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Abstract. In this paper, it is proven that every multiplicative bijective map, Jordan bijective
map, Jordan triple bijective map, and elementary surjective map on triangular algebras is automat-
ically additive.
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1. Introduction and Preliminaries. If a ring R contains a nontrivial idem-
potent, it is kind of surprising that every multiplicative bijective map from R onto
an arbitrary ring is automatically additive. This result was given by Martindale III
in his excellent paper [10]. More precisely, he proved:

THEOREM 1.1. ([10]) Let R be a ring containing a family {eq : o € A} of
idempotents which satisfies:

(i) 2R = {0} implies x =0,
(ii) IfeaRx = {0} for each o € A, then x =0 (and hence Rx = {0} implies x = 0),
(iii) For each o € A, eqre,R(1 — eq) = {0} implies eqxeq, = 0.

Then any multiplicative bijective map from R onto an arbitrary ring R’ is addi-
tive.

Note that the proof of [10] has become a standard argument and been applied
widely by several authors in investigating the additivity of maps on rings as well as
on operator algebras (see [4]-[9]). Following this standard argument (see [10]), in
this paper we continue to study the additivity of maps on triangular algebras. We
will show that every multiplicative bijective map, Jordan bijective map, Jordan triple
bijective map, and elementary surjective map on triangular algebras is additive.

We now introduce some definitions and results.
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DEFINITION 1.2. Let R and R’ be two rings, and ¢ be a map from R to R'.
Suppose that a,b, and ¢ are arbitrary elements of R.

(i) ¢ is said to be multiplicative if

p(ab) = ¢(a)p(b).
(ii) ¢ is called a Jordan map if

p(ab +ba) = ¢(a)p(b) + ¢(b)p(a).

(iii) ¢ is called a Jordan triple map if

p(abe + cba) = p(a)p(b)¢(c) + d(c)p(b)p(a).

It was proved in [9] that if A is a unital prime algebra containing a nontrivial
idempotent, or A is a unital algebra which has a system of matrix units, or A is a
standard operator algebra on a Banach space, then every bijective Jordan map on A
is additive. Lu also showed in [8] that each bijective Jordan triple map on a standard
operator in a Banach space is additive.

DEFINITION 1.3. ([2]) Let R and R’ be two rings. Suppose that M: R — R’
and M*: R’ — R are two maps. Call the ordered pair (M, M*) an elementary map
of R x R if

{ M (aM*(x)b) = M(a)zM (b),
M*(xM(a)y) = M*(x)aM*(y)

for all a,b € R and z,y € R'.

Elementary maps were originally introduced by Bresar and Serml in their nice
paper [2]. There are many examples of elementary maps. It is obvious that, if ¢: R —
R’ is an isomorphism, then (¢, ¢~ !) is an elementary map on R x R'. For a,b € R,
let M, p(x) = azb for x € R. Then one can verify that (M, My ) is an elementary
map on R X R. The additivity of elementary maps on operator algebras were studied
in [2], [1], [6], and [11]. Li and Lu ([6]) also studied the additivity of elementary maps
on prime rings. It was proved in [5] that if (M, M*) is a Jordan elementary map of
R xR/, where R is a 2-torsion free prime ring containing a nontrivial idempotent and
R’ is an arbitrary ring, then both M and M* are additive.

Recall that a triangular algebra Tri(A, M, B) is an algebra of the form

a m

Tri(A,M,B) = {( 0 b

>:aeA,meM,beB}
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under the usual matrix operations, where A and B are two algebras over a commu-
tative ring R, and M is an (A, B)-bimodule which is faithful as a left .A-module and
also as a right B-module (see [3]).

Let 7 = Tri(A, M, B) be a triangular algebra. Throughout this paper, we set

711—{(8 8>:aeA},

and

Then we may write 7 = 711 & 712 @ 722, and every element a € 7 can be written
as a = ai1 + a12 + aze. Note that notation a;; denotes an arbitrary element of 7;;.
It should be mentioned here that this special structure of triangular algebras enables
us to borrow the idea of [10] while we do not require the existence of nontrivial
idempotents.

Let X be a Banach space. We denote by B(X) the algebra of all bounded linear
operators on X. A subalgebra A of B(X) is called a standard operator algebra if A
contains all finite rank operators. Note that if A € A and AA = {0} (or AA = {0}),
then A = 0.

2. Additivity of Multiplicative Maps. The aim of this section is to study
the additivity of multiplicative maps on triangular algebras. We now state our first
main result.

THEOREM 2.1. Let A and B be two algebras over a commutative ring R, M be a
faithful (A, B)-bimodule, and T be the triangular algebra Tri(A, M, B). Suppose that
A, B, and M satisfy:

(i) Forac A, if aA={0}, or Aa = {0}, then a =0,
(ii) Forbe B, if bB= {0}, or Bb = {0}, then b=0,
(iii) For m € M, if Am = {0}, or mB = {0}, then m = 0.

Then any multiplicative bijective map from T onto an arbitrary ring R’ is additive.

The proof of this theorem is organized into a series of lemmas. In what follows,
¢ will be a multiplicative bijective map from 7 onto an arbitrary ring R’'.

LEMMA 2.2. ¢(0) =0.
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Proof. Since ¢ is surjective, there exists a € 7 such that ¢(a) = 0. Then
$(0) = $(0-a) = $(0)p(a) = ¢(0)- 0= 0. O

LEMMA 2.3. For any ay1 € 711 and bys € 112, we have

d(ar11 + b12) = d(a11) + ¢(b12).

Proof. Let ¢ € T be chosen such that ¢(c) = ¢(a11) + ¢(b12).

For arbitrary t11 € 711, we consider

o(ct11) = d(c)p(ti1) = (¢(a11) + ¢(bi2))d(t11)
= ¢(a11)(t11) + ¢(b12)@(t11) = Paiitiy).

Hence, ct11 = aq1t11, and so ¢11 = aq1.
Similarly, we can get cog = 0.

We now show that ci1o = bio. For any t11 € 717 and sa2 € 752, we obtain

P(t11cs22) = ¢(t11)(c)P(s22) = @(t11)(P(a11) + d(b12))(s22) = d(t11b12522).
It follows that t11cs90 = t11b12822, which gives us that c1o = b1, O
Similarly, we have the following lemma.

LEMMA 2.4. For arbitrary ase € Taa and bio € Tha, the following holds true.

d(az2 + b12) = ¢(az2) + ¢(b12).

LEMMA 2.5. For any a1y € 711, bia, c12 € T12, and dao € Toa, we have

¢d(a11b12 + c12da2) = d(a11b12) + P(c12d22).

Proof. By Lemma 2.3 and Lemma 2.4, we have

d(a11b12 + c12do2) = ¢((@11 + c12)(b12 + da2))

= ¢(a11 + c12)P(bi2 + d22) = (¢(a11) + ¢(c12))(4(b12) + ¢(d22))
P(a11)p(bi2) + ¢p(a11)p(da2) + ¢(c12)9(b12) + ¢(c12)(d22)
@d(a11b12) + @(c12d22). O

LEMMA 2.6. ¢ is additive on Tq5.
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Proof. Suppose that a15 and by are two elements of 7. We pick ¢ € 7 such that
o(c) = ¢(ar2) + ¢(b12). For any t11 € 711 and s92 € Taa, we compute

B(ti1cs2z) = ¢(t11)B(c)p(s22) = d(t11)(P(a12) + ¢(b12))P(s22)
= ¢(t11)P(a2)p(s22) + ¢(t11)d(b12)P(s22) = d(t11a12522 + t11b12522).

Note that in the last equality we apply Lemma 2.5. It follows that ti1cs00 =
t11a12822 + 11012522, and so c12 = a1z + bia.

We can get c11 = co2 = 0 by considering ¢(ct11) and ¢(taac) for arbitrary t11 € 711
and too € 739 respectively. O

LEMMA 2.7. ¢ is additive on T11.

Proof. For ai1,b11 € Ti1, let ¢ € T be chosen such that ¢(c) = ¢(a11) + ¢(b11).
We only show that c¢11 = a11 + b11. One can easily get cao = ¢12 = 0 by considering
@(taac) and ¢(t11¢822) for any t11 € 711 and tag, s20 € Too.

For any t12 € 712, using Lemma 2.6, we get
P(ctr2) = d(c)9(t12) = (¢(a11) + (b11))p(t12)
= ¢(a11ti2) + ¢(b11t12) = ¢d(ar1ti2 + bi1tia),
which leads to cti12 = aj1t12 + bi1t12. Accordingly, ¢11 = ay1 + by1. O

Proof of Theorem 2.1: Suppose that a and b are two arbitrary elements of 7.
We choose an element ¢ € 7 such that ¢(c) = ¢(a) + ¢(b). For any t1; € 711 and
s99 € T39, using Lemma 2.6, we obtain

P(t11cs22) = d(t11)p(c)d(s22) = d(t11)(P(a) + ¢(b))p(s22)

(t11)¢(a)p(s22) + ¢(t11)p(b)B(s22)
(ti1as22) + ¢(t11bs22) = p(t11as22 + t11bs22).

< ©

Consequently, ¢1o = a2 + bia.

Since ¢ is additive on 711, we can get ¢11 = a11 + b1y from @(ct11) = ¢p(atiy) +
P(bt11) = ¢(atir + btia).

In the similar manner, one can get cos = ass + baa. The proof is complete. 0O
If algebras A and B contain identities, then we have the following result.

COROLLARY 2.8. Let A and B be two unital algebras over a commutative ring
R, M be a faithful (A, B)-bimodule, and T be the triangular algebra Tri(A, M, B).
Then any multiplicative bijective map from R onto an arbitrary ring R’ is additive.

We end this section with the case when A and B are standard operator algebras.
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COROLLARY 2.9. Let A and B be two standard operator algebras over a Ba-
nach space X, M be a faithful (A,B)-bimodule, and T be the triangular algebra
Tri(A, M, B). Then any multiplicative bijective map from R onto an arbitrary ring
R’ is additive.

3. Additivity of Jordan (Triple) Maps. In this section we deal with Jordan
maps and Jordan triple maps on triangular algebras.

Throughout this section, 7 = Tri(A, M, B) will be a triangular algebra, where
A, B are two algebras over a commutative ring R and M is a faithful (A, B)-bimodule
satisfying:

(i) Ifae Aand ax+ za =0 for all x € A, then a =0,
(i) Ifbe Band by+ yb=0 for all y € B, then b =0,
(iii) For m € M, if Am = {0}, or mB = {0}, then m = 0.

Map ¢ is a Jordan bijective map from 7 onto an arbitrary ring R’.
We begin with the following lemma.
LEMMA 3.1. ¢(0) =0

Proof. Pick a € T such that ¢(a) = 0. Then ¢(0) = ¢p(a-0+0-a) = ¢(a)p(0) +
¢(0)¢(a) = 0. 0

LEMMA 3.2. Suppose that a,b,c € T satisfying ¢(c) = ¢(a) + ¢(b), then for any
teT

d(tc+ct) = ¢(ta + at) + ¢(tb + bt).

Proof. Multiplying ¢(c) = ¢(a) + ¢(b) by ¢(t) from the left and the right respec-
tively and adding them together, one can easily get ¢(tc+ct) = ¢p(ta+at)+¢(tb+bt). O

LEMMA 3.3. For any ai1 € T11 and bis € T12, we have

d(ar11 + b12) = d(a11) + ¢(b12).

Proof. Let ¢ € T be chosen such that ¢(c) = ¢(a11) + ¢(b12). Now for any
tag € Ta9, by Lemma 3.2, we have

P(tazc + ctaz) = p(taza11 + aritez) + P(taobia + biataz) = P(b1ataz).

It follows that togc + ctog = biotas, i.e., taaCos + Cc1ataa + Cootos = biatae. This implies
that 012t22 = b12t22 and t22022 + CQQtQQ = 0, and so C12 — b12 and Co2 — 0.
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From

(t12c + ct12) = d(t12a11 + ar1ti2) + P(t12b1a + biat12) = d(a11ti2),
one can get c11 = aq1. O
Similarly, we have the following lemma.

LEMMA 3.4. For arbitrary a12 € T1o and bay € Tao, the following is true.

d(a12 + baz) = d(a12) + P(ba2).

LEMMA 3.5. ¢(a11b12 + c12do2) = @d(a11b12) + ¢(c12da2) holds true for any a11 €
T, bia,c12 € Tiz, and dao € Tao.

Proof. By Lemma 3.3 and Lemma 3.4, we compute

¢d(a11b12 + c12d22)

= ¢((a11 + c12)(b12 + da2) + (b12 + da22)(a11 + c12))

d(a11 + c12)p(bi2 + da2) + ¢(b12 + da2)p(a1r + ci2)

= (¢(a11) + ¢(c12))(@(b12) + ¢(da2)) + (#(b12) + ¢(d22))(¢(a11) + d(c12))

@d(a11b12 + bi2a11) + d(ar1das + dazar1) + (ciabia + biaciz) + ¢(ciadaz + dazcia)
= ¢(a11b12) + ¢(c12d2). O

LEMMA 3.6. ¢ is additive on Tqs.

Proof. Let a12 and b2 be any two elements of 715. Since ¢ is surjective, there
exists a ¢ € T such that ¢(c) = ¢(ai2) + ¢(b12).

Now for any ts2 € 7392, by Lemma 3.2, we obtain
@(taac + ctaa) = p(tazai2 + aiatas) + G(tazbi2 + biataz) = P(aiataz) + d(biataz).
Again, using Lemma 3.2, for any s1; € 711, we have

(511 (ta2c + ctaz) + (tazc + ctaz)s11)
= @(s11a12t22 + a12tensiy) + P(s11b1atas + biatazsii)
= ¢(s11a12t22) + d(s11b12t22) = P(s11a12t22 + S11b12t22).

In the last equality we apply Lemma 3.5. It follows that
s11€12t22 = S11a12t22 + S11b12t22.

This gives us c12 = a1z + b1a.
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To show c¢11 = 0, we first consider ¢(t11¢ + ct11) for any t11 € T11. We have

o(tic+ ct11) = ¢(t11a12 + arzti1) + ¢(t11bio + biat11) = d(t11a12) + d(t11b12).

Furthermore, for arbitrary s1o € 719,

d(s12(tiic+ cti1) + (tiic + cti)s12)
= ¢(s12t11a12 + t11a12512) + @(s12t11b12 + t11b12512) = 0.

This implies that t11¢11812 + ¢11t11812 = 0, and so ¢11 = 0.

Note that (b(tlgc—i—ctlg) = ¢(t126l12+a12t12)+¢(t12b12+b12t12) = 0. Now, ca0 =0
follows easily. O

LEMMA 3.7. ¢ is additive on Tq1.

Proof. Suppose that a;; and by are two arbitrary elements of 771. Let ¢ € 7 be
an element of 7 such that ¢(c) = ¢(a11) + P(b11).

For any too € Too, we get
G(taac + ctao) = P(tazar1 + aritaz) + ¢(tazbi1 + biitae) = 0.
Therefore, tooc + ctao = 0, which leads to ¢12 = co2 = 0.

Similarly, we can get c¢17 = a1 + b1 from

o(ti2c + cti2) = P(ti2a11 + anti2) + @(t12bi1 + bi1ti2)
= ¢(aiitiz) + ¢(briti2) = dlaritiz + biiti2). O

LEMMA 3.8. ¢ is additive on Tas.

Proof. For any age,bes € Taa, by the surjectivity of ¢, there is ¢ € 7 satisfying
d(c) = d(az2) + ¢(b22)-

Now, for any t11 € 771, by Lemma 3.2, we have
d(tiic+ ctin) = P(tiage + azti1) + @(t11bae + baacir) = 0.
This implies that t11¢11 + t11¢12 + ¢11t11 = 0. And so ¢17 = 0 and ¢12 = 0.

Similarly, we can get coo = asa + bao by considering ¢(t12¢ + ct12) for any t12 €
Ti2. 0

LEMMA 3.9. For each a11 € T11 and bas € T, we have

¢(a11 + baz) = ¢(ar1) + ¢(ba2).
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Proof. Since ¢ is surjective, we can pick ¢ € 7 such that ¢(c) = ¢(a11) + d(ba2).

Considering ¢(t11¢+ ct11) and ¢(toac+ ctag) for arbitrary €11 € 711 and tes € Taa,
one can infer that ci;1 = a1, c12 = 0, and cog = bgo. O

LEMMA 3.10. For any a1 € 7—11, big € 7—12, and coo € 7—22,

(a1 + bia + c22) = d(ar1) + ¢(b12) + d(c22).

Proof. Let d € T be chosen such that ¢(d) = ¢(a11) + ¢(b12) + ¢(ca2). On one
hand, by Lemma 3.3, we have

¢(d) = ¢(arr + bi2) + P(c22).

Now for any t17 € 771, we obtain

d(t11d + dti1) = (t11(a1r + bi2) + (a1 + b12)t11) + P(t11ce2 + cantir)
= ¢(t11a11 + t11b12 + a11t11),

which gives us

tiidin + tindiz + diitin = tiiann + tibiz + arntia.
I{QHCQ7 d11 = ali and d12 = blg.

On the other hand, by Lemma 3.9, we see that

é(d) = ¢(ar1 + c22) + ¢(b12)-
For any t12 € 712, we have
O(t12d + dt12) = P(t12(a11 + c22) + (a11 + ca2)t12) + @(t12b12 + bi2t12)
= ¢(t12¢22 + a11t12)-
We can infer dos = coo from the fact that t1od + dt12 = t12¢90 + a11t12. O
We are in a position to prove the main result of this section.

THEOREM 3.11. Let T = Tri(A, M, B) be a triangular algebra, where A, B are
two algebras over a commutative ring R and M is a faithful (A, B)-bimodule. Suppose
that A, B, and M satisfy:

(i) Ifae Aandax+za=0 for allz € A, then a =0,
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(i) Ifbe B andby+yb=0 for ally € B, then b= 0,
(iii) For m € M, if Am = {0}, or mB = {0}, then m = 0.

Let ¢ be a Jordan map from T to an arbitrary ring R, i.e., for any s,t € T,
p(st +ts) = ¢(s)P(t) + o(t)o(s).
If ¢ is bijective, then ¢ is additive.

Proof. For arbitrary s and t in 7. We write s = $11+812+822 and t = t11+t19+122.
We compute

d(s+1t) = Pp((s11 + s12 + s22) + (t11 + t12 + t22))
d((s11 + t11) + (512 + t12) + (S22 + t22))
(
(

d(s11 + t11) + P(s12 + t12) + (S22 + ta2)

511) + ¢(t11) + d(s12) + d(t12) + d(s22) + H(t22)

= (#(s11) + @(s12) + d(s22)) + (P(t11) + P(t12) + P(t22))
= ¢(s) + o(t).

The proof is complete. O

We only outline the proof of the following result as it is a modification of that of
the related results for the case of Jordan mappings. We also want to mention here
there the assumptions on algebras 4 and B in the following theorem are different
from these in Theorem 3.11.

THEOREM 3.12. Let A and B be two algebras over a commutative ring R, M
be a faithful (A, B)-bimodule, and T be the triangular algebra Tri(A, M, B). Suppose
that A, B, and M satisfy:

(i) Forac A, if aA={0}, or Aa = {0}, then a =0,
(ii) Forbe B, if bB= {0}, or Bb = {0}, then b=0,
(iii) For m € M, if Am = {0}, or mB = {0}, then m = 0.

Let 1) be a Jordan triple map from T to an arbitrary ring R', i.e., for any r,s,t € T,

Y(rst +tsr) = Y(r)e(s)Y(t) +(t)p(s)p(r).
If 1 is bijective, then i is additive.
Proof. We divide the proof into a series of steps.

Step 1. ¥(0) =0.
We find a € 7 such that 1(a) = 0. Then (0) =¢(0-a-0)+4%(0-a-0) =
¥(0)(a)y(0) + 1(0)y(a)y(0) = 0.
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Step 2. If ¢(c) = ¢¥(a) + ¢ (b), then
Y(ste+ cts) = (sta + ats) + ¥ (sth + bts)

holds true for all s,t € 7.
One can get this easily by modifying the proof of Lemma 3.2.
Step 3. (a1 + bi2) = ¥ (a11) + ¥ (b12) and ¢ (a12 + baz) = ¢(a12) + ¥(b22).
We only show ©(a11 + b12) = ¥(a11) + ¥(b12). Similarly we can get ¥ (a2 +

baz) = Y(a12) + ¥ (ba2).
Let ¢ € T be chosen such that 1(c) = ¢(a11) + ¥(b12). Then by Step 2, for
any s,t € T, we have

(3.1) P(ste + cts) = P(starr + a11ts) + Y(stbia + biats).
Let s = 811 € 711 and t = t15 € 712 in the above equality, we have
Y(s11tiec + ct12811) = Y(s11t12a11 + a11t12511) + Y (S11t12b12 + b12t12811).

Consequently, ¥ (s11t12¢22) = 0. Therefore, s11t12¢20 = 0. Since s11 and t12
are arbitrary, we get coo = 0. Note that here we use the fact that M is a
faithful (A, B)-bimodule.

Let s = s99 € Tog and t = t12 € T12, equality (3.1) turns to be

P (Saatiac + cti2822) = Y (Sa2tia11 + a11t12522) + ¥ (Sa2t12b12 + b12t12822),

this leads to w(clltlgsgg) = w(alltlgsgg). Therefore, 611ﬁ12822 = a11t12822,
which implies that ¢11 = a11.
Now let s = s92 € Ta9 and t = a9 € Too in identity (3.1), we get

P (Saatanc + ctoosan) = 1 (Saatanar + a11tazsaz) + V¥(Saatazbia + biataasas).

This yields that ¥ (ciateasas) = ¥ (biatessas). Accordingly, c¢12 = bys.
Step 4. Y(t11a11b12 + ti1c12da2) = Y(t11a11bi2) + Y (ti1c12d22).

We compute
Y(t11a11b12 + t11¢12d22)
P(ti1(arn + ci2)(bi2 + d22) + (b12 + d22)(a11 + c12)t11)
Y(t11)(ann + c12)P(biz + da2) + ¥(bi2 + d2a)(ain + c12)Y(t11)
P(t11)(Y(ar1) + ¥(c12)) (¥ (br2) + ¥ (d22))
+(h(b12) + ¥(da2))(Y(a11) + P (c12))(t11)
= P(tiranbiz + bizaritin) + P (tinairdaz + dazartay)

+(t11ci2bia + biaciatin) + Y (tiiciadaz + daaciatan)

= (t11a11b12) + P(t11¢12d22).
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Step 5. v is additive on 712,771, and Zos.

We only show that v is additive on 735. Choose ¢ € T such that ¥(c) =
¥(a2) + ¥(b12). For any s11 € 711 and ¢15 € 712, by Step 2, we have

Y(s11tiac + cti2s11) = Y(s11t12a12 + a12ti2511) + Y(s11t12b12 + biat12511).

Then we get ¥(s11t12¢22) = 0, which leads to s11t12¢22 = 0. Hence coo = 0.
Similarly, considering s = soo € 729 and t = t12 € 712, we obtain ¢;; = 0.

We now show that cjo = ajg + b1a.
For any s = 893 € T35 and t = ta3 € 722, by Step 2, we have

P (ciatansen) = Y(aiataas2e) + ¥ (biatazsas).

Applying Step 2 to the above identity for arbitrary e, f11 € 711, we obtain

Y(e11 fiiciatazsan + crataasaa fiienn)
= ¢(e11 fr1a12t22822 + ar2tazsaa fr1€11)
+1p(e11 fr1bi2taas2a + biataasaa fr1€11)
= 1p(e11 firaiataases) + ¥(e1n fr1b12tazs22)

= 1(e11 fr1a12ta2522 + €11 fi1biatansa2).
Note that in the last equality we apply Step 4. Now we obtain that
Y(er1 friciataasas) = Y(err fi1aiatansea + €11 fr1bi2t22522).

Therefore, we can infer that ci1o = a2 + bio.
Step 6. ¥(a11 + baz) = Y(a11) + ¢¥(ba2).

Pick ¢ € 7 with ’Lﬂ(c) = w(an) + ’Lp(bgg)

For any s,t € 7, applying Step 2, we have

(3.2) P(ste + cts) = P(starr + a11ts) + (stbag + baots).
Let s = s90 € T2 and t = t15 € 712, then above identity becomes

P(cr1tizs22) = P(a11ti2522)-

This yields that ¢11 = a11.

Similarly, by letting s = s17 € 771 and t = t12 € 712, s = s11 € 711 and
t =t11 € 711 in equality (3.2) respectively, we can get co2 = beo and ¢12 = 0.

Step 7. (a1 + b1z + c22) = Y(a11) + ¢¥(b12) + P (c22).
Similar to Step 6 and the proof of Lemma 3.10.
Step 8. ¥ is additive.
The same as the proof of Theorem 3.11. O
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The following corollary follows directly if both A and B are unital.

COROLLARY 3.13. Let A and B be two unital algebras over a commutative ring
R, M be a be faithful (A, B)-bimodule, and T be the triangular algebra Tri(A, M, B).
Suppose that 1 is a Jordan triple map from T to an arbitrary ring R'. If 1 is bijective,
then 1 is additive.

Similar to Corollary 2.9, if both A and B are standard operator algebras, we have:

COROLLARY 3.14. Let A and B be two standard operator algebras over a Ba-
nach space X, M a be faithful (A,B)-bimodule, and T be the triangular algebra
Tri(A, M, B). Then any Jordan triple bijective map from R onto an arbitrary ring
R’ is additive.

4. Additivity of Elementary Maps. In this section we will prove the following

result about the additivity of elementary maps on triangular algebras.

THEOREM 4.1. Let R’ be an arbitrary ring. Let A and B be two algebras over a
commutative ring R, M be a faithful (A, B)-bimodule, and T be the triangular algebra
Tri(A, M, B). Suppose that A, B, and M satisfy:

(i) Forac A, if aA={0}, or Aa = {0}, then a =0,
(ii) Forbe B, if bB= {0}, or Bb = {0}, then b=0,
(iii) For m € M, if Am = {0}, or mB = {0}, then m = 0.

Suppose that (M, M*) is an elementary map on T X R', and both M and M* are
surjective. Then both M and M™* are additive.

For the sake of clarity, we divide the proof into a series of lemmas. We begin with
the following trivial one.

LEMMA 4.2. M(0) =0 and M*(0) = 0.

Proof. We have M (0) = M(0M*(0)0) = M(0)0M (0) = 0.
Similarly, M*(0) = M*(0M (0)0) = M*(0)0M*(0) =0. O

The following result shows that both M and M™ are bijective.
LEMMA 4.3. Both M and M* are injective.

Proof.  Suppose that M(a) = M(b) for some ¢ and b in 7. We write a =
ai1 + a1z + agz and b = b1y + b1z + baa.

For arbitrary z and y in R’, we have

M*(z)aM*(y) = M*(xM(a)y) = M*(zM(b)y) = M (x)bM"(y).
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This, by the surjectivity of M*, is equivalent to
(4.1) sat = sbt

for arbitrary s,t € 7.

In particular, letting s = s11,t = t11 € 711 in equality (4.1), we get s11a11t11 =
s11b11t11. And so, by condition (i) in Theorem 4.1, a;; = b11.

Similarly, we can get asa = bes by letting s = s92 and t = t9 in identity (4.1).

We now show that a12 = by2. For any s11 € 711 and tog € Tz, then equality (4.1)
becomes Sllatgg = 511bt22, i.e., 811a12t22 = 511b12t22. Therefore a1 = b12.

To complete the proof, it remains to show that M™* is injective. Let x and y be
in R’ such that M*(z) = M*(y). Now for any a,b € 7, we have

M*M (a)M~*(x) M* M (b)
= M*(M(a)MM ()M (b)) = M* (M (a)zM (b))
= M*M(aM*(z)b) = M*M (aM*(y)b) = M*(M (a)yM (b))
= M*(M(a)MM " (y)M (b)) = M* M ()M~ (y) M* M (b).

Thus
M*M(a)M ™ (2)M*M(b) = M* M (a)M ~*(y)M* M (b).

Equivalently,

for any s,t € T since M*M is surjective.

It follows from the same argument above that M ~1(x) = M ~(y), and so = = y,
as desired. O

LEMMA 4.4. The pair (M*fl,M_l) is an elementary map on T x R'. That is,
{ M (@M~ (2)b) = M* (@)= M*"" (b),
M~ eM* (a)y) = M~ (z)aM ~ (y)
for alla,b €T and z,y € R'.
Proof. The first identity follows from the following observation.
1 -1

M*(M* (@)zM* (b)) = M*(M* (a)MM Y z)M* ' (b)) = aM (z)b.

The second one goes similarly. [0
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The following result will be used frequently throughout this section.
LEMMA 4.5. Let a,b,c€T.
() If M(c) = M(a) + M(b), then M* (sct) = M* (sat) + M* (sbt) for all
s, t €T,
(i) If M* '(c) = M* '(a) + M* ' (b), then M(sct) = M(sat) + M(sbt) for all
s, teT.
Proof. We only prove (i), and (ii) goes similarly.

By Lemma 4.4, we have

—1 —1

M* ' (sct) = M* " (sM™IM(c)t) = M* (s)M(c)M* (¢)
= M (s)(M(a) + M(b))M*" (1)
= (M (s)M(a)M* ™ () + (M (s)M(b)M*(t))
= M* (sat) + M* (sbt).O

LEMMA 4.6. Let a1y € 711 and byo € Tqo, then

(l) M(a}ll —+ blg) = M(an)i—fl— M(blg), »
(i) M* (a11 +b2) = M* (a11) + M* (blg).

Proof. We only prove (i). We choose ¢ € 7 such that M(c) = M (a11) + M (b12).
For arbitrary s11 € 711 and ta2 € 722, by Lemma 4.5, we have

—1 —1 —1 -1
M*  (s11ctee) = M*  (s11a11t22) + M™  (s11biatas) = M*  (s11b12t22).

It follows that 8110t22 = 811b12t22, i.e., 811012t22 = 811b12t22, which yields that Cip =

bia.

Now for any s1; and 17 in 771, we have
M (s11¢t11) = M (s11011t11) + M (s11b12t11) = M (s11a11t11)-
This implies that ¢11 = a11.
Similarly, for any so9,t22 € 722, we obtain
M*_1(5220t22) = M*_1(522a11t22) + M*_1(322b12t22) =0.
Hence co5 = 0 follows from the fact that sooctos = 0. O

Similarly, we can get the following result.

LEMMA 4.7. Let ass € Tao and byo € T1a, then
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(i) M(a212 + b12) = M(agg) —Il— M(blg), )
(if) M* (age +bi2) = M*  (ag2) + M*  (b12).

LEMMA 4.8. For any t11,a11 € 711, bi2,c12 € 112, and dos € Too, we have

(i) M(tylanbw + t11012d22) = M(t11a£11612) + M(t11012d231)7
(il) M* (tna1ibiz + tiiciedae) = M*  (t1na11biz) + M* * (t11c12d22).

Proof. We only prove (i). Using Lemma 4.6 and Lemma 4.7, we compute

M (t11a11b12 + t11c12d22)
(t11(a11 + c12)(b12 + d22))
(tnM*M*_l (a11 + c12)(b12 + da2))
(ﬁll)Mfl (a11 + c12)M (b12 + da2)
(1) M (1) M (br2) + M(t10)M* " (a11) M (da2)
+M (t11)M* (c12) M (brz) + M(t1)M* " (c12) M (daa)
= M(t)(M* (an) + M (e12))M (br2)
+M (1) (M (a11) + M (e12)) M (da2)
= -M(tn)]\ff1 (@11 + c12)M (b12) + M(tu)M*il (a11 + c12)M (da2)
= M (t11(a11 + c12)b12) + M (t11(a11 + c12)d22)
= M(tiai1biz) + M(t11c12d22). O

LEMMA 4.9. Both M and M* ' are additive on Tis.

Proof. Let aj2 and b12 be in T15. We pick ¢ € T such that M(c) = M(a2) +
M (b12).

For arbitrary ¢11, s11 € 711, by Lemma 4.5, we have
w1 w1 w1
M* (tnesn) =M" (tiieizsn) + M (t11b12s11) = 0,
this implies that t11¢s11 = 0, and so ¢y; = 0.
Similarly, we can get cos = 0.

We now show that c12 = aj2 + b12. For any t11,711 € 711 and soo € 7o, by
Lemma 4.5 and Lemma 4.8, we obtain

x 1 x 1 x 1
M* (rii1ti1¢892) = M™  (ri1ti1a12822) + M* (r11t11b12822)
1 -1
=M* (ri1ti11a12822 + r11t11b12822) = M™* (ri1ti1(a12 + b12)S22).

It follows that

riticsee = riitii(ais + biz)sao.
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Equivalently,

r11ti1c12822 = r11t11(a12 + b12)S22.
Then we get c12 = a12 + bia-
With the similar argument, one can see that M *" is also additive on Ti2. O
LEMMA 4.10. Both M and M* ' are additive on Ti1.

Proof. We only show the additivity of M on 77;. Suppose that a1, and b1 are
two elements of T7;. Let ¢ € T be chosen satisfying M (c) = M(a11) + M (b11). Now
for any too, S22 € 722, by Lemma 4.5, we have

-1 —1 -1
M™  (taacsao) = M™  (tagai1522) + M™  (ta2b11522) = 0.
Consequently, taocsas = 0, i.e., taaca2820 = 0, and so coo = 0.
Similarly, we can infer that c12 = 0.

To complete the proof, we need to show that c1; = a11 + b11. For each t11 € 713
and s13 € 712, by Lemma 4.5, we obtain

w1 w1 w1 w1
M* (tnesie) =M™ (tiiensiz) + M (tiibnisiz) = M*  (tiiaiisiz + tiibiisi2).
Note that in the last equality we apply Lemma 4.9. It follows that
tiicsig = t11a11512 + t11b11S12.

This leads to ¢11 = a11 + by1, as desired. O
LEMMA 4.11. M and M* ' are additive on Taa.

Proof. Suppose that ass and baoo are in T33. We choose ¢ € 7 such that M(c) =
M (ag2) 4+ M (ba2). For any t12 € T12 and s92 € Ta2, using Lemma 4.5 and Lemma 4.9,
we have

—1 —1 -1 -1
M™  (tigcsan) = M™  (tizag2822) + M™  (t12baasae) = M™  (t12(a22 + b22)s22).
Accordingly, t12¢822 = t12(a22 + baz)see, which yields that coo = aga + baso.
With the similar argument, we can verify that c;; = ¢12 = 0.

The additivity of M* ' on Tos follows similarly. O

LEMMA 4.12. For any a11 € 711, b1z € Ti2, and cao € Taa, the following is true.

M (a1 + bia + c22) = M(a11) + M (bi2) + M(c22).
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Proof. Let d € T be an element satisfying M (d) = M (a11 + bi2) + M (ca2). For
any s,t € 7, using Lemma 4.5 , we arrive at

(4.2) M* " (sdt) = M* " (s(ary + bia)t) + M* (scast).

Letting s = s11 and ¢ = t1; in the above equality, we get di1 = a11.
In the same fashion for s = sg2 and ¢t = ta3 in equality (4.2), we can infer that
dao = c23.

Finally, considering s = s11 and ¢ = t92 in equality (4.2), we see that dio = bio.
Thus, d = a11 + bi2 + c22. Then, by Lemma 4.6, we have

M(a11 + b1z + c22) = M(d)
= M(ai1 + bi12) + M(ca2) = M(a11) + M(bi2) + M(co2). O

We now prove our main result of this section.

Proof of Theorem 4.1 We first show the additivity of M. Let a = a11 + a12 + a2
and b = b1y + b1s + bog be two arbitrary elements of 7. We have

M(a+b)
= M((a11 + b11) + (a12 + b12) + (a2 + ba2))
= M (a1 + b11) + M(a12 + b12) + M (a2 + b22)
= M(a11) + M (b11) + M(a12) + M (b12) + M(a22) + M (b22)
= (M(a11) + M(a12) + M(azz)) + (M(b11) + M(b12) + M (b2z))
= M(a11 + a12 + ag2) + M (b11 + bia + ba2) = M(a) + M(b).

That is, M is additive.

We now turn to prove that M* is additive. For any z,y € R/, there exist ¢ = ¢11+
c12+co0 and d = dy1+di2+das in R such that ¢ = M*(x+y) and d = M*(x)+M*(y).

For arbitrary s,t € 7, by the additivity of M, we compute
M(sct) = M(sM™*(z +y)t) = M(s)(z+y)M(t

= M(s)zM(t) + M(s)yM(t) = M(sM*(x)t) + M (sM™*(y)t)
= M(sM"(x)t + sM™(y)t) = M (s(M"(x) + M"(y))t) = M (sdt),

which implies that sct = sdt. Consequently, we get ¢ = d, i.e., M*(x +vy) = M*(z) +
M*(y). O
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In particular, if both A4 and B are unital algebras, we have:

COROLLARY 4.13. Let R’ be an arbitrary ring. Let A and B be two unital algebras
over a commutative ring R, M be a faithful (A, B)-bimodule, and T be the triangular
algebra Tri(A, M, B). Suppose that (M, M*) is an elementary map on T X R, and
both M and M* are surjective. Then both M and M™* are additive.

We complete this note by considering elementary maps on triangular algebras
provided A and B are standard operator algebras.

COROLLARY 4.14. Let R’ be an arbitrary ring. Let A and B be two standard
operator algebras over a Banach space X, M be a faithful (A, B)-bimodule, and T be
the triangular algebra Tri(A, M, B). Suppose that (M, M*) is an elementary map on
T xR, and both M and M* are surjective. Then both M and M* are additive.
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