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FAST COMPUTING OF THE MOORE-PENROSE INVERSE MATRIX∗

VASILIOS N. KATSIKIS† AND DIMITRIOS PAPPAS‡

Abstract. In this article a fast computational method is provided in order to calculate the

Moore-Penrose inverse of full rank m× n matrices and of square matrices with at least one zero row

or column. Sufficient conditions are also given for special type products of square matrices so that

the reverse order law for the Moore-Penrose inverse is satisfied.
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1. Introduction. Let T be a n × n real matrix. It is known that when T is
singular, then its unique generalized inverse T † (known as the Moore-Penrose inverse)
is defined. In the case when T is a real m× n matrix, Penrose showed that there is a
unique matrix satisfying the four Penrose equations, called the generalized inverse of
T . A lot of work concerning generalized inverses has been carried out, in finite and
infinite dimension (e.g., [2, 11]).

In this article, we provide a method for the fast computation of the generalized
inverse of full rank matrices and of square matrices with at least one zero row or
column. In order to reach our goal, we use a special type of tensor product of two
vectors, that is usually used in infinite dimensional Hilbert spaces. Using this type of
tensor product, we also give sufficient conditions for products of square matrices so
that the reverse order law for the Moore-Penrose inverse ([1, 4, 5]) is satisfied.

There are several methods for computing the Moore-Penrose inverse matrix (cf.
[2]). One of the most commonly used methods is the Singular Value Decomposition
(SVD) method. This method is very accurate but also time-intensive since it requires
a large amount of computational resources, especially in the case of large matrices.
In the recent work of P. Courrieu [3], an algorithm for fast computation of Moore-
Penrose inverse matrices is presented based on a known reverse order law (eq. 3.2
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from [11]), and on a full-rank Cholesky factorization of possibly singular symmetric
positive matrices. This is a fast algorithmic process; however, even in the case of rank
deficient matrices, which is the proposed case by the author for the application of this
method, the computation error is large compared to that of the SVD method1 (see
Table 4.2).

In the present manuscript, we construct a very fast and reliable method (see the
ginv function in the Appendix) in order to estimate the Moore-Penrose inverse matrix
of a rank-n tensor-product matrix. The computational effort required for the ginv
function (see Figure 4.1) in order to obtain the generalized inverse is substantially
lower, particularly for large matrices, compared to those provided by the other two
methods (the SVD method and Courrieu’s method). In addition, we obtain reliable
and very accurate approximations in each one of the tested cases (Table 4.2). Also,
from Theorem 3.1, that will be shown in paragraph 3, it is evident that the proposed
method (ginv function), can also be used in the case of full-rank rectangular matrices.
In what follows, we make use of the high-level language Matlab both for calculations of
the generalized inverse of a tensor-product matrix, as well as for testing the reliability
of the obtained results. Specifically, the Matlab 7.4 (R2007a) [9, 10] Service Pack 3
version of the software was used on an AMD Athlon(tm) 64 Processor 3000+ system
running at 1.81GHz with 1.5 GB of RAM memory using the Windows XP Professional
Version 2002 Service Pack 2 Operating System.

2. Preliminaries and notation. We shall denote by R
m×n the linear space of

all m × n real matrices. For T ∈ R
m×n, R(T ) will denote the range of T and N(T )

the kernel of T. The generalized inverse T † (known as the Moore- Penrose inverse) is
the unique matrix that satisfies the following four Penrose equations:

TT † = (TT †)∗, T †T = (T †T )∗, TT †T = T, T †TT † = T †,

where T ∗ denotes the transpose matrix of T.

It is easy to see that R(T †) = N (T )⊥, where TT † is the orthogonal projection
onto R(T ), and that T †T is the orthogonal projection onto N (T )⊥. It is well known
that R(T †) = R(T ∗). The number r = dimR(T ) is called the rank of T and shall be
denoted by r(T ) and 〈 , 〉 denotes the usual inner-product in R

n.

3. The generalized inverse of a tensor-product matrix. According to [12],
for each x ∈ R

k, we consider the mapping

e ⊗ f : R
k → R

k with (e ⊗ f)(x) = 〈x, e〉f,

and assume that {e1, ..., en} and {f1, ..., fn} are two collections of orthonormal vectors
and linearly independent vectors of R

k, n < k, respectively. Then, every rank-n

1The SVD method is implemented in the pinv function of Matlab.
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operator T can be written in the following form

T =
n∑

i=1

ei ⊗ fi.

In the following, we shall refer to this type of tensor product as the tensor-product of
the collections {e1, ..., en} and {f1, ..., fn}. The adjoint operator T ∗ of T is the rank-n
operator T ∗ =

∑n
i=1 fi ⊗ ei.

The tensor-product of two collections of vectors, as defined above, is a linear
operator. Therefore, it has a corresponding matrix representation T . In order to
describe this representation, let us denote by {e1, ..., en} the first n vectors of the
standard basis of R

k, and suppose that the fi’s are in the form :

fi = (fi1, fi2, ..., fik), i = 1, 2, ..., n

then the corresponding matrix T has the vectors fi as columns. So,

T =




f11 f21 ... fn1 0 ... 0
f12 f22 ... fn2 0 ... 0
...

... ...
...

...
...

...
f1k f2k ... fnk 0 ... 0


 .

We shall refer to this matrix T as the tensor-product matrix of the given collec-
tions.

In order to compute the Moore-Penrose inverse of the corresponding tensor-
product matrix, we use the following theorem. For the sake of completeness we
give a sketch of its proof.

Theorem 3.1. [8, Theorem 3.2 ] Let H be a Hilbert space. If T =
∑n

i=1 ei ⊗ fi is
a rank-n operator then its generalized inverse is also a rank-n operator and for each
x ∈ H, it is defined by the relation

T †x =
n∑

i=1

λi(x)ei,

where the functions λi are the solution of an appropriately defined n×n linear system.

Proof. If T =
∑n

i=1 ei ⊗ fi then R(T ) = [f1, f2, ..., fn]2 and R(T †) = R(T ∗) =
[e1, e2, ..., en]. Therefore, for each x ∈ H, we have T †x =

∑n
i=1 λi(x)ei. Hence, in

order to determine T † one must calculate the functions λi, i = 1, 2, ..., n. It holds
that T ∗x = T ∗TT †x, thus we have

2[f1, ..., fn] denotes the closed linear span generated by the vectors f1, ..., fn.
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n∑
i=1

〈x, fi〉ei = T ∗x = T ∗TT †x =
n∑

i=1

n∑
j=1

λj(x)〈fi, fj〉ei.

The last relation leads to the following n × n linear system:

〈x, fi〉 =
n∑

j=1

λj(x)〈fi, fj〉, i = 1, 2, ..., n.

The determinant of the above system is the Gram determinant of the linearly inde-
pendent vectors f1, ..., fn and hence, for each x ∈ H, it has a unique solution where
the unknowns are the functions λi, i = 1, 2, ..., n.

Hence, one has to derive a procedure that will accurately implement the ideas of
Theorem 3.1 in order to determine the generalized inverse of a tensor-product matrix.
In other words, our main concern is to calculate the corresponding λi in the expansion

T †x =
n∑

i=1

λi(x)ei

so that we can provide the generalized inverse T †. In order to reach our goal, the
high-level computational environment of Matlab is employed in our study.

4. The computational method .

4.1. Method presentation and examples. The first step of our approach
consists of constructing two functions named ginv and ginvtest (see Appendix).
The function ginv first calculates the corresponding Gram matrix of the linearly
independent vectors f1, ..., fn

3 and then it solves the appropriately defined n × n

linear system. In particular, for each j = 1, ..., n, the ginv function provides the
corresponding λi(ej) (see Theorem 3.1) in the expansion

T †ej =
n∑

i=1

λi(ej)ei(4.1)

in order to determine the generalized inverse of a given tensor-product matrix T.

Therefore, for each j = 1, 2, ..., n we have λ1(ej), λ2(ej), ..., λn(ej) as a solution of the
corresponding linear system. Then, from (4.1) the generalized inverse T † is having
the following form

3That is, a n × n matrix [aij ], where aij = 〈fi, fj〉, for each i, j = 1, ..., n.
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T † =




λ1(e1) λ1(e2) ... λ1(ek)
λ2(e1) λ2(e2) ... λ2(ek)

...
...

...
...

λn(e1) λn(e2) ... λn(ek)
0 0 ... 0
...

...
...

...
0 0 ... 0




.

Suppose that T is the corresponding matrix representation of a rank-n operator,
then T is a k × k matrix whose first n columns are linearly independent vectors of
R

k, n < k and all the other columns consists of zeros.

Remark 4.1. It is clear, from Theorem 3.1, that our computational method will
restrict in the case of full-rank rectangular and rank-deficient square matrices.

The ginvtest function allows us to compare the accuracy of the proposed method
(ginv function) to that of the SVD method (Matlab pinv function) and on a re-
cent, fast computational method by P. Courrieu [3] (geninv function). The geninv
function is based on a known reverse order law (eq. 3.2 from [11]) and on a full-
rank Cholesky factorization of possibly singular symmetric positive matrices. The
accuracy of the results was examined in error matrices, with the matrix 2-norm,
corresponding to the four properties characterizing the Moore-Penrose inverse (i.e.,
TT † = (TT †)∗, T †T = (T †T )∗, TT †T = T, T †TT † = T †). The results of the gin-
vtest function are organized in a 3× 4 matrix. The first row of this matrix contains
the error results for the SVD method, the second row contains the error results for
the Courrieu’s method and the third row contains the error results of the proposed
method.

The computational effort required to obtain the generalized inverse of a tensor-
product matrix under different parameter configurations (i.e., number of vectors and
dimensions) of the ginv function is substantially less. This is particularly true for large
matrices, when a comparison is made between the results provided by the proposed
method and those provided by the other two methods (SVD method, Courrieu’s
method). In particular, we have used the Matlab function rand in order to produce
m × n matrices of values derived by a pseudorandom, scalar value drawn from a
uniform distribution in the unit interval. Functions ginv and ginvtest (see Appendix)
must be stored for further use. In our work, we stored them in a Matlab-accessible
directory named work. Note that, ginv and ginvtest define functions that accept an
input A, where A denotes a full rank matrix, in a different case the program responds
with an explicit warning. We illustrate an example for a rank-8 tensor-product matrix,
where ei, fi ∈ R

9, i = 1, 2, ..., 9. For the purpose of monitoring the performance, we
also present the execution times as well as the accuracy of the proposed method, the
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SVD method and Courrieu’s method (Table 4.1). The execution times have been
recorded using the Matlab function profile.

Example 4.2. Consider the tensor-product matrix T =
∑8

i=1 ei ⊗ fi, generated
by the linearly independent vectors,




f1

f2

f3

f4

f5

f6

f7

f8




=




11983
895

5634
239

4018
211

3791
336

3661
270

2806
139

2675
233

3587
206

3995
382

12950
1031

1951
79

4361
211

3331
239

2735
162

3553
223

1936
139

10214
471

3809
180

1972
147

4892
295

2492
187

4337
197

4327
177

4700
303

9409
626

6570
317

25988
1485

2563
155

31967
2740

2611
222

2453
235

5224
287

7297
294

4948
245

10341
439

2941
171

36945
2519

430
31

5361
371

3207
134

5648
317

4237
401

4241
352

10467
448

5657
240

6869
288

3823
237

7583
513

2326
111

3099
230

4865
209

8140
391

3618
241

4787
250

1053
64

3955
209

1309
80

11004
635

43507
2510

3389
143

3260
281

2724
133

3853
200

3589
281

5838
419

2167
123

3885
208

2575
133

6517
297

6853
346

3553
274

4647
203




and the vectors e1, ..., e8 of the standard basis of R
9.

Then, T can be represented as a 9×9 matrix whose first 8 columns are the vectors
f1, f2, ..., f8 and the last one (column) consists of zeros.

We proceed with computing the Moore-Penrose inverse of T as follows :

In the command window of Matlab we type a matrix A that contains the nonzero
block of T , i.e. A has the vectors fi, i = 1, 2, ..., 8 as columns. Then, we invoke the
ginv function by typing in the command window:

>> ginv(A)

The results, then, are as follows:
ans =

-912/17887 -129/1654 332/1989 340/4663 -169/2955 217/13563 232/7799 104/1645 -375/2668

229/6452 311/2685 -563/5505 -145/1541 122/4031 -242/4405 135/11093 -504/11765 443/4180

270/14543 226/3443 -93/988 -52/21341 206/2135 -209/8221 114/18613 -203/5305 -190/11351

-65/10176 -287/7155 140/22409 -131/4034 -35/5366 55/7514 683/18664 180/3301 -163/11332

-133/4162 -82/817 455/3792 143/2056 -182/2449 -67/4569 55/11147 218/2649 -128/2899

284/3935 346/7209 -177/2984 -130/30261 -166/12675 -73/2878 243/9074 -107/2715 235/16527

250/10141 115/2947 -489/5335 -175/9103 64/2221 264/3419 -96/745 -412/11707 282/3449

-695/10367 -173/2828 263/2961 94/3353 -108/14549 95/3309 224/9369 -130/5609 -32/18721

therefore the Moore-Penrose inverse T † of T is the following matrix:

T † =




−912
17887

−129
1654

332
1989

340
4663

−169
2955

217
13563

232
7799

104
1645

−375
2668

229
6452

311
2685

−563
5505

−145
1541

122
4031

−242
4405

135
11093

−504
11765

443
4180

270
14543

226
3443

−93
988

−52
21341

206
2135

−209
8221

114
18613

−203
5305

−190
11351

−65
10176

−287
7155

140
22409

−131
4034

−35
5366

55
7514

683
18664

180
3301

−163
11332

−133
4162

−82
817

455
3792

143
2056

−182
2449

−67
4569

55
11147

218
2649

−128
2899

284
3935

346
7209

−177
2984

−130
30261

−166
12675

−73
2878

243
9074

−107
2715

235
16527

250
10141

115
2947

−489
5335

−175
9103

64
2221

264
3419

−96
745

−412
11707

282
3449

−695
10367

−173
2828

263
2961

94
3353

−108
14549

95
3309

224
9369

−130
5609

−32
18721

0 0 0 0 0 0 0 0 0



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In order to test the accuracy of the three methods (i.e., SVD method (pinv),
Courrieu’s method (geninv) and the proposed method (ginv)) we invoke the ginvtest
function by using the command:

>> ginvtest(A)

The cumulative results (execution times, accuracy) are presented in Table 4.1.

Table 4.1

Results for Example 4.2

Time ‖TT†T − T‖2 ‖T†T T† − T†‖2 ‖TT† − (T T†)∗‖2 ‖T†T − (T†T )∗‖2
(seconds)

SVD method 0.004 6.7251 × 10−13 9.3345 × 10−16 1.4001 × 10−14 5.6939 × 10−14

(Matlab pinv)
Courrieu’s method 0.005 4.0811 × 10−12 2.1126 × 10−14 2.2553 × 10−12 8.5285 × 10−14

(geninv)
Proposed method 0.002 9.0576 × 10−15 1.0375 × 10−14 1.5797 × 10−15 7.872 × 10−14

(ginv)

It is apparent that the ginv function provides a practical, accurate and sub-
stantially faster numerical way for the calculation of the Moore-Penrose inverse of a
tensor-product matrix.

Remark 4.3. The Moore-Penrose inverse of a rectangular matrix of size m × n

is a rectangular matrix of size n×m. This can be easily verified in example 4.2 since
the given matrix is a 9 × 9 matrix with a 9 × 8 nonzero block and its generalized
inverse is a 9× 9 matrix with a 8× 9 nonzero block.

It is clear that according to Theorem 3.1, the choice of using the proposed ginv
function depends on the fact that the tensor-product matrix T is rank deficient4.
Hence, the proposed method can also be used for the computation of any given m×n

full-rank real matrix, where m > n. Also, in the case when m < n, one can compute
the transpose matrix T ∗ and then make use of the formula (T ∗)† = (T †)∗. So, in order
to simplify the procedure, the ginv function performs all necessary transpositions in
all cases. Thus, the ginv function can also be used, directly, for the computation of
any given m × n full-rank real matrix. In addition, since the user, does not know, in
general, a priori whether or not the argument he/she provides is rank deficient the
ginv function provides an explicit warning in this case.

4.2. Comparison Results. In this section, we compare the performance of
the proposed method (ginv) to that of the other two algorithms, namely, the SVD
method (pinv) and Courrieu’s method (geninv). In addition, the accuracy of the
results was examined with the matrix 2-norm in error matrices corresponding to the
four properties characterizing the Moore-Penrose inverse (i.e., TT † = (TT †)∗, T †T =

4An n × n matrix T is rank deficient if rank(T ) = m < n.
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(T †T )∗, TT †T = T, T †TT † = T †) and the cumulative results are presented in Table
4.2.

Table 4.2

Error Results for rank-2n matrices, n = 8, 9, 10, 11, 12.

Rank ‖TT†T − T‖2 ‖T†T T† − T†‖2 ‖TT† − (T T†)∗‖2 ‖T†T − (T†T)∗‖2

SVD method 1.765 × 10−12 1.5573 × 10−12 7.2466 × 10−13 6.1911 × 10−13

(Matlab pinv)

Courrieu’s method 28 5.4709 × 10−8 1.8213 × 10−9 4.3151 × 10−10 1.7632 × 10−8

(geninv)

Proposed method 1.7441 × 10−11 1.2075 × 10−11 1.4535 × 10−13 7.2225 × 10−10

(ginv)

SVD method 3.4774 × 10−12 4.7250 × 10−12 1.7556 × 10−12 1.2273 × 10−12

(Matlab pinv)

Courrieu’s method 29 1.0247 × 10−6 4.1029 × 10−8 2.8935 × 10−9 9.7309 × 10−8

(geninv)

Proposed method 9.6675 × 10−11 3.0203 × 10−8 3.9218 × 10−13 6.4164 × 10−9

(ginv)

SVD method 1.5329 × 10−11 9.9524 × 10−12 4.6853 × 10−12 5.3752 × 10−12

(Matlab pinv)

Courrieu’s method 210 5.2165 × 10−6 3.1255 × 10−7 1.0565 × 10−8 9.4435 × 10−7

(geninv)

Proposed method 3.3869 × 10−10 2.3629 × 10−7 7.2036 × 10−13 2.7511 × 10−8

(ginv)

SVD method 3.7990 × 10−10 6.0937 × 10−9 1.5855 × 10−10 1.2520 × 10−10

(Matlab pinv)

Courrieu’s method 211 6.8162 × 10−2 4.4275 × 10−3 3.9699 × 10−5 1.7735 × 10−3

(geninv)

Proposed method 1.7449 × 10−8 5.3528 × 10−4 2.5498 × 10−5 1.9404 × 10−11

(ginv)

SVD method - - - -

(Matlab pinv)

Courrieu’s method 212 1.5743 × 10−5 5.8952 × 10−6 1.8897 × 10−7 1.9087 × 10−9

(geninv)

Proposed method 3.9876 × 10−7 1.219 × 10−8 5.4433 × 10−10 4.1422 × 10−11

(ginv)

The new numerical method, based on the introduction of the ginv function,
enables us to perform fast and accurate estimations of the generalized inverse T † of a
tensor-product matrix for a variety of dimensions. The tested matrices were obtained
using the Matlab function rand and they were all rank deficient with rank 2n for
n = 8, 9, 10, 11, 12. Figure 4.1 shows the time efficiency curves, i.e., the rank of the
tested matrix versus the computation time (in seconds). All algorithms were carefully
implemented and tested in Matlab. After a deep analysis of the results in Figure 4.1
and Table 4.2 one can easily obtain the following conclusions:

5. Conclusions.

1. The geninv method is sensitive to numerical rounding errors, and it has been
observed that it is inaccurate in the computation of generalized inverses of
full-rank ill-conditioned matrices. This remark is also included in [3].
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Fig. 4.1. Time efficiency curves

2. It is notable that for matrices with rank 212 or higher, the SVD method was
not able to produce a numerical result (Matlab produced an ’Out of memory’
message).

3. It is evident, from Table 4.2, that using the ginv function we obtained a
reliable approximation in all the tests that were conducted. At the same
time, it is also clear that we have simplified the procedure to the extent that
the interested user can reach a fast computational solution using a reduced
amount of computational resources. Therefore, the proposed function allows
us for a both fast and accurate computation of the Moore-Penrose inverse
matrix.

4. In line 9 of the ginv function we included a rank test in order to simplify the
use of the proposed Matlab function for the interested user. It is notable that
in our tests the rank test costs more than the 50% of the computational time
that the ginv function took to respond. Therefore, if we are in position to
know more about our input data then, after a slight modification, it is clear
that the ginv function provides a rapid method for computing generalized
inverses.

6. The reverse order law. In this section, we introduce sufficient conditions
so that the generalized inverse of the product of two square rank-n matrices is the
product of the generalized inverses of the corresponding matrices in reverse order.
In general, the well known reverse order law, (AB)−1 = B−1A−1 which holds for
operators and matrices is only known to hold for generalized inverses under certain
conditions. A lot of work has been carried out with respect to conditions so that
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the relationship (AB)† = B†A† holds (e.g.,[1] [5], [7]). The following theorem is a
restatement of a part of R. Bouldin’s theorem 3.1 [1] which is valid for operators and
matrices.

Theorem 6.1. Let A, B be bounded operators with closed range on a Hilbert
space H. Then (AB)† = B†A† if and only if the following three conditions hold:

(i) The range of AB is closed,
(ii) A†A commutes with BB∗,
(iii) BB† commutes with A∗A.

Since in the case of matrices the range is always closed, the first condition of this
theorem always holds.

Proposition 6.2. Let T1 =
n∑

i=1

ei ⊗ fi and T2 =
n∑

i=1

e′i ⊗ f ′
i be two tensor-product

matrices. If [f ′
1, ..., f

′
n] = [e1, ..., en], then (T1T2)† = T †

2 T †
1 .

Proof. It is well known that, R(TT ∗) = R(T ) and R(T ∗T ) = R(T ∗). Therefore,
R(T2T

∗
2 ) = R(T2) = [f ′

1, ..., f
′
n] and R(T ∗

1 T1) = R(T ∗
1 ) = [e1, ..., en]. In order to prove

condition (ii) of Theorem 6.1 we have to show that T+
1 T1 commutes with the matrix

T2T
∗
2 . Indeed, since T +

1 T1 is the projection matrix on R(T +
1 ) = R(T ∗

1 ) = [e1, ..., en],
this is equivalent to [e1, ..., en] be invariant from T2T

∗
2 . By the relation

R(T2T
∗
2 ) = R(T2) = [f ′

1, ..., f
′
n] = [e1, ..., en]

it is evident that condition (ii) of Theorem 6.1 holds.

In order to prove condition (iii) of Theorem 6.1 we use similar arguments as
before, i.e., we must show that T2T

+
2 , which is the projection matrix on R(T2) =

[f ′
1, ..., f

′
n], commutes with T ∗

1 T1, or else that the subspace [f ′
1, ..., f

′
n] is invariant

under T ∗
1 T1, which holds from R(T ∗

1 T1) = R(T ∗
1 ) = [e1, ..., en].

By the above proposition, it is clear that only the placement of the non-zero
columns plays a role on the inverse order law. Note that the law does not depend on
the actual entries of the first matrix. We justify the situation with a simple example:

Example 6.3. Let T1 and T2 be two tensor-product matrices of R
5×5, where

T1 =
∑3

i=1 ei ⊗ fi is a rank-3 tensor-product matrix, with

e1 = (1, 0, 0, 0, 0), e2 = (0, 1, 0, 0, 0), e3 = (0, 0, 1, 0, 0),

and

f1 = (1, 3, 5, 6, 7), f2 = (2, 4, 3, 7, 6), f3 = (1, 8, 7, 5, 6).
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Then, T1 =




1 2 1 0 0
3 4 8 0 0
5 3 7 0 0
6 7 5 0 0
7 6 6 0 0




.

Let T2 =
∑3

i=1 e′i ⊗ f ′
i be another rank-3 tensor-product matrix, with

e′1 = (0, 0, 0, 0, 1), e′2 = (0, 0, 0, 1, 0), e′3 = (0, 0, 1, 0, 0),

and

f ′
1 = (1, 2,−2, 0, 0), f ′

2 = (4, 0, 2, 0, 0), f ′
3 = (0, 0,−1, 0, 0).

Then, T2 =




0 0 0 4 1
0 0 0 0 2
0 0 −1 2 −2
0 0 0 0 0
0 0 0 0 0




.

In order to prove that [e1, e2, e3] = [f ′
1, f

′
2, f

′
3], we shall use the Matlab rref

function which produces the reduced row echelon form of the given matrix using
Gauss Jordan elimination with partial pivoting. In particular, we use the following
code:

d=[1 0 0 0 0;0 1 0 0 0;0 0 1 0 0;...

1 2 -2 0 0;4 0 2 0 0;0 0 -1 0 0];

v=rref(d)

Then, the results are as follows:

v =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

which implies that [e1, e2, e3] = [f ′
1, f

′
2, f

′
3].

On the other hand, using the ginv function it is easy to prove that
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(T1T2)† =




0 0 0 0 0
0 0 0 0 0

−296
1331

−1136
2645

534
1601

−267
1298

619
2747−269

5856
−130
1649

787
9951

−143
3664

461
8694

149
2099

263
4347

−253
2114

2577
26801

−133
4030




= T †
2 T †

1

7. Appendix: Matlab code of the ’ginv’, ’ginvtest’ functions.

The ginv function

function ginv = ginv(X)

%Returns the Moore-Penrose inverse of the argument

if isempty(X)

quick return

ginv = zeros(size(X’),class(X));

return

end

[n,m]=size(X);

if rank(X) < min(n,m);

error(’matrix must be of full rank’);

else

if n > m,

C = X’*X ;

ginv = C\X’;

else

C = X*X’;

G = C\X;

ginv = G’;

end

end

The ginvtest function

function Ginvtest = ginvtest(E)

%Returns the recorded errors for each one of the three

%tested methods.

format short e

G1 = pinv(E); %SVD method
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G2 = geninv(E); %Courrie’s method

G3 = ginv(E); %Proposed method

%The error matrices for each one of the previous methods.

D1 = E*G1*E-E;

D2 = G1*E*G1-G1;

D3 = (E*G1)’-E*G1;

D4 = (G1*E)’-G1*E;

F1 = E*G2*E-E;

F2 = G2*E*G2-G2;

F3 = (E*G2)’-E*G2;

F4 = (G2*E)’-G2*E;

R1 = E*G3*E-E;

R2 = G3*E*G3-G3;

R3 = (E*G3)’-E*G3;

R4 = (G3*E)’-G3*E;

%The accuracy of the algorithms were tested

%with the matrix 2-norm.

Pinverror1 = norm(D1,2);

Pinverror2 = norm(D2,2);

Pinverror3 = norm(D3,2);

Pinverror4 = norm(D4,2);

Geninverror1 = norm(F1,2);

Geninverror2 = norm(F2,2);

Geninverror3 = norm(F3,2);

Geninverror4 = norm(F4,2);

Ginverror1 = norm(R1,2);

Ginverror2 = norm(R2,2);

Ginverror3 = norm(R3,2);

Ginverror4 = norm(R4,2);

Ginvtest = [Pinverror1 Pinverror2 Pinverror3...

Pinverror4;Geninverror1 Geninverror2 Geninverror3...

Geninverror4;Ginverror1 Ginverror2 Ginverror3 Ginverror4];
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