, r1, r3. Each complex line of the form {[0 : 0 : 1 : r3 : Z4]} meets
the threefold along the parabola {(X0, X1, X3, X4, Y4) = (0, 0, r3, 2u2, u2(r3 + u2)) :
u2 ∈ R}, and each of the other complex lines in this 5-space meets it at no more than
one point. The occurrence of these parabolas is enough to distinguish this image
from images in any other r-equivalence class. The restrictions to the U01 → V1 and
U00 → V0 neighborhoods are also totally real graphs, but do not show the above
parabolic intersections.

The singularity of the image of Q ◦ s ◦ (δ × δ) is not in the image of the U20 or
U11 neighborhoods, so we consider the neighborhoods U21 → V4.

Q ◦ s ◦ (δ × δ) : ([u0 : u1 : 1], [v0 : 1])�→ [u0v0 : u0 : u1v0 : u1 − v0 : 2v0 + i]

=
[
u0v0

2v0 + i
:

u0

2v0 + i
:
u1v0
2v0 + i

:
u1 − v0
2v0 + i

: 1
]
,

and it can be written as a real cubic rational parametrization

(u0, u2, v0) �→ (X0, Y0, X1, Y1, X2, Y2, X3, Y3)

=
(

2u0v
2
0

4v2
0 + 1

,
−u0v0
4v2

0 + 1
,
2u0v0
4v2

0 + 1
,

−u0

4v2
0 + 1

,
2u1v

2
0

4v2
0 + 1

,
−u1v0
4v2

0 + 1
,
2(u1 − v0)v0

4v2
0 + 1

,
v0 − u1

4v2
0 + 1

)
.

The Jacobian of this parametric map has rank 3, except at the point (u0, u1, v0) =
(0, 0, 0), where it has rank 2. The image of U21 in V4 satisfies the equations:

0 = X2
3 + 2X3

3 + 4X2X3Y3 + 2X3Y
2
3 + 4Y2Y

2
3 ,

0 = X2X3 + 2X2X
2
3 + 4X2

2Y3 + 4Y 2
2 Y3 + 2X2Y

2
3 ,

0 = X2
2 + 2X2

2X3 + 4X2
2Y2 + 4Y 3

2 + 2X2Y2Y3,

0 = X0 + 2X0X3 + 4X0Y2 − 2Y1Y2 + 2Y0Y3,

0 = 2Y 2
0 +X0Y1, 0 = X3Y2 −X2Y3,

0 = X3Y1 + 2Y0Y3, 0 = X3Y0 −X0Y3,

0 = X2Y1 + 2Y0Y2, 0 = X2Y0 −X0Y2,

0 = X1 + 2Y0.

A computation verifies that this is a three-dimensional real affine variety with a sin-
gularity only at the origin.

Example 5.9. The matrix in case (5), with α = 1, has a real representative
coefficient matrix, which has already appeared in Example 5.2. The map Q◦s◦(δ×δ)
is defined on all of RP 2 × RP 1, and is singular along a real curve. A subset of the
domain, {u0 = 0} (the real analogue of Θ in Example 5.2), is a two-to-one locus.
The restriction of the map to this locus is exactly as in Example 4.6. The image
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of Q ◦ s ◦ (δ × δ) is contained in δ4(RP 4) ⊆ CP 4, so it can be considered as a real
projection of the real Segre variety to a real projective 4-space. Taking coordinates
[X0 : · · · : X4] for RP 4, the image of Q ◦ s ◦ (δ × δ) is contained in, but not equal to,
the real projective hypersurface {X0X1X2 +X2

2X4 −X2
1X3 = 0}. This real variety

contains, as its singular locus, the real projective plane {X1 = X2 = 0}. Any point
in the intersection of the image of Q ◦ s ◦ (δ× δ) with that plane must be of the form
(Q ◦ s ◦ (δ × δ))(([0 : u1 : u2], [v1 : v2])), but as observed in Example 4.6 and Figure
4.4, such points do not fill up the whole plane.

The map can also be considered as the θ → 0+ limiting case of the complex
projections in the next example.

Example 5.10. The remaining matrices in case (5), with α = eiθ, 0 < θ ≤ π
2 ,

correspond to representative coefficient matrices of the form:

Qα =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 α 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0


 .

For each α, the induced map is

Qα ◦ s ◦ (δ × δ) : ([u0 : u1 : u2], [v0 : v1]) �→ [u0v0 : u0v1 : αu1v0 − u2v1 : u1v1 : u2v0].

The singular locus of Qα ◦ s is, as in Example 5.2:

Σ4 = {z0 = αz1w0 + z2w1 = 0},

and its two-to-one locus Θ is given by {z0 = 0}, so that the restriction of Qα ◦ s to
Θ is exactly as in Example 4.7. We can conclude that Qα ◦ s ◦ (δ × δ) is one-to-one
except for a double point,

[0 : 0 : 1 : 0 : 0] = (Qα ◦ s ◦ (δ × δ))(([0 : 0 : 1], [0 : 1]))

= (Qα ◦ s ◦ (δ × δ))(([0 : 1 : 0], [1 : 0])),

and the image of δ×δ in CP 1×CP 1 intersects Σ4 in exactly two points, ([0 : 1 : 0], [0 :
1]) and ([0 : 0 : 1], [1 : 0]), so on the complement of these two points, Qα ◦ s ◦ (δ × δ)
is a totally real immersion.

The image of the restriction of Qα ◦ s ◦ (δ × δ) to U00 → V0 is a totally real
polynomial graph, and so is the image of U01 → V1. The restrictions to U10 → V2

and U21 → V2 are each one-to-one, but together they show the double point.

Restricting Qα ◦ s ◦ (δ × δ) to the U11 → V3 affine neighborhoods shows what’s
going on near one of the singular points of Q ◦ s. Considering

Qα ◦ s ◦ (δ × δ) : ([u0 : 1 : u2], [v0 : 1]) �→ [u0v0 : u0 : αv0 − u2 : 1 : u2v0]
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as a map from R3 to the X0, X1, X2, Y2, X4 5-space, this restriction is a smooth
embedding, a polynomial graph over its tangent space at the origin, the X1, X2, Y2

3-space which contains the Z2-axis. This is the only CR singularity in this affine
neighborhood, the submanifold being totally real at the other points. For α = a+ ib
with b > 0, the image is given as a submanifold of V3 by the equations{

Y1 = 0, Z0 =
1
2bi
X1(Z2 − Z̄2), Z4 =

1
4b2

(2aZ2Z̄2 − ᾱZ2
2 − αZ̄2

2 )
}
.

The ratio of coefficients β =
∣∣−α

2a

∣∣ ∈
(

1
2 ,∞

]
resembles the Bishop invariant from

Example 4.7, and in [7] it is shown that this quantity is a local biholomorphic invariant
of the submanifold near the CR singularity. In the classification of [7], this CR
singularity is of type (III) if a > 0, and of type (VII) if a = 0.

All of the complex lines contained in this 5-space are of the form {[r0 : r1 : Z2 :
1 : r4] : Z2 ∈ C} for some real r0, r1, r4; one such line (with r0 = r1 = r4 = 0) is the
complex line contained in the tangent plane at the origin, and lines with r0 = r1 = 0,
r4 �= 0 meet the submanifold in hyperbolas, as in Example 4.7.

The restriction to U20 → V4,

Qα ◦ s ◦ (δ × δ) : ([u0 : u1 : 1], [1 : v1]) �→ [u0 : u0v1 : αu1 − v1 : u1v1 : 1],

is similar, showing the other CR singularity with the same numerical invariant. The
CR singularities and the double point are both topologically unstable phenomena for
immersions of real threefolds in a complex 4-manifold; small changes in the coefficient
matrix will usually result in a totally real embedding.

Example 5.11. The remaining rank 1 equivalence class in Theorem 5.4 is case
(6), with t = 1. A representative coefficient matrix is

Q1 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 −1 0
0 0 0 0 1 i


 .

The induced map Q1 ◦ s ◦ (δ × δ) is given by

([u0 : u1 : u2], [v0 : v1]) �→ [u0v0 : u0v1 : u1v0 + u2v1 : u1v1 − u2v0 : u2v0 + iu2v1].

The composite Q1 ◦ s has its base point at ([0 : 1 : i], [1 : i]), and its singular locus is

Σ3 = {z0(w0 + iw1) = (z1 + iz2)(w0 + iw1) = 0} \ {[0 : 1 : i], [1 : i])}.

The image of δ × δ in CP 2 × CP 1 is disjoint from Σ3, and Q1 ◦ s ◦ (δ × δ) is defined
at every point of RP 2 ×RP 1, so we can conclude that Q1 ◦ s ◦ (δ× δ) is a totally real
embedding.
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As in Example 4.8, this threefold has the property that if it meets a complex line
in a curve, then that curve is a circle or line. To check this, we will consider a few
pieces of the domain.

The restriction of Q1 ◦ s ◦ (δ × δ) to the U00 → V0 neighborhoods gives a real
affine variety, parametrized by

(u1, u2, v) �→ [1 : v : u1 + u2v : u1v − u2 : u2 + iu2v],

and equal to the intersection of two real affine quadric hypersurfaces inside theX1, X2,
X3, X4, Y4 5-subspace. For a complex affine line in V0, there are three possibilities.
The complex line could meet this subspace in at most one point, which may or may
not lie on the real threefold. The complex line could meet the 5-subspace in a real
affine line, which could meet the threefold in at most two points, or could be contained
in it. Thirdly, the complex line could be contained in the 5-subspace, where it has
the form {[1 : r1 : r2 : r3 : Z4] : Z4 ∈ C}, for some real r1, r2, r3. Such a line
meets the threefold if there is a real solution (u1, u2, v) of the set of equations v = r1,
u1 + u2v = r2, u1v − u2 = r3, and it is easy to see that there is at most one such
solution for any given (r1, r2, r3).

The next piece of the domain is the {u0 = 0} subset, where the parametric map
restricts to

([0 : u1 : u2], [v1, v2]) �→ [0 : 0 : u1v0 + u2v1 : u1v1 − u2v0 : u2(v0 + iv1)].

The image of the restriction is contained in the complex projective plane P1 = {Z0 =
Z1 = 0}, and it is exactly as in Example 4.8. A complex projective line in CP 4 can
meet P1 in at most one point, or it can be contained in P1, in which case it can meet
the surface in at most two points, or in a real line or circle.

The last piece of the domain is the {v0 = 0} subset, where the parametric map
restricts to

([u0 : u1 : u2], [0 : 1]) �→ [0 : u0 : u2 : u1 : iu2],

a totally real embedding of a real projective plane in the complex projective plane
P2 = {Z0 = Z2 + iZ4 = 0}. Any complex projective line in CP 4 meets this part of
the image in at most one point, or in a real line or circle.

The final interesting property of the image (Q1 ◦s◦ (δ× δ))(RP 2×RP 1) is that if
a complex projective line L ⊆ CP 4 meets the threefold in finitely many points, then
they meet in at most two points. This property is obviously a complex projective
invariant.

The first step in proving that the property holds is to recall, as in Example 5.1,
that the real threefold is contained in a complex projective quadric hypersurface, in
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this case, the variety H = {Z0(Z3 + Z4)− Z1(Z2 + iZ4) = 0}. Given any line L, if L
is not contained in H, then #L ∩H ≤ 2, establishing the claim for such lines. So, it
only remains to check those lines L ⊆ H.

The intersection ofH with the hyperplane {Z0 = 0} is the union of planes P1∪P2.
If L is contained in that union, it must be contained in either P1 or P2 (or be equal
to their intersection), and it was already mentioned that such lines have the claimed
property. If L is not contained in the hyperplane {Z0 = 0}, then it meets {Z0 = 0} in
exactly one point, and the only possible exception to the claim is that L could meet
the real threefold at exactly two points in V0 and exactly one point of P1 ∪ P2.

So, suppose L is the line incident with two given points in the image: [1 : v :
u1 + u2v : u1v − u2 : u2(1 + iv)] ∈ V0 and [0 : r0 : r2 : r1 : ir2] ∈ P2, with parametric
equation

[z0 :z1] �→ [z0 :vz0+r0z1 : (u1+u2v)z0+r2z1 : (u1v−u2)z0+r1z1 : u2(1+iv)z0+ir2z1].

Since L ⊆ H, this parametrization must be identically zero when plugged into the
implicit equation for H, which gives

(r1 − r0u1 − ir0u2 + ir2)z0z1 = 0

for all [z0 : z1]. The conclusion is [r0 : r1 : r2] = [1 : u1 : u2], but then the two given
points are incident with a real line lying on the threefold and contained in L,

[t0 : t1] �→ [t0 : t1 : u1t0 + u2t1 : u1t1 − u2t0 : u2t0 + iu2t1],

at [t0 : t1] = [1 : v] and [0 : 1].

Similarly, suppose L is the line incident with two given points in the image:
[1 : v : u1 + u2v : u1v − u2 : u2(1 + iv)] ∈ V0 and [0 : 0 : r1s0 + r2s1 : r1s1 − r2s0 :
r2(s0 + is1)] ∈ P1, so its parametric equation is

[z0 : z1] �→ [z0 : vz0 : (u1 + u2v)z0 + (r1s0 + r2s1)z1 :

(u1v − u2)z0 + (r1s1 − r2s0)z1 : u2(1 + iv)z0 + r2(s0 + is1)z1].

Plugging into the implicit equation for H gives: (s1 − s0v)(r1 + ir2)z0z1 = 0 for all
[z0 : z1]. The conclusion is [s0 : s1] = [1 : v], but then the two given points are
incident with a real plane lying on the threefold

[t0 : t1 : t2] �→ [t0 : vt0 : t1 + vt2 : vt1 − t2 : (1 + iv)t2],

at [t0 : t1 : t2] = [1 : u1 : u2] and [0 : r1 : r2]. The line L meets this real plane along
a real projective line incident with the given points. This establishes the claimed
property.
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Example 5.12. For the family of equivalence classes appearing in Theorem 5.4
in case (6), with 0 < t < 1, representative coefficient matrices are of the form:

Qt =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 t2

0 0 0 1 −1 0
0 0 0 0 1 i


 .

For each t, the induced map Qt ◦ s ◦ (δ × δ) is given by

([u0 : u1 : u2], [v0 : v1]) �→ [u0v0 : u0v1 : u1v0 + t2u2v1 : u1v1 − u2v0 : u2v0 + iu2v1].

The singular locus of Qt ◦ s is

Σ4 = {z0 = z1w0 + iz1w1 + iz2w0 − t2z2w1 = 0}.

The image of δ × δ in CP 2 × CP 1 is disjoint from Σ4, so Qt ◦ s ◦ (δ × δ) is a totally
real immersion. The restriction of Qt ◦ s to Θ = {z0 = 0} is exactly as in Example
4.9, so we can further conclude that Qt ◦ s ◦ (δ × δ) is a totally real embedding. For
each r3 ∈ R, a complex line in V2 of the form {[0 : 0 : 1 : r3 : Z4] : Z4 ∈ C} meets
the image of Qt ◦ s ◦ (δ × δ) in an ellipse, with eccentricity depending only on t. The
occurrence of these ellipses is enough to distinguish this image from images with a
different value of t, or from images in any other r-equivalence class.

In all the rank 2 examples so far, the two-to-one locus ofQ◦s was the set {z1 = 0},
and its intersection with the image of δ × δ was a two-dimensional set of the form
RP 1 × RP 1, allowing analogies with the examples from Section 4. In the next two
cases, the intersection will be a line, a more generic configuration.

Example 5.13. The rank 2 matrix,
[
i 1 0
0 0 1

]
in case (7) of Theorem 5.4, has

a representative coefficient matrix

Q =




0 0 0 0 1 0
i 0 0 0 0 1
0 0 1 0 0 −1
0 −4i 0 0 0 0
0 2i 0 2 0 0


 .

The induced map Q ◦ s ◦ (δ × δ) is given by the formula

([u0 : u1 : u2], [v0 : v1]) �→ [u2v0 : iu0v0 + u2v1 : u1v0 − u2v1 :−4iu0v1 : 2(iu0 + u1)v1].

One real line in δ5(RP 5) is projected by Q to a point: Q : {[u0 : 0 : u2 : 0 : 0 :
u2]} �→ [0 : 1 : 0 : 0 : 0], and this line meets the image of s ◦ (δ × δ) exactly once, at
(s ◦ (δ × δ))(([0 : 0 : 1], [1 : 0])) = [1 : 0 : 0 : 0 : 0 : 0].
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The two-to-one locus of Q ◦ s is Θ = {z0 − iz1 = 0}. The image of δ× δ meets Θ
in the real line {([0 : 0 : 1], [v0 +0i : v1 +0i])}, and the restriction of Q ◦ s to this real
line is one-to-one: ([0 : 0 : 1], [v0 : v1]) �→ [v0 : v1 : −v1 : 0 : 0], so we can conclude
Q ◦ s ◦ (δ × δ) is one-to-one. The singular locus of Q ◦ s is

Σ4 = {z0 − iz1 = z1w0 + z2w1 = 0},

which meets the image of δ × δ in exactly one point, ([0 : 0 : 1], [1 : 0]). To check the
behavior of Q ◦ s ◦ (δ × δ) near that point, consider the restriction to the U20 → V0

neighborhoods:

([u0 : u1 : 1], [1 : v]) �→ [1 : iu0 + v : u1 − v : −4iu0v : 2(iu0 + u1)v].

Its image in V0 is a smoothly embedded graph over the X1, Y1, X2 subspace, and
the graph is tangent to the origin to this subspace, which contains a complex line,
the Z1-axis. So, Q ◦ s ◦ (δ × δ) is an embedding, with exactly one CR singular point.
From a global point of view, this map’s image is clearly different from the image of
the map from Example 5.10, with the double point and a pair of CR singularities.

The implicit equations for the image in the Z1, Z2, Z3, Z4 coordinates of V0 are

{Y2 = 0, Z3 = Z̄2
1 − Z2

1 , Z4 = (Z1 + Z̄1)(Z1 +X2)}.

The image is contained the 5-subspace {Y2 = X3 = 2Y4 + Y3 = 0} of V0, and each
complex line in that subspace is of the form {[1 : Z1 : r2 : ir3 : r4− i

2r3] : Z1 ∈ C}, for
some real r2, r3, r4. The intersection of such a line with the threefold can be found
by solving the system u1 − v = r2, −4iu0v = ir3, 2iu0v + 2u1v = r4 − i

2r3. If r4 �= 0,
then there are at most two intersection points. If r4 = 0 and r3 �= 0, then there is at
most one intersection point, and if r3 = r4 = 0, then the line {[1 : Z1 : r2 : 0 : 0]}
meets the threefold in a union of a real line,

Q ◦ s ◦ (δ × δ) : ([u0 : r2 : 1], [1 : 0]) �→ [1 : iu0 : r2 : 0 : 0],

and a (possibly coincident) point,

(Q ◦ s ◦ (δ × δ))(([0 : 0 : 1], [1 : −r2])) = [1 : −r2 : r2 : 0 : 0].

This gives a local way to distinguish this image from Example 5.10; if a curve lies
in the intersection of a complex line and the threefold in a neighborhood of the CR
singular point, then the curve can only be a real line segment or circular arc, and not
something projectively equivalent to an arc of a hyperbola. This CR singularity is
non-degenerate, and of type (I), in the sense of [7].

Example 5.14. The rank 2 matrix,
[
i 1 0
0 i 1

]
, the generic case (8) of Theorem
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5.4, has a representative coefficient matrix

Q =




i 0 1 0 0 0
0 0 1 i 0 0
0 0 0 i 0 1
0 1 0 0 0 0
0 0 0 0 1 0


 .

The induced map Q ◦ s ◦ (δ × δ) is given by the formula

([u0 : u1 : u2], [v0 : v1]) �→ [iu0v0 + u1v0 : u1v0 + iu1v1 : iu1v1 + u2v1 : u0v1 : u2v0].

One real line in δ5(RP 5) is projected by Q to a point: Q : {[u0 : 0 : u2 : u0 : 0 :
u2]} �→ [1 : 1 : 1 : 0 : 0], and this line is disjoint from the image of s.

The two-to-one locus of Q ◦ s is Θ = {z0 − iz1 − z2 = 0}. The image of δ × δ

meets Θ in the real line {([1 : 0 : 1], [v0 + 0i : v1 + 0i])}, and the restriction of Q ◦ s
to this real line is one-to-one: ([1 : 0 : 1], [v0 : v1]) �→ [iv0 : 0 : v1 : v1 : v0], so we can
conclude Q ◦ s ◦ (δ × δ) is one-to-one. The singular locus of Q ◦ s is

Σ4 = {z0 − iz1 − z2 = z0w0 + (z1 + iz0)w1 = 0},

which is disjoint from the image of δ× δ, so Q ◦ s ◦ (δ× δ) is a totally real embedding.

The restriction to the U20 → V4 neighborhoods is given by

([u0 : u1 : 1], [1 : v]) �→ [iu0 + u1 : u1(1 + iv) : (iu1 + 1)v : u0v : 1].

Its image in V4 is a smoothly embedded graph of quadratic polynomials over the Y0,
X1, X2 3-subspace, and contained in the real 5-subspace {X0 = X1, Y1 = Y2, Y3 = 0}.
Complex lines in V4 not contained in the real 5-subspace can meet the threefold in
a real line or at most two points. The complex lines which are contained in the real
subspace are of the form {[Z0 : Z0 + ir1 : Z0 + r2 + ir1 : r3 : 1] : Z0 ∈ C} for
some real r1, r2, r3, and each such line meets the threefold in at most three points:
there are at most three solutions (u0, u1, v) of the system of equations Z0 = u1 + iu0,
Z0 + ir1 = u1(1 + iv), Z0 + r2 + ir1 = (1 + iu1)v, r3 = u0v. One complex projective
line in CP 4 (out of many) that meets the image (Q◦s◦(δ×δ))(RP 2×RP 1) in exactly
three points is given by choosing (r1, r2, r3) = (2, 1, 0), to get a parametric equation

[z0 : z1] �→ [z0 : z0 + 2iz1 : z0 + (1 + 2i)z1 : 0 : z1],

which meets the image at these three points:

[1 : 1] �→ [1 : 1 + 2i : 2 + 2i : 0 : 1] = (Q ◦ s ◦ (δ × δ))(([0 : 1 : 1], [1 : 2])),

[−1− 2i : 1] �→ [−1− 2i : −1 : 0 : 0 : 1] = (Q ◦ s ◦ (δ × δ))(([−2 : −1 : 1], [1 : 0])),
[−2 : 1] �→ [−2 : −2 + 2i : −1 + 2i : 0 : 1] = (Q ◦ s ◦ (δ × δ))(([0 : −2 : 1], [1 : −1])).
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The existence of such a line is enough to distinguish this image from the totally
real embedding of Example 5.11. The restriction to the U01 → V3 neighborhoods is
similar to the U20 → V4 restriction. To distinguish this image from the totally real
embedding from Example 5.12, it will be enough to show that no complex line meets
this threefold in an ellipse.

The real threefold is contained in the complex projective cubic hypersurface

0 = Z0(Z0Z2 − Z1Z2 + Z1Z3 + Z2
2 − Z2Z3)

−Z3Z
2
4 − iZ4(Z0Z2 + Z0Z3 − Z1Z2 + Z1Z3 + Z2Z3 − Z2

3 ).

So, any complex line that meets the threefold in more than three points must also be
contained in the complex hypersurface. Having seen only real lines and finite sets as
intersections with complex lines in V3∪V4, it remains only to check the complex lines
contained in the intersection of the hypersurface with the complex projective plane
{Z3 = Z4 = 0}. That intersection is {Z3 = Z4 = Z0Z2(Z0 + Z2 − Z1) = 0}, a union
of three lines. The complex line {Z0 = Z3 = Z4 = 0} meets the image in a real line,

Q ◦ s ◦ (δ × δ) : ([0 : u1 : u2], [0 : 1]) �→ [0 : u1 : iu1 + u2 : 0 : 0],

and the complex line {Z2 = Z3 = Z4 = 0} meets the image in another real line,

Q ◦ s ◦ (δ × δ) : ([u0 : u1 : 0], [1 : 0]) �→ [iu0 + u1 : u1 : 0 : 0 : 0],

which is disjoint from the previous real line. The complex line {Z0 +Z2 −Z1 = Z3 =
Z4 = 0} meets the image in exactly two points, (Q ◦ s ◦ (δ × δ))(([0 : 1 : 0], [0 : 1])) =
[0 : 1 : 1 : 0 : 0], and (Q ◦ s ◦ (δ × δ))(([0 : 1 : 0], [1 : 0])) = [1 : 1 : 0 : 0 : 0], which are
on the above real lines.

The following corollaries of Theorem 5.4 summarize some of the observations from
the previous examples. The first one is an analogue of Corollary 4.10.

Corollary 5.15. Given a coefficient matrix P5×6, there exists B ∈ PGL(5,C)
such that one of the two cases holds:

1. the image (B ◦ P ◦ s ◦ (δ × δ))(RP 2 × RP 1) is contained in a real projective
quadratic (Example 5.5) or cubic (Example 5.9) hypersurface in δ4(RP 4), or,

2. there exist a real 5-subspace H of the affine neighborhood V0, and a real linear
coordinate system (x1, x2, x3, x4, x5) for H, such that the intersection of the
image (B ◦ P ◦ s ◦ (δ × δ))(RP 2 × RP 1) and V0 is the real affine variety
{x4 = x1x3, x5 = x2x3} ⊆ H.

The next corollary strengthens the converse part of Proposition 2.12 in the � = 2,
m = 1, n = 4 case. It states that, unlike the cases from Section 4 or Example 2.13,
the r-equivalence class of a matrix P is determined by the image of the induced map
P ◦ s ◦ (δ × δ).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 651-698, December 2008



ELA

698 Adam Coffman

Corollary 5.16. Given coefficient matrices P5×6 and Q5×6, if there exists
B ∈ PGL(5,C) such that the images of Q ◦ s ◦ (δ × δ) and B ◦ P ◦ s ◦ (δ × δ) are the
same, then P and Q are r-equivalent.
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