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NULLITIES FOR A CLASS OF 0–1 SYMMETRIC TOEPLITZ BAND MATRICES∗

RON EVANS† , JOHN GREENE‡ , AND MARK VAN VEEN§

Abstract. Let S(n, k) denote the n×n symmetric Toeplitz band matrix whose first k superdiagonals and first k subdiagonals

have all entries 1, and whose remaining entries are all 0. For all n > k > 0 with k even, we give formulas for the nullity of S(n, k).

As an application, it is shown that over half of these matrices S(n, k) are nonsingular. For the purpose of rapid computation,

we devise an algorithm that quickly computes the nullity of S(n, k) even for extremely large values of n and k, when k is even.

The algorithm is based on a connection between the nullspace vectors of S(n, k) and the cycles in a certain directed graph.
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1. Introduction. For n > k > 0 and x ∈ R , let A(n, k, x) denote the n× n skew-symmetric Toeplitz

matrix whose first k superdiagonals have all entries 1, and whose remaining superdiagonal entries are all −x.

For example, A(6, 2, x) is the matrix

0 1 1 −x −x −x
−1 0 1 1 −x −x
−1 −1 0 1 1 −x
x −1 −1 0 1 1

x x −1 −1 0 1

x x x −1 −1 0


.

The matrices A(n, k, x) are payoff matrices for the integer choice matrix games discussed, for example, in

[4, 5, 6]. In [3], we evaluated the nullity N(n, k) of the skew-symmetric Toeplitz band matrix A(n, k) :=

A(n, k, 0).

Let S(n, k) be the symmetric Toeplitz band matrix obtained from A(n, k) by removing all the minus

signs, and let N0(n, k) denote the nullity of S(n, k). Theorem 3.1 yields the nontrivial periodicity result that

for fixed even k, the nullity of S(n, k) equals the nullity of S(n+ (k2 + k), k) for all n > k. We employ this

theorem to prove our main result, Theorem 4.6, which gives a formula for the nullity of S(n, k) in terms of

the known nullity N(n, k), for all n > k > 0 with k even.

In [3, Section 2], we introduced a directed graph G(n, k) on the vertices {0, 1, . . . , k} and proved that for

all n > k > 0, N(n, k) equals the number of cycles in G(n, k). Call G(n, k) ‘parity-balanced’, or for brevity

‘balanced’, if in each cycle, the number of even vertices equals the number of odd vertices. (This should not

be confused with other meanings of balanced graphs.) In Theorem 4.7, we prove that for all n > k > 0 with

k even, N0(n, k) equals the number of cycles in G(n, k) if and only if G(n, k) is balanced. We apply this

theorem to create an extremely fast algorithm for computing N0(n, k). For example, Mathematica computed
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N0(1124510, 5000) = 5 in less than 0.05 seconds on a basic iMac. The algorithm is presented at the end of

Section 4.

Price et al. [9, 10] studied the multimodality of nullity sequences of Toeplitz matrices over finite fields.

This motivated our investigation in [3, Section 6], where we described the line graph connecting the points

(n,N(n, k)), 0 ≤ n ≤ k2 + k,

and showed that its shape is multimodal. In Theorem 5.1, we prove that for even k, the line graph connecting

the points

(n,N0(n, k)), 0 ≤ n ≤ k2 + k

is also multimodal. As a consequence, Corollary 5.2 shows that S(n, k) and S(n+1, k) cannot have the same

nullity, unless both matrices are nonsingular. Section 5 offers several other consequences. For example, while

only about 30.4% of the skew-symmetric matrices A(n, k) are nonsingular [3, Theorem 8.1], Theorem 5.7

shows that a substantially greater percentage of the symmetric matrices S(n, k) are nonsingular when k is

even.

A consequence of Theorem 4.6 is that for even k,

(1.1) N(n, k)−N0(n, k) ∈ {0, 1}.

The behavior of N0(n, k) for odd k is quite different. For example, when k is odd, N(k2, k) = k and

N0(k2, k) = 1, so that (1.1) doesn’t hold. The methods in this paper are applicable only when k is even. In

hopes that the nullity N0(n, k) can be analyzed in the future for odd k, we offer number of conjectures in

Section 6 to explain its behavior. For example, we conjecture a formula indicating that about 76.8% of the

matrices S(n, k) are nonsingular when k is odd.

Of course, S(n, k) is a very special type of Toeplitz band matrix. We refer the reader to the book [1] for

properties of general Toeplitz band matrices.

2. Preliminary results and notation. Throughout this section, k ≥ 2 is even. Lemmas 2.1–2.3 will

be used in Section 3 to prove Theorem 3.1, which shows that the matrices S(n, k) and S(n + (k2 + k), k)

have the same nullity.

For the roots of unity

ζ1 := exp(2πi/k), ζ2 := exp(2πi/(2k + 2)),

define the row vectors

u(m) := (ζm1 , ζ
2m
1 , . . . , ζ

(k−1)m
1 ), v(m) := (ζm2 , ζ

3m
2 , . . . , ζ

(2k+1)m
2 ),

where in each vector the entry equal to (−1)m is omitted. Thus, u(m) and v(m) have k − 2 and k entries,

respectively. Define the k × 1 column vectors

τ := (1,−1, 1, . . . ,−1)∗, s1 := (0, 1,−2, . . . , k − 1)∗,

where the signs alternate; here, the asterisk denotes transpose. Let s2 denote the k × 1 column vector

s2 = (−1)n(s1 − (n+ k)τ).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 177-192, February 2021.

179 Nullities for a class of 0–1 symmetric Toeplitz band matrices

Define the 2k × 2k matrix

V0(n, k) :=

(
s1 τ A B

s2 (−1)nτ C D

)
,

where A is the k× (k− 2) matrix whose rows are u(0), u(1), . . . , u(k− 1), B is the k× k matrix whose rows

are v(0), v(1), . . . , v(k−1), C is the k×(k−2) matrix whose rows are u(n+k), u(n+k+1), . . . , u(n+2k−1),

and D is the k× k matrix whose rows are v(n+ k), v(n+ k+ 1), . . . , v(n+ 2k− 1). To help visualize the last

2k − 2 columns, we write 

u(0) v(0)
...

...

u(k − 1) v(k − 1)

u(n+ k) v(n+ k)
...

...

u(n+ 2k − 1) v(n+ 2k − 1)


=

(
A B

C D

)
.

Note that V0(0, k) is a generalized Vandermonde matrix, so its 2k rows are independent over C [7, equation

(14)].

Converting the notation in [11] to ours, and noting that −1 is a double zero of the polynomial in [11,

equation (4)], we see that our matrix V0(n, k) is the 2k × 2k matrix associated with S(n, k) that is defined

in the top half of [11, p. 201]. Thus by [11, equation (14)], the nullity N0(n, k) of S(n, k) equals the nullity

of V0(n, k). Although the nullity of S(n, k) is only defined for n > k, we find it convenient to extend the

definition of N0(n, k) so that it equals the nullity of V0(n, k) for all integers n. In particular, N0(0, k) = 0.

It is not true in general that N0(n, k) equals N0(n+ (k2 +k), k). For example, consider the case n = −k.

The top half of V0(−k, k) is identical to the bottom half, so clearly the first column of V0(−k, k) is dependent

on the other 2k−1 columns. The matrices V0(k2, k) and V0(−k, k) are identical except for their first columns.

The first column of V0(k2, k) is clearly independent of the other 2k−1 columns. Thus for n = −k, the rank of

V0(n, k) is not the same as the rank of V0(n+(k2 +k), k), i.e., N0(n, k) is not the same as N0(n+(k2 +k), k).

The situation is quite different when n ≥ 0. For nonnegative n, Theorem 3.1 shows that the first column of

V0(n, k) is always independent of the other 2k − 1 columns, and N0(n, k) = N0(n + (k2 + k), k). Our proof

of Theorem 3.1 depends on the lemmas below.

For 1 ≤ i ≤ k, let ei denote the ith row or column of the k × k identity matrix I. (It will be clear

from the context whether ei is being viewed as a row vector or a column vector.) Let α denote the least

nonnegative residue of n + k modulo k + 1, and let β denote the least nonnegative residue of n modulo k.

Define ε = (−1)h, where h is the nonnegative integer satisfying n + k = α + (k + 1)h. Since k is even, we

have ε = (−1)n+α and

(2.1) β − α ≡ h (mod 2).

For each j with 0 ≤ j ≤ k − 1,

v(n+ k + j) =

{
εv(α+ j) if α+ j ≤ k
−εv(α+ j − k − 1) if α+ j ≥ k + 1.
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Since B has rows v(j) for 0 ≤ j ≤ k − 1, it follows that v(i)B−1 = ei+1 for each 0 ≤ i < k. Moreover,

v(k)B−1 = −τ∗, since

0 = v(0)− v(1) + v(2)− · · ·+ v(k).

Since D has rows v(n + k + j) for 0 ≤ j ≤ k − 1, it follows that εDB−1 = I when α = 0, and otherwise

εDB−1 is the matrix with rows

eα+1, . . . ek,−τ∗,−e1, . . . ,−eα−1.

If α = 0, let M := DB−1. When α > 0, let M be the matrix obtained from DB−1 by replacing the

(k + 1− α)th row −ετ∗ by a row of zeros, so that the rows of εM are

(2.2) eα+1, . . . ek, 0,−e1, . . . ,−eα−1.

Let P be the k × k permutation matrix whose rows are

(2.3) eβ+1, . . . ek, e1, . . . , eβ .

Observe that C = PA.

By definition of M and P , the entries in the matrix P −M all lie in {0, 1,−1}, and there are at most

two nonzero entries in any given row or column.

Lemma 2.1. Suppose that a given column of P −M has a pair of nonzero entries ai and aj in rows i

and j, respectively. Then aiaj = (−1)i+j+1. In other words, ai and aj have the same sign if and only if i

and j have opposite parity. Similarly, if a given row of P −M has a pair of nonzero entries ai and aj in

columns i and j, respectively, then ai and aj have the same sign if and only if i and j have opposite parity.

Proof. Given a k × k matrix T , let DT (0) refer to its main diagonal, with superdiagonals DT (i) and

subdiagonals DT (−i) for 1 ≤ i ≤ k − 1. Write ω(DT (j)) = a when all entries in DT (j) are equal to a.

The nonzero entries in P are given by

ω(DP (β)) = 1, ω(DP (β − k)) = 1,

and the nonzero entries in M are given by

ω(DM (α)) = (−1)h, ω(DM (α− k − 1)) = (−1)h+1,

where we ignore nonexisting diagonals D(±k) and D(−k − 1).

First suppose that h is even. Then the entries ω(D−M (α)) = −1 and ω(DP (β)) = 1 have opposite

signs, while the distance between the diagonal D(α) and the diagonal D(β) or D(β − k) is even, by (2.1).

In addition, ω(D−M (α− k − 1)) = 1 and ω(DP (β)) = 1 have the same sign, while the distance between the

diagonal D(α − k − 1) and the diagonal D(β) or D(β − k) is odd. This proves the lemma when h is even,

and the proof for odd h proceeds the same way.

Suppose that a nonzero row or column vector ν lies in the left or right nullspace of P −M . If ν no longer

remains in the nullspace after a proper subset of its nonzero entries is replaced by zeros, we say that ν is

irreducible.

Lemma 2.2. Suppose that ν = (ν(1), . . . , ν(k)) is an irreducible vector in the left or right nullspace

of P − M . Then, ν can be normalized via a scalar multiple so that its nonzero entries ν(r) all satisfy

ν(r) = (−1)r+1.
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Proof. First assume that ν lies in the left nullspace of P − M . Denote the nonzero entries in ν by

ν(r1), ν(r2), . . . , ν(r`). We may scale ν so that ν(r1) = (−1)r1+1. Let m be maximal such that ν(r) = (−1)r+1

holds for m values of r. If m = `, the proof is complete, so assume for the purpose of contradiction that

m < `. Reordering the subscripts if necessary, we have

ν(ra) = (−1)ra+1, a = 1, 2, . . . ,m.

We may suppose that there exists a column Z of P −M with a nonzero entry ρx in row rx for some x ≤ m
and a nonzero entry ρy in row ry for some y > m. Otherwise, replacement of ν’s entries ν(rb) by 0 for all

b > m yields a vector in the left nullspace of P −M with only m nonzero entries, contradicting the fact that

ν is irreducible.

The dot product of column Z with ν equals 0 = ν(rx)ρx + ν(ry)ρy. Since ν(rx) = (−1)rx+1, we have

ν(ry) = (−1)rxρx/ρy. By Lemma 2.1, ρx/ρy = (−1)ry−rx+1. Thus ν(ry) = (−1)ry+1, contradicting the

maximality of m.

Finally assume that ν is in the right nullspace of P −M . Then by mimicking the proof above using rows

Z instead of columns, we complete the proof of Lemma 2.2.

When α > 0, define a directed graph on the vertices 1, 2, . . . , k, with edges x → y directed from x to

y if and only if for some c ∈ [1, k], column c of P is ex and column c of M is ±ey. By (2.2) and (2.3), the

columns of P are

(2.4) ek+1−β , . . . , ek, e1, . . . , ek−β ,

and the columns of εM are

(2.5) − ek+2−α, . . . ,−ek, 0, e1, . . . , ek−α.

Since no column of M can be ±ek+1−α, the vertex k + 1 − α has in-degree 0. Letting ed denote the αth

column of P , we see that vertex d has out-degree 0, since the αth column of M is 0. For every other vertex,

the in-degree and out-degree are both 1. Thus, this digraph consists of an open path T (called the ‘tail’)

together with a (possibly empty) disjoint union of simple cycles. The initial vertex of T is k+ 1−α and the

terminal vertex is d.

Lemma 2.3. Suppose that α > 0. If ν = (ν(1), . . . , ν(k)) is in the left nullspace of P −M , then ν(x) = 0

for every x in the tail T . In particular, ν(k + 1− α) = 0.

Proof. The αth column of P −M is ed. Thus ed is orthogonal to ν, so that ν(d) = 0. We now induct

back along the path T , starting with the hypothesis that x → y with ν(y) = 0. It remains to show that

ν(x) = 0. There is a column in P −M of the form ex ± ey. Since this column is orthogonal to ν, we have

ν(x)± ν(y) = 0. Since ν(y) = 0, we conclude that ν(x) = 0.

3. Periodicity for the nullity of S(n, k).

Theorem 3.1. Suppose that n ≥ 0 and k is even. Then, the first column of V0(n, k) is independent of

the other 2k − 1 columns, and

(3.1) N0(n, k) = N0(n+ (k2 + k), k).
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Proof. The last 2k−1 columns of V0(n, k) are unchanged when n is replaced by n+ (k2 + k). Thus (3.1)

is an immediate consequence of the independence of the first column. Assume for the purpose of contradiction

that the first column is dependent, so that there exists a 2k × 1 vector (1, a, w1, w2)∗ in the nullspace of

V0(n, k), where a ∈ C and where w1 and w2 are complex column vectors with k−2 and k entries, respectively.

Since

w2 = −B−1Aw1 − aB−1τ −B−1s1,

we have

(3.2) (C −DB−1A)w1 = aDB−1τ − (−1)naτ +DB−1s1 − s2.

First, consider the case where α = 0. Then DB−1 = εI, so that (3.2) becomes

(C − εA)w1 = εs1 − s2 = (−1)n(n+ k)τ.

Let U denote the (k − 2)× (k − 2) diagonal matrix diag((ζ1)n+k, . . . , (ζk−11 )n+k), where the diagonal entry

(−1)n+k is omitted. Since C = AU , we have

A(U − εI)w1 = (−1)n(n+ k)τ.

As n+ k is nonzero, this shows that τ is a linear combination of the columns of A. But since Vandermonde

matrices are invertible, τ must be independent of the columns of A, so we have our desired contradiction

when α = 0.

For the remainder of this proof, we may assume that α > 0. Since C = PA and τ∗A = 0, the left

member of (3.2) equals (P −M)Aw1. Since τ = e1 − e2 + · · · − ek, we have

(3.3) DB−1τ = (−1)nτ − ε(k + 1)ek+1−α.

Thus (3.2) becomes

(3.4) (P −M)Aw1 = DB−1s1 + (−1)n+1(s1 − (n+ k)τ)− aε(k + 1)ek+1−α.

We proceed to evaluate DB−1s1, making use of the formulas

s1 =

k∑
r=1

(r − 1)(−1)rer, τ∗s1 = −k(k − 1)/2, ε = (−1)n+α.

Multiplying s1 by each row of DB−1 gives

DB−1s1 = ε
k(k − 1)

2
ek+1−α + (−1)n+1

k−α∑
r=1

(−1)r−1(r + α− 1)er

+ (−1)n+1
k∑

r=k+2−α

(−1)r−1(r + α− k − 2)er

= ε
k(k − 1)

2
ek+1−α + α(−1)n+1

(
k−α∑
r=1

(−1)r−1er +

k∑
r=k+2−α

(−1)r−1er

)

+ (−1)n

(
k−α∑
r=1

(−1)r(r − 1)er +

k∑
r=k+2−α

(−1)r(r − 1− k − 1)er

)
.
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The sums from k + 2− α to k are of course interpreted to be 0 if α = 1. Define

τz :=

k∑
r=z

(−1)r−1er.

Then

DB−1s1 = ε
k(k − 1)

2
ek+1−α + (−1)n+1ατ + α(−1)n+αek+1−α

+ (−1)n ({s1 + (k − α)(−1)αek+1−α}+ (k + 1)τk+2−α) .

Thus

DB−1s1 + (−1)n+1s1 = ε
k(k + 1)

2
ek+1−α

+ (−1)n+1ατ + (k + 1)(−1)nτk+2−α.

(3.5)

Together with (3.4), this yields

(P −M)Aw1 = (−1)n(n+ k − α)τ

+ (−1)n(k + 1)τk+2−α +

(
ε
k(k + 1)

2
− aε (k + 1)

)
ek+1−α.

(3.6)

We now consider separately the cases where P −M is singular and where P −M is nonsingular. First

consider the singular case. In this case n > 0, because when n = 0, we have α = k and β = 0, so that P −M
is the nonsingular lower triangular matrix with 1’s along the main diagonal and the first subdiagonal. Let

ν be the left nullspace vector in Lemma 2.2. After left-multiplying both sides of (3.6) by ν, that equation

reduces to

(3.7) 0 = (n+ k − α)ντ + (k + 1)ντk+2−α,

because νek+1−α = 0 by Lemma 2.3. By Lemma 2.2, ντ = `, where ` > 0 is the number of nonzero entries in

ν. Moreover, ντk+2−α ≥ 0. Thus, since n > 0, the right member of (3.7) is positive, which gives the desired

contradiction.

It remains to consider the case where P −M is invertible. We begin by showing that

(3.8) σ(P −M)−1ek+1−α = 0,

where σ is the 1× k row vector whose entries are all 1. It follows from (3.3) that

Mτ = (−1)nτ − εek+1−α.

Since Pτ = (−1)βτ , we see that

(P −M)τ = εek+1−α + τ
(
(−1)β − (−1)n

)
.

The rightmost term vanishes since β and n have the same parity. Thus τ = ε(P −M)−1ek+1−α, and (3.8)

follows since στ = 0.
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After left-multiplying (3.6) by σ(P −M)−1, the left member reduces to 0, because σA = 0. Thus (3.6)

reduces to

(3.9) 0 = σ(P −M)−1 ((n+ k − α)τ + (k + 1)τk+2−α) ,

in view of (3.8).

Using the formula −τ∗s1 = k(k − 1)/2, we deduce from (3.5) that

(−1)nMs1 ≡ s1 − ατ + (k + 1)τk+2−α (mod k).

Subtract (−1)nPs1 to get

(−1)n(M − P )s1 ≡ (I − (−1)nP )s1 − ατ + (k + 1)τk+2−α (mod k).

It follows from the definitions of P , s1, and β that

(I − (−1)nP )s1 ≡ βτ ≡ nτ (mod k).

Combine the last two congruences to obtain

(−1)n(M − P )s1 ≡ (n+ k − α)τ + (k + 1)τk+2−α (mod k).

Left-multiplying by (P −M)−1, we obtain

−(−1)ns1 ≡ (P −M)−1 ((n+ k − α)τ + (k + 1)τk+2−α) (mod k).

Left-multiplication by σ yields

(−1)nk/2 ≡ σ(P −M)−1 ((n+ k − α)τ + (k + 1)τk+2−α) (mod k).

The right member above is therefore an odd multiple of k/2, so it cannot vanish. This contradicts (3.9).

4. The nullity of S(n, k). Throughout this section, k ≥ 2 is even. In Lemma 4.4, we show that the

nullity of the k × k matrix H := M − P equals N(n, k) (which in turn is evaluated in [3]). Let H be the

(k + 1) × k matrix obtained from H by appending the row σ = (1, 1, . . . , 1). Theorem 4.6 shows that the

nullity N0(n, k) of S(n, k) equals k − rankH. Consequently, N0(n, k) = N(n, k) when σ is in the row space

of H, and N0(n, k) = N(n, k) − 1 otherwise. The proofs depend on another directed graph, which we call

G0(n, k). The vertices of G0(n, k) are 1, 2, . . . , k, with edges a → b directed from a to b if and only if for

some r ∈ [1, k], row r of M is ±ea and row r of P is eb.

Let (x)k+1 and (x)k denote the least nonnegative residues of x modulo k+1 and k, respectively. If α > 0,

then G0(n, k) has the k − 1 edges

(a+ n− 1)k+1 → 1 + (a+ n− 1)k, a ∈ [1, k], a 6= (k + 1− α).

In this case, the graph is a union of disjoint cycles together with a tail whose initial vertex is 1 + (β − α)k
and whose terminal vertex is α. (If it happens that the initial and terminal vertices coincide, then the tail

consists of the isolated vertex α.) If α = 0, then G0(n, k) has the k edges

(a+ n− 1)k+1 → 1 + (a+ n− 1)k, a ∈ [1, k].
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In this case, the graph is a union of disjoint cycles with no tail.

The digraph G0(n, k) is very similar to the digraph G(n, k), which was analyzed in [3]. Indeed, after one

discards the vertex k from the tail of G(n, k) (should k appear), we see from [3, equation (2.2)] that the

edges of G0(n, k) are simply translates by +1 of the edges of G(n, k). For example, G(26, 10) has the two

cycles

0→ 4→ 7→ 0, 1→ 5→ 8→ 1,

and the tail 10→ 3→ 6→ 9→ 2, while G0(26, 10) has the two cycles

1→ 5→ 8→ 1, 2→ 6→ 9→ 2,

and the tail 4 → 7 → 10 → 3. In view of what has been proved about G(n, k) in [3], it follows that for a

given pair n, k, G0(n, k) has exactly N(n, k) disjoint cycles, all translates of each other, hence all are of the

same length.

Let N (H) denote the (right) nullspace of H. The following lemma is analogous to Lemma 2.3.

Lemma 4.1. If ν = (ν(1), . . . , ν(k)) is a column vector in N (H), then ν(x) = 0 for every x in the tail

of G0(n, k).

Proof. Let c denote the initial vertex in the tail (so α > 0). Since row k + 1 − α of H is −ec and this

row is orthogonal to ν, we have ν(c) = 0. Now induct along the tail. Assuming that x→ y and ν(x) = 0, we

must show that ν(y) = 0. Some row of H is ±ex − ey, so ν(y) = ±ν(x) = 0, as desired.

Let S ⊂ [1, k]. If S is the set of vertices in a cycle C in G0(n, k), we say that C is an S-cycle. If the set

of nonzero entries in a column vector ν = (ν(1), . . . , ν(k)) is {ν(x) = (−1)x+1 : x ∈ S}, we say that ν is an

S-vector.

Lemma 4.2. Let C be an S-cycle in G0(n, k), and let ν be an S-vector. Then ν ∈ N (H).

Proof. For every row µ of H, we will show that µν = 0. If µ has only one nonzero entry, then µ = −ec
where c is the initial vertex in the tail of G0(n, k). By Lemma 4.1, ν(c) = 0, so that µν = 0. Thus, we may

suppose that µ = ±ea − eb, where ±ea comes from M and eb comes from P . More precisely, by Lemma 2.1,

µ = (−1)a+bea − eb. By definition, G0(n, k) has the edge a→ b. If this edge is not part of the cycle C, then

ν(a) = ν(b) = 0 by definition of ν, so that µν = 0. If the edge is part of C, then

µν = (−1)a+b(−1)a+1 − (−1)b+1 = 0.

Thus µν = 0 in all cases.

Lemma 4.3. Let ν be an irreducible S-vector in N (H). Then G0(n, k) has an S-cycle.

Proof. Since ν(x) is nonzero for all x ∈ S, no x ∈ S can be in the tail of G0(n, k), i.e., every x ∈ S is

in some cycle. Thus some cycle C in G0(n, k) has an edge of the form a→ b with a ∈ S. Therefore H has a

row µ = (−1)a+bea− eb. Since ν ∈ N (H), we have (−1)a+b(−1)a+1− ν(b) = 0, which forces ν(b) = (−1)b+1.

Thus b ∈ S. Repeating this argument with b in place of a, and so on, we see that the vertices in cycle C must

lie in a subset S ′ ⊂ S. If S ′ were a proper subset of S, then by Lemma 4.1, an S ′-vector would lie in N (H),

contradicting the fact the ν is irreducible. Thus C is the desired S-cycle.

The vector ν in Lemma 4.2 must be irreducible in N (H). Otherwise, there would exist an S ′-vector in

N (H) for some proper subset S ′ of S. But then by Lemma 4.3, G0(n, k) would have an S ′-cycle in addition
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to the S-cycle C. This is impossible, since all cycles in G0(n, k) have the same length. It is now clear that

Lemmas 4.2 and 4.3 together show that there is a one-to-one correspondence between cycles in G0(n, k)

and normalized irreducible vectors in N (H). (Here ‘normalized’ is meant in the sense of Lemma 2.2.) The

correspondence associates an S-cycle in G0(n, k) with an irreducible S-vector in N (H).

Lemma 4.4. The dimension of N (H) is N(n, k).

Proof. Let C1, . . . , CN denote the N = N(n, k) cycles in G0(n, k). Let Si be the set of vertices in Ci, for

each i. To each Ci there corresponds an irreducible Si-vector νi in N (H). Every vector in N (H) is a sum of

irreducible vectors. Thus, the normalized irreducible vectors in N (H) generate N (H). By Lemma 4.3, the νi
are the only normalized irreducible vectors in N (H). Thus ν1, . . . , νN generate N (H). Moreover, ν1, . . . , νN
is a basis for N (H), since the Si are disjoint. Thus N (H) has dimension N .

Recall that H := M − P . Define the related matrix J := DB−1 − P . Analogous to our definition of H,

let J be the (k + 1)× k matrix obtained from J by appending the row σ = (1, 1, . . . , 1).

Lemma 4.5. We have rank(J) = rank(H) and rank(J) = rank(H).

Proof. If α = 0, the result is obvious since J = H, so assume that α > 0. The (k+ 1− α)th row of H is

−ec for some c, and the (k+ 1−α)th row of J is −ετ∗− ec. The other k− 1 rows H and J are the same. Let

R denote the row space of these k − 1 rows. By Lemma 2.1, the inner product ρτ vanishes for every ρ ∈ R.

To prove that rank(J) = rank(H), it suffices to show that neither ec nor ετ∗ + ec lies in R. This follows

because

ecτ = ±1 6= 0, (ετ∗ + ec)τ = εk ± 1 6= 0.

To prove rank(J) = rank(H), it suffices to prove that σ ∈ R whenever σ is in the row space of either H or

J . If σ = ρ+ rec for some ρ ∈ R and some real r, then since στ = 0 = ρτ , we have r = 0, so that σ = ρ ∈ R.

Finally, if σ = ρ+r(ετ∗+ec) for some ρ ∈ R and some real r, then since στ = 0 = ρτ , we have r(εk±1) = 0,

so that r = 0 and σ = ρ ∈ R.

We are finally in a position to evaluate the nullity N0(n, k) of the matrix S(n, k) for even k.

Theorem 4.6. For even k, N0(n, k) = k − rank(H). Equivalently, N0(n, k) = N(n, k) when σ is in the

row space of H, and N0(n, k) = N(n, k)− 1 otherwise.

Proof. Let V be the 2k × 2k matrix obtained from V0(n, k) by replacing the first column by the

zero column. By Theorem 3.1, the first column of V0(n, k) is independent of its other columns, so that

rank(V0(n, k)) = 1 + rank(V ). We write

V :=

(
A′ B

PA′ D

)
,

where A′, B, PA′, D are k×k matrices. Here, B and D are the same matrices that appeared in the definition

of V0(n, k). Because row operations preserve rank, we have rank(V ) = rank(V1), where

V1 :=

(
A′ B

0 D − PB

)
.

Multiplying V1 on the right by (
I 0

0 B−1

)
,
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we obtain the matrix

V2 =

(
A′ I

0 J

)
,

where we recall that J := DB−1 − P . The ranks of V , V1, and V2 are all equal to rank(V0(n, k))− 1.

The span of the top k rows of V2 has dimension k, and the span of the bottom k rows has dimension

rank(J). Thus rank(V2) ≤ k + rank(J). On the other hand, rank(V2) ≥ k − 1 + rank(J), with equality if

and only if σ is in the row space of J . This is because the k column sums of A′ all vanish, and up to scalar

multiple, the sum of the top k rows of V2 is the only linear combination of these k rows that can lie in the

span of the bottom k rows. Consequently, rank(V2) = k − 1 + rank(J), so that

rank(V0(n, k)) = k + rank(J) = k + rank(H),

where the last equality follows from Lemma 4.5. Thus, the nullity N0(n, k) of V0(n, k) is k−rank(H). Finally,

the last statement in Theorem 4.6 follows because k − rank(H) = N(n, k) by Lemma 4.4.

The digraph G(n, k) will be called ‘balanced’ if in each cycle, the number of even vertices equals the

number of odd vertices. For example, G(28, 12) is balanced because its cycle 1→ 4→ 7→ 10→ 1 (and its

translate) has two odd vertices and two even vertices. For another example, G(22, 12) is balanced because it

has no cycles. Note that G(n, k) is necessarily unbalanced if it has a cycle of odd length.

Theorem 4.7. If G(n, k) is balanced, then N0(n, k) = N(n, k); otherwise N0(n, k) = N(n, k)− 1.

Proof. The row space of H is equal to N (H)⊥. Let the Si-cycle Ci and the Si-vector νi be as in the

proof of Lemma 4.4. We have σ ∈ N (H)⊥ if and only if for each i,

σνi =
∑
x∈Si

(−1)x+1 = 0.

Thus, σ ∈ N (H)⊥ if and only if G(n, k) is balanced. The result now follows from Theorem 4.6.

In view of Theorem 4.6, we could compute the rank of H in order to determine whether the nullity of

S(n, k) is N(n, k) or N(n, k)− 1. However, if k is very large, such a time-consuming computation would be

impractical. In contrast, the following Mathematica function based on Theorem 4.7 quickly computes the

nullity of S(n, k) for extremely large values of n and k with k even.

FastSymmNullityEven[n_, k_] :=

Module[{loopsum, findcyc, ifcase, ifleng, nullty},

loopsum =

Sum[If[Mod[i-2+n,1+k]==Mod[i-1+n,k],1,0],{i,1,k}];

findcyc =

FindCycle[ Table[Mod[i-2+n,1+k]->Mod[i-1+n,k],{i,1,k}],k,All];

ifcase = If[findcyc=={},{},VertexList[Graph[findcyc[[1]]]]];

ifleng =

If[Length[ifcase]==0,0,-Length[ifcase] +

2 Mod[ifcase,2].ConstantArray[1,Length[ifcase]]];

nullty = Length[findcyc] + loopsum;

If[ifleng+loopsum==0, nullty, nullty-1]

]

5. Line graph connecting points (n,N0(n, k)). Fix k with k even. The line graph connecting

successive Cartesian points (n,N0(n, k)) for n ≥ 0 will be called a G0-graph, while the line graph in [3]
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Fig. 1. Line graph for k = 6.

connecting the points (n,N(n, k)) for n ≥ 0 will be called a G-graph. By (3.1), for n ≥ 0, the nullity

N0(n, k) depends only on the value of n modulo (k2 + k), so we can restrict our G0-graph to values of n

between 0 and (k2 + k). For k = 6, 0 ≤ n ≤ 42, the G0-graph is illustrated by the solid line in Figure 1,

and the G-graph is illustrated by the dashed line. Each dot on the horizontal axis in Figure 1 indicates a

point where N0(n, k) = 0. For example, the dot at the point (19, 0) indicates that the matrix S(19, 6) is

nonsingular.

In [3, Section 6], we proved that the G-graph is multimodal by showing that the union of the horizontal

axis with the G-graph has the shape of a chain of adjoining isosceles right triangles whose hypotenuses sit

on the horizontal axis. Theorem 5.1 shows that the union of the G0-graph with the horizontal axis also has

the shape of a chain of isosceles right triangles, so that the G0-graph is also multimodal. However, unlike

the G-graph, the G0-graph has many triangles that are not adjoining.

An apex (n,N(n, k)) of a right triangle in the G-graph for which G(n, k) is balanced will be called a

balanced apex, and the triangle to which it belongs will be called a balanced triangle. For example, the

balanced triangles in Figure 1 are the ones with apexes (1, 1), (15, 3), and (29, 1). As we descend from a

balanced apex (n,N(n, k)) to any point (n′, N(n′, k) above the horizontal axis lying on the same triangle, the

corresponding digraph G(n′, k) remains balanced, because by [3, Section 6], it must have a cycle in common

with G(n, k). For example, descending from the balanced apex (15, 3) in Figure 1, we see that the digraphs

G(n, 6) for n = 13, 14, 15, 16, 17 are balanced because each has a cycle in common with G(15, 6).

The shape of the G0-graph is best described by comparing it with the well-understood G-graph. We con-

tinue to use Figure 1 as a running example. By Theorem 4.7, N0(n, k) = N(n, k) for every point (n,N(n, k))

on a balanced triangle. Thus, the G0-graph will have a triangle coincident with each balanced triangle in

the G-graph. For Figure 1, this explains why the solid and dashed triangles with apexes (1, 1), (15, 3), and

(29, 1) are coincident.

Next consider the unbalanced triangles in the G-graph with height greater than 1. In Figure 1, these

are the triangles with apexes (8, 2), (22, 2), and (36, 6). As we descend from an unbalanced apex (n,N(n, k))

along either leg of the triangle, the corresponding digraphs remain unbalanced, until we reach points on the

horizontal axis, for which the corresponding digraphs have no cycles. By Theorem 4.7, N0(n, k) = N(n, k)−1

for every point (n,N(n, k)) on an unbalanced triangle, except when N(n, k) = 0. Thus, the G0-graph will

have a triangle lying one unit below each unbalanced triangle in the G-graph with height greater than 1.

For Figure 1, this explains why the solid triangles lie one unit below the dashed triangles with apexes (8, 2),

(22, 2), and (36, 6).

Finally, consider the unbalanced triangles in the G-graph, which have height 1. In Figure 1, these are

the triangles with apexes (3, 1), (5, 1), (11, 1), (19, 1), (25, 1), and (27, 1). The portion of the G0-graph lying

underneath an unbalanced triangle of height 1 must reduce to a degenerate triangle lying on the horizontal
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axis. For Figure 1, this explains why the hypotenuse belonging to each of the dashed triangles with apexes

(3, 1), (5, 1), (11, 1), (19, 1), (25, 1), (27, 1) coincides with a solid line from the G0-graph.

We have now proved the following theorem.

Theorem 5.1. The union of the G0-graph with the horizontal axis has the shape of a chain of isosceles

right triangles whose hypotenuses sit on the horizontal axis. In particular, the G0-graph is multimodal.

Corollary 5.2. Let k be even. The nullities of S(n, k) and S(n + 1, k) differ by exactly 1 unless both

matrices are nonsingular.

Proof. Assume that least one of the two matrices is singular. Then the result follows from Theorem 5.1,

since the two points (n+ 1, N0(n+ 1, k)) and (n,N0(n, k)) on the G0-graph are neighboring points on a leg

of a nondegenerate right triangle.

The next theorem gives the height for a class of balanced triangles. Of course, once the height of a triangle

is known, we know the nullity N0(n, k) at every other point in that triangle. For example, Theorem 5.3 shows

that if n = 2k + 3 and 3 | k, then N0(n, k) = 3, N0(n± 1, k) = 2, N0(n± 2, k) = 1, and N0(n± 3, k) = 0.

Theorem 5.3. Let k be even and suppose that n = (c − 1)k + c for some odd c with 1 < c < k. Let

f = gcd(c, k). Then, S(n, k) has nullity f and the point (n, f) is a balanced apex on the G-graph.

Proof. By the proof of [3, Theorem 8.8], the digraph G(n, k) is the union of f disjoint cycles (with no

tail), and the point (n, f) is an apex on the G-graph. In particular, N(n, k) = f . It remains to prove that

N0(n, k) = f .

Let C denote the cycle in G(n, k) containing the vertex 0. The remaining cycles are contiguous translates

of C, by [3, Theorem 3.9]. Since f is odd, the remaining cycles can be paired off as

(C + 2i− 1) ∪ (C + 2i), 1 ≤ i ≤ (f − 1)/2.

Each of these (f −1)/2 disjoint unions has the same number of odd vertices as even vertices. Thus, the same

is true about C, since the set of vertices in all f cycles is {0, 1, 2, . . . , k − 1}. Therefore G(n, k) is balanced,

and the result follows from Theorem 4.7.

The next theorem gives the height for a class of unbalanced triangles.

Theorem 5.4. For k even, let t be a positive integer such that (t+1) divides (k+1). Then, S(tk, k) has

nullity t − 1 and the point (tk, t) is an unbalanced apex on the G-graph. In particular, S(k2, k) has nullity

k − 1.

Proof. By [3, Theorem 8.7], the point (tk, t) is an apex in the G-graph, N(tk, k) = t, and G(tk, k) has

cycles of length q := (k+ 1)/(t+ 1). Since q is odd, G(tk, k) is necessarily unbalanced. Thus by Theorem 4.7,

N0(tk, k) = N(tk, k)− 1 = t− 1.

This completes the proof.

We remark that by [3, Theorem 7.5], the G-graph attains its maximum height k at only one apex, namely

at the unbalanced apex (k2, k). Thus, the G0-graph attains its maximum height k− 1 at its apex (k2, k− 1).

Moreover, for k > 2, this is the only apex in the G0-graph of height k − 1. To see this, assume the contrary.

Then, there would exist a balanced apex in the G-graph of height k − 1. Applying the formula [3, equation

(7.11)] with the height f = k − 1, we see that no cycle length q exists for which k − 1 = f = [k/q].
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Theorem 5.5. The nullity of S((k2 − k)/2, k) equals k/2− 1 or k/2 according as k/2 is even or odd.

Proof. By [3, Theorem 8.10] with a = 0, b = 2, the digraph G((k2 − k)/2, k) has f = k/2 cycles each of

length q = 2. Thus N((k2− k)/2, k) = f = k/2. By Theorem 4.7, it remains to show that G((k2− k)/2, k) is

balanced if and only if k/2 is odd. By [3, equations (7.15–7.16)], this digraph has a cycle whose two vertices

are c(0) = k/2 and c(1) = 0. This digraph is balanced if and only if k/2 is odd.

For even k, let B(k) denote the number of balanced triangles in theG-graph. For k = 5000, B(k) = 75920,

which gives B(k)/k2 ' .003. This and similar data suggest to us that for large k, the balanced triangles may

be relatively rare, so we propound the following conjecture.

Conjecture 5.6. As k →∞, B(k)/k2 approaches 0.

For any fixed nonnegative integer z and even k, let Qz(k) denote the percentage of matrices S(n, k) with

n ∈ [k + 1, k2 + 2k] for which S(n, k) has nullity z. (Equivalently, Qz(k) is the percentage of n ∈ [0, k2 + k)

for which N0(n, k) = z.) Theorem 5.7 shows that more than 55.7% of the matrices S(n, k) are nonsingular,

and in fact, more than 68.3% of the matrices S(n, k) are nonsingular if Conjecture 5.6 holds. For z ≥ 1,

Theorem 5.8 provides asymptotic formulas for Qz(k) as k → ∞, conditional on Conjecture 5.6. The proofs

employ the well-known asymptotic formulas [8, Lemma 2]∑
q≤x

φ(x) ∼ 3x2

π2
,

∑
q≤x, 2-q

φ(x) ∼ 2x2

π2
,

where φ is the Euler totient function.

Theorem 5.7. For large even k, Q0(k) > 55.7%. In fact, if Conjecture 5.6 holds,

Q0(k) ∼ 6.75/π2 ' 68.4%, as k →∞.

Proof. To evaluate Q0(k), we must count the number Γ of points on the G0-graph that lie on the

horizontal axis. Write Γ = Γ1 + Γ2, where Γ1 counts only the subset of points that lie on the G-graph. Each

unbalanced triangle of height > 1 contributes 2 to Γ2, while each unbalanced triangle of height 1 contributes

only 1 to Γ2. (For example, in Figure 1, the contributions for height 1 come from the points 3, 5, 11, 19, 25, 27,

and the contributions for height > 1 come from the pairs {7, 9}, {21, 23}, {31, 41}.) Arguing as in the proof

of [3, Theorem 8.2], we see that

Γ2 ≥
∑

q≤k, 2-q

φ(q) +
∑

q≤k/2, 2-q

φ(q).

Here, we have taken the sums only over odd q, because cycles of even length q are not necessarily unbalanced.

As in the proof of [3, Theorem 8.1],

Γ1 =
∑
q≤k

φ(q).

Thus, Γ/k2 is greater or equal to an expression, which is asymptotic to

(3 + 2 + 1/2)/π2 = 5.5/π2 ' .5572, as k →∞.

Now suppose that Conjecture 5.6 holds. Then the balanced triangles are negligible for our purposes, so

we can remove the restrictions 2 - q on the sums above to conclude that

Γ/k2 ∼ (3 + 3 + 3/4)/π2 = 6.75/π2 ' .684, as k →∞.

This completes the proof.
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For k = 5000, the exact number of nonsingular matrices S(n, k) with n ∈ [k + 1, k2 + 2k] is 17007988.

Note that 17007988/50002 ' 68.0%, which is not far from the conditional estimate 68.4% given for large k

in Theorem 5.7.

Theorem 5.8. Let k be even, and fix an integer z ≥ 1. Assume that Conjecture 5.6 holds. Then

Qz(k)→ 3(1/(z + 1)2 + 1/(z + 2)2)/π2, as k →∞.

Proof. Since the balanced triangles are assumed to be negligible, the proof for the G0-graph proceeds

exactly as in the proof for the G-graph in [3, Theorem 8.2], except with z + 1 in place of z.

For k = 1000, the number of S(n, k) of nullity 1 with n ∈ [k + 1, k2 + 2k] is 114552. Note that

114552/10002 ' 11.4%, not far from the conditional estimate 13/(12π2) ' 11.0% given for Q1(k) in Theorem

5.8.

6. Conjectures for odd k. A vector (x1, . . . , xn) is said to be symmetric if (x1, . . . , xn) = (xn, . . . , x1),

and it is said to be skew-symmetric if (x1, . . . , xn) = −(xn, . . . , x1). By [2, Theorem 8], the nullspace of S(n, k)

has an orthogonal basis consisting of δ symmetric vectors and θ skew-symmetric vectors, where |δ−θ| ≤ 1. In

particular, if N0(n, k) = 1, then the nullspace of S(n, k) is generated by a vector, which is either symmetric

or skew-symmetric. We don’t know a simple way to predict the values of n that distinguish between these

two possibilities, but rather complicated determinant criteria are given near the end of Trench’s Lecture

Notes in [12]. Note that in Trench’s determinant formulas, +1 should be corrected to −1.

When k is odd, the 2k×2k matrix associated with S(n, k) in [11, p. 201] has entries which are all powers

of exp(2πi/k) or exp(2πi/(2k + 2)), and in contrast with the situation for even k, the polynomial in [11,

equation (4)] has distinct zeros. Thus we see that for fixed odd k, N0(n, k) has period 2k2 + 2k, twice the

period given in (3.1) for even k.

From now on, let k be odd. For any fixed integer z ≥ 0, let Wz(k) denote the number of n ∈ [0, 2k2 +2k)

for which N0(n, k) = z. When z = 1, we have

W1(k) = W ′1(k) +W ′′1 (k),

where W ′1(k) (resp. W ′′1 (k)) counts those n ∈ [0, 2k2 + 2k) for which the nullspace of S(n, k) is generated by

a symmetric (resp. skew-symmetric) vector.

Substantial computer evidence suggests that the behavior of the nullity N0(n, k) for odd k is explained

by the following conjectures.

Conjecture 6.1. Theorem 5.1 (which was stated for even k) also holds for odd k.

Conjecture 6.2. W ′1(k) equals the number of n ∈ [0, k2 + k) for which S(n, k) and S(n+ (k2 + k), k)

are both singular.

Conjecture 6.3. W ′1(k)/k2 → 0 as k →∞.

Conjecture 6.4. N0(n, k) = 0 if (but not only if) the digraph G(n, k) has a cycle of even length.

Conjecture 6.5. N0(n, k) ∈ {N(n, k), 0, 1}. Specifically, if N0(n, k) > 1, then N0(n, k) = N(n, k), and

if N0(n, k) = 1, then n is odd and N0(n, k) ≤ N(n, k) with equality if (but not only if) the nullspace of

S(n, k) is generated by a skew-symmetric vector.
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Conjecture 6.6.

W1(k) = W ′1(k) +
∑

q≤k, 2-q

φ(q) +
∑

q≤k/2, 2-q

φ(q),

and for z ≥ 2,

Wz(k) =
∑

q≤k/z, 2-q

φ(q) +
∑

q≤k/(z+1), 2-q

φ(q).

For z ≥ 2, Conjecture 6.6 gives the conditional result that the percentage of matrices S(n, k) with

nullity z equals (z−2 + (z+ 1)−2)/π2. For z = 1, Conjectures 6.6 and 6.3 give the conditional result that the

percentage of matrices S(n, k) with nullity 1 equals 1.25/π2 ' 12.7%. For k = 501, exactly 68287 matrices

S(n, k) with n ∈ [0, 2k2+2k) have nullity 1. Note that 68287/(2∗5012) ' 13.6%, not far from the conditional

estimate 12.7% for large k.

By definition of Wz(k),

W0(k) = 2k2 + 2k −
k∑
z=1

Wz(k).

Thus by Conjecture 6.6,

W0(k) = 2k2 + 2k −W ′1(k) +
∑

q≤k, 2-q

φ(q)− 2

k∑
z=1

∑
q≤k/z, 2-q

φ(q).

Together with Conjecture 6.3, this gives the conditional result that the percentage of nonsingular matrices

S(n, k) equals

1 + 0 + 1/π2 − 1/3 = 2/3 + 1/π2 ' 76.8%.

For k = 501, exactly 381622 matrices S(n, k) with n ∈ [0, 2k2 + 2k) are nonsingular. Note that 381622/(2 ∗
5012) ' 76.0%, not far from the conditional estimate 76.8% for large k.
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