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LAPLACIAN INTEGRAL SUBCUBIC SIGNED GRAPHS∗

DIJIAN WANG† AND YAOPING HOU‡

Abstract. A (signed) graph is called Laplacian integral if all eigenvalues of its Laplacian matrix are integers. In this paper,

we determine all connected Laplacian integral signed graphs of maximum degree 3; among these signed graphs, there are two

classes of Laplacian integral signed graphs, one contains 4 infinite families of signed graphs and another contains 29 individual

signed graphs.
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1. Introduction. All graphs considered here are simple and undirected. The vertex set and edge set of

a graph G are denoted by V (G) and E(G), respectively. A signed graph Γ = (G, σ) consists of an unsigned

graph G = (V,E) and σ : E(G) → {+1,−1}. The G is its underlying graph, while σ is its sign function (or

signature). An edge vivj is positive (negative) if σ(vivj) = +1 (resp. σ(vivj) = −1), and denoted by vi
+∼ vj

(resp. vi
−∼ vj). If a signed graph Γ has the all-positive (resp. all-negative) signature, then it is denoted by

(G,+) (resp. (G,−)). The negation of Γ is a signed graph obtained from Γ by reversing the sign of every

edge of Γ.

The adjacency matrix of a signed graph Γ is defined by A(Γ) = (σij), where σij = σ(vivj) if vi ∼ vj , and

σij = 0 otherwise. The corresponding Laplacian matrix of Γ is Lσ = L(Γ) = L(G, σ) = D(G)−A(Γ), where

D(G) is the diagonal matrix of vertex degrees. Note that L(G,+) = L(G) and L(G,−) = Q(G). Thus,

L(G, σ) may be viewed as a common generalization of the Laplacian matrix L(G) and signless Laplacian

matrix Q(G) = D(G) + A(G) of the underlying graph G. The Laplacian eigenvalues of Γ are identified to

be the eigenvalues of L(Γ). If the distinct Laplacian eigenvalues of Γ are µ1 > µ2 > · · · > µk and their

respective multiplicities as m1,m2, . . . ,mk, we write the spectrum of Γ as specL(Γ) = {µm1
1 , µm2

2 , . . . , µmk

k }.
Recently, some problems about the spectra of the signed graphs have attracted many studies, see [1, 5, 18].

A (signed) graph is called Laplacian integral (resp. integral) if all eigenvalues of its Laplacian matrix

(resp. adjacency matrix) are integers. Which graphs have integral spectra? This problem was proposed

by Harary and Schwenk [6]. Although this problem is easy to understand, it turns to be extremely hard,

and from then on it attracts many mathematicians. In 1970s, Cvetković [2] and Schwenk [12] classified the

connected integral graphs of maximum degree at most 3. Stevanović [13] determined the 4-regular integral

graphs avoiding ±3 in the spectrum and gave the possible spectrum of 4-regular bipartite graphs. In 2008,

Kirkland [10] proved that there are 21 connected Laplacian integral graphs of maximum degree 3 on at

least 6 vertices. For more results about (Laplacian) integral graphs, we refer the readers to [3, 4, 7, 13].
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Unsigned graphs can be considered as the particular case of signed graphs in which all edges are positive.

Therefore, there is a natural question: Which signed graphs have integral spectra? Recently, Hou et al. [9]

and Stanić [16] found out all integral signed graphs with vertex degree at most 4 and exactly 2 eigenvalues.

Wang and Hou [14] gave all connected integral subcubic signed graphs. Stanić [15] investigated integral

regular net-balanced signed graphs with vertex degree at most 4. Thus, it may be an interesting problem to

investigate the Laplacian integral signed graphs with maximum degree 3.

Using Cayley–Hamilton theorem, Kirkland [10] showed that for a Laplacian integral graph G with

spectral radius 5 on n vertices, value of n is restricted to be one of the divisors of 120. It is different from

the unsigned graphs; the number of vertices of Laplacian integral signed graphs with spectral radius 5 may

be arbitrary large.

The majority concepts defined for graphs can be directly extended to signed graphs. For example, the

degree of a vertex v in G (denoted by dv) is also its degree in Γ. As usual, we always write Kn, Cn (or

n-cycle), and Pn for the complete graph, the cycle, and the path with order n, respectively. Let ∆(Γ) and

δ(Γ) denote the maximum and minimum vertex degree of Γ, respectively. For U ⊆ V (G), let Γ[U ] denote

the induced subgraph by U, which is of course a signed graph.

A (signed) graph is called subcubic if its maximum degree is not more than 3. In this paper, we will

determine all connected Laplacian integral subcubic signed graphs, which consist of 4 infinite families of

signed graphs and 29 individual signed graphs.

This paper is organized as follows. In Section 2, we introduce the terminology and notation and give

some preliminary results. In Section 3, we devote to the irregular Laplacian integral unbalanced signed

graphs of maximum degree 3.

2. Preliminaries. First we will bring some basic results about signed graphs. Let Cn be a cycle of Γ,

the sign of Cn is σ(Cn) =
∏
e∈Cn

σ(e). A cycle whose sign is +1 (resp. −1) is called positive (resp. negative).

A signed graph is called balanced if all its cycles are positive, otherwise it is called unbalanced. Throughout

this paper, we denote a positive and a negative cycle of length n by C+
n and C−n , respectively.

For Γ = (G, σ) and U ⊂ V (G), let ΓU be the signed graph obtained from Γ by reversing the signature

of the edges in the cut [U, V (G) \ U ], namely σΓU (e) = −σΓ(e) for any edge e between U and V (G) \ U,
and σΓU (e) = σΓ(e) otherwise. The signed graph ΓU is said to be switching equivalent to Γ, write Γ ∼ ΓU .

Furthermore, it is important to observe that switching equivalent signed graphs have similar Laplacian

matrices. For more results on signed graphs, see [17].

The following lemma is used to check whether two signed graphs are switching equivalent.

Lemma 1 ([17, Lemma 3.1]). Let G be a connected graph and T a spanning tree of G. The each switching

equivalence class of signed graphs on the graph G has a unique representative which is +1 on T. Indeed, given

any prescribed sign function σT : T −→ {+1,−1}, each switching class has a single representative which

agrees with σT on T.

If Γ = (G, σ) is a connected signed graph of maximum degree at most 2, then G must be a path or cycle.

It is then readily determined that Γ is Laplacian integral if and only if it is the signed graph (P2, σ), (P3, σ),

C+
3 , C

−
3 , C

+
4 , or C+

6 (see [1, Lemma 4.1]). Thus, in the following, we describe all connected Laplacian

integral signed graphs of maximum degree 3.
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Let µ1(Γ) and µn(Γ) be the largest and smallest Laplacian eigenvalues of the signed graph Γ with n

vertices, respectively. Two basic results about µ1(Γ) and µn(Γ) of the signed graphs are provided [8].

Lemma 2 ([8, Theorem 2.5]). Let Γ = (G, σ) be a connected signed graph with n vertices. Then

µn(Γ) = 0 if and only if Γ is balanced.

Lemma 3 ([8, Lemma 3.1]). Let Γ = (G, σ) be a connected signed graph with n vertices. Then

µ1(G, σ) ≤ µ1(G,−),

with equality if and only if (G, σ) ∼ (G,−).

For a connected Laplacian integral signed graph Γ = (G, σ) of maximum degree 3, it is straightforward

to see that µ1(G, σ) ≤ µ1(G,−) ≤ 6, with equality holds if and only if (G, σ) ∼ (G,−) and G is 3-regular.

Thus, the Laplacian spectrum of such a signed graph is

SpecL(Γ) = {0x0 , 1x1 , 2x2 , 3x3 , 4x4 , 5x5 , 6x6}.

If x0 6= 0, by Lemma 2, then Γ = (G, σ) is balanced. So Γ is one of the balanced Laplacian integral

signed graphs of maximum degree 3 identified in [10] and [12]. Figs. 1 and 3 show such balanced signed

graphs.

Lemma 4 ([10, 12]). Let Γ = (G, σ) be a connected balanced signed graph of maximum degree 3, then Γ

is Laplacian integral if and only if it is switching equivalent to one of the unsigned graphs in Figs. 1 and 3.

If G is 3-regular then Γ = (G, σ) is Laplacian integral if and only if it is integral, which are identified in

[12] and [14].

Lemma 5 ([12, 14]). Let Γ = (G, σ) be a connected 3-regular signed graph, then Γ is Laplacian integral

if and only if it is switching equivalent to one of the signed graphs in Figs. 1 and 2, or their negations.

{0, 34, 61} {0, 23, 43, 61} {0, 11, 22, 33, 42, 51, 61}
{0, 12, 21, 34, 41, 52, 61}

{0, 14, 25, 45, 54, 61}

{0, 14, 25, 45, 54, 61}
{0, 14, 25, 45, 54, 61}

{0, 19, 310, 59, 61}

{0, 25, 54}
{0, 13, 32, 43, 53}

{0, 21, 32, 52}{0, 11, 23, 42, 53}

{0, 43}

Fig. 1. 3-regular, Laplacian integral graphs.
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Fig. 2. 3-regular, Laplacian integral unbalanced signed graphs.

{0, 12, 22, 43, 52} {0, 11, 24, 41, 53}

{0, 15, 35, 54}

{0, 13, 22, 43, 51} {0, 14, 21, 32, 42, 52}

{0, 13, 22, 32, 41, 53}

{0, 14, 21, 32, 42, 52}

{0, 12, 41} {0, 11, 31, 41} {0, 21, 42} {0, 22, 31, 51} {0, 21, 31, 41, 51} {0, 11, 21, 32, 51} {0, 11, 32, 41, 51}

Fig. 3. Irregular, Laplacian integral graphs of maximum degree 3.

Thus, for our purposes, it is enough to focus on the case in which Γ = (G, σ) is unbalanced and irregular.

Let G denote the set of the connected irregular Laplacian integral unbalanced signed graphs of maximum

degree 3. Obviously, Laplacian spectrum of a signed graph Γ ∈ G must be

SpecL(Γ) = {1x1 , 2x2 , 3x3 , 4x4 , 5x5}.

Thus, we have the following observations, which will be used frequently in this paper.

Proposition 2.1. Let Γ = (G, σ) ∈ G. Then

(i) µn(Γ) ≥ 1 and µ1(Γ) ≤ 5.

(ii) Lσ − I is positive semi-definite (if µn(Γ) = 1) or positive definite (if µn(Γ) > 1).

Lemma 6 ([8, Lemma 3.7]). Let Γ be a signed graph with n vertices and let Γ′ be a signed graph obtained

from Γ by inserting a new (positive or negative) edge into Γ. Then the Laplacian eigenvalues of Γ and Γ′

interlace, that is,

µ1(Γ′) ≥ µ1(Γ) ≥ · · · ≥ µn(Γ′) ≥ µn(Γ).

From Lemma 6, we know that µ1(H) ≤ µ1(Γ) ≤ 5 for any subgraph H of signed graph Γ ∈ G. Thus,

in order to determine all signed graphs Γ ∈ G, we need to present some forbidden subgraphs whose largest

Laplacian eigenvalue is strictly greater than 5, as depicted in Fig. 4.

Lemma 7. Let Γ ∈ G. Then Γ does not contain any signed graph in Fig. 4 as its subgraph.

Proof. Since Γ = (G, σ) ∈ G, then µ1(Γ) ≤ 5 and Γ cannot contain the signed graph whose largest

Laplacian eigenvalue is strictly greater than 5 as a subgraph (by Lemma 6). So Γ does not contain any

signed graph in Fig. 4 as a subgraph.
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5.23

H1

5.12

H2

5.12 5.23

H3 H4

5.09 5.23

H5 H6

5.23

H7

5.17

H8

5.104 5.047

H9 H10 H11

5.07 5.18

H12

H13
5.104 5.047H14 H15

5.02 H16 H17
5.285.11

Fig. 4. Forbidden subgraphs (the number denotes the largest Laplacian eigenvalue of the corresponding signed graph).

Next we prove that if Γ = (G, σ) ∈ G, then δ(Γ) ≥ 2.

Lemma 8. Let Γ = (G, σ) ∈ G. Then Γ has no a pendant vertex.

Proof. Suppose that u is a pendant vertex and v is the unique neighbor of u, then the 2 × 2 principal

submatrix of Lσ − I corresponding to u and v is

S =

[
0 −1

−1 dv − 1

]
.

We have det(S) = −1, which contradicts Proposition 2.1. This completes the proof.

In the end of this section, we provide some results that will be useful to prove the main results of this

paper.

Lemma 9. Let Γ = (G, σ) ∈ G. If the underlying graph G contains the G1 (see Fig. 5) as an induced

subgraph, then there exists one new vertex x7 that is adjacent to both x5 and x6 and Γ[V (G1) ∪ {x7}] is

switching equivalent to Gσ2 (see Fig. 5).

Proof. In view of Lemma 1, we may assume that σ(x1x2) = σ(x2x3) = σ(x2x4) = σ(x3x5) = σ(x3x6) =

+1. First by forbidden subgraph H1, we have σ(v4v5)σ(v4v6) = −1 or σ(v4v5) = σ(v4v6) = −1.

Case 1. σ(v4v5)σ(v4v6) = −1. Without loss of generality, assume that σ(v4v5) = −1 and σ(v4v6) = +1.

If dv5 = 3, then Γ contains the subgraph H2, this is impossible. Thus, dv5 = 2. The 4×4 principal submatrix

of Lσ − I corresponding to v2, v3, v4, v6 is

x6

x1 x2

x3

x4

x5

G1 Gσ
2

x7

x6

x1 x2

x3

x4

x5

Gσ
3 Gσ

4

v1

v2

v3 v4 v5
u1

u2

u3 u4

u5

u6

Fig. 5. The graphs G1 and the signed graphs Gσ2 , G
σ
3 , G

σ
4 .
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S =


2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 1

 .
Then det(S) = −4, which contradicts Proposition 2.1.

Case 2. σ(x4x5) = σ(x4x6) = −1. The 5 × 5 principal submatrix of Lσ − I corresponding to vertices

x2, x3, x4, x5, x6 is

S =


2 −1 −1 0 0

−1 2 0 −1 −1

−1 0 2 1 1

0 −1 1 dx5
− 1 0

0 −1 1 0 dx6 − 1

 , where dxi
∈ {2, 3} for i = 5, 6.

By direct computation, we have det(S) = 4((dx5
− 2)(dx6

− 2) − 1). Then det(S) ≥ 0 if and only if

dx5
= dx6

= 3. Without loss of generality, assume that x5 has a new neighbor x7. By forbidden subgraphs

H3 and H4, then x6 is also adjacent to x7 and σ(x5x7)σ(x6x7) = −1. This completes the proof.

Lemma 10. Let Γ = (G, σ) ∈ G.

(i) If Γ contains Gσ3 (see Fig. 5) as an induced subgraph and dv1 = dv2 = 3, then dv4 = 3.

(ii) If Γ contains Gσ4 (see Fig. 5) as an induced subgraph and du1 = du2 = 3, then du5 = du6 = 3.

Proof. The 5× 5 principal submatrix of Lσ − I corresponding to vertices v1, v2, v3, v4, v5 and the 6× 6

principal submatrix of Lσ − I corresponding to vertices u1, u2, u3, u4, u5, u6 are

S1 =


2 0 −1 0 0

0 2 −1 0 0

−1 −1 2 −1 0

0 0 −1 dv4 − 1 −1

0 0 0 −1 dv5 − 1

 , S2 =



2 0 −1 0 0 0

0 2 −1 0 0 0

−1 −1 2 −1 0 0

0 0 −1 2 −1 −1

0 0 0 −1 du5 − 1 0

0 0 0 −1 0 du6 − 1


.

Direct calculations show that det(S1) = 4((dv4 − 2)(dv5 − 1) − 1) and det(S2) = 4((du5 − 2)(du6 − 2) − 1).

Then det(S1) ≥ 0 if and only if dv4 = 3 and det(S2) ≥ 0 if and only if du5
= du6

= 3. Thus, the proofs of (i)

and (ii) are completed.

Lemma 11. Let Γ = (G, σ) ∈ G. If there is one pair of adjacent vertices u and v of degree 2, then there

exists one C−3 that contains two vertices u and v.

Proof. Suppose that w is the another neighbor of v and σ(uv) = σ(vw) = +1, then the 3× 3 principal

submatrix of Lσ − I corresponding to v, u, w is

S =

 1 −1 −σ(wu)

−1 1 −1

−σ(wu) −1 dw − 1

 , where dw ∈ {2, 3}.

By direct calculation, we have det(S) = −(σ(wu) + 1)2. Then det(S) ≥ 0 if and only if σ(wu) = −1. So

{v, u, w} is a negative 3-cycle. This completes the proof.
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Σ1 (n ≡ 0 mod 6)

Σ2 (n ≡ 3 mod 6)

Σ3 (n ≡ 0 mod 6)

v1

v2

v3 v4

v5

vn

vn−1

vn−2

v1

v2

v3 v4 vn

vn−1

vn−2

vnv1

v2

v3

v6

v7

v8

v9 vn−3

vn−4

vn−5

vn−6

vn−7

vn−8

v5

v6

v7

v8

v9

v4

v5

v6

vn−1

vn−2

Fig. 6. Irregular Laplacian integral unbalanced signed graphs of maximum degree 3.

3. Signed graphs of G. In this section, we determine the set G of all irregular Laplacian integral

unbalanced signed graphs of maximum degree 3. We divide this section into two subsections: in Subsection

3.1, we consider that Γ contains the 3-cycle, and in Subsection 3.2, we consider that Γ contains no 3-cycle.

First we prove that three signed graphs Σ1,Σ2,Σ3 of Fig. 6 are Laplacian integral. Let 0m be the

all-zero vector of dimension m and take {e1, e2, . . . , em} to be an orthonormal basis of Rm. We need to

define some vectors:

t1 = (2,−2, 0, 2, 0,−2), t2 = (2,−2, 0, 1, 1, 0), t3 = (2,−1,−1, 0, 0, 0),

t4 = (1, 1, 0, 1, 0, 1), t5 = (2, 2, 0, 2, 0, 2), t6 = (2, 2, 0, 1, 1, 0), t7 = (2, 1, 1, 0, 0, 0).

Lemma 12.

(i) The spectrum of signed graph Σ1 with order n = 6k is

specL(Σ1) = {52k−1, 4k, 2k, 12k+1}.

(ii) The spectrum of signed graph Σ2 with order n = 6k + 3 is

specL(Σ2) = {52k, 4k+1, 2k, 12k+2}.

(iii) The spectrum of signed graph Σ3 with order n = 6k is

specL(Σ3) = {52k−1, 4k+1, 2k−1, 12k+1}.

Proof. (i) Let us define some n-dimensional vectors ai:

a1 = (1, 1,−2, t1, . . . , t1, 2,−1,−1),

ai = (1, 1,−2, t1, . . . , t1︸ ︷︷ ︸
k−i

, t2,06(i−2)+3), for i = 2, . . . , k,

ai = (1, 1,−2, t1, . . . , t1︸ ︷︷ ︸
2k−1−i

, t3,06(i−(k+1))+3), for i = k + 1, k + 2, . . . , 2k − 1.

For example, a1, a2, and ak+1 are displayed in Fig. 7, where the number in parentheses in Fig. 7 denotes

the coordinate of the corresponding vector.
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-1

-2 2

-2

0

2

0

-2 2

-2

0 0

-2

2

21

1

-2 2

-2

0

2

0

-2 2

-2

0

01

1

1

0 0

0

1

2

-2

0

2

0

-2

-2 2

-2

0

2

0

-2 2 01

1

-1

-1

2

-2

0

2

0

-2

0

0

a1 = (1, 1,−2, t1, . . . , t1, 2,−1,−1)

0 0

0

a2 = (1, 1,−2, t1, . . . , t1, t2, 0, 0, 0)

ak+1 = (1, 1,−2, t1, . . . , t1, t3, 0, 0, 0)

Fig. 7. Three eigenvectors a1,a2,ak+1 of L(Σ1).

It is not difficult to check that L(Σ1)ai = 5ai for i = 1, 2, . . . , 2k−1. That is, 5 is an eigenvalue of L(Σ1)

and a1,a2, . . . ,a2k−1 are its eigenvectors.

We define the matrix X = [aT2k−1|aT2k−2| · · · |aT1 ]. Then we have row6j(X) = e2j−1 for j = 1, 2, . . . , k,

row6j+2(X) = e2j for j = 1, 2, . . . , k−1, where rowi(X) denotes the i-row of the matrix X. So rank(X)=2k−1

and the vectors a1,a2, . . . ,a2k−1 are linearly independent. Thus, 5 is an eigenvalue of L(Σ1) with multiplicity

at least 2k − 1.

Let n-dimensional vectors bi and ci (i = 1, 2, . . . , k − 1, k) be

bi = (06(k−i), 1,−1,−1,−1, 1, 1,06(i−1)), for i = 1, 2, . . . , k − 1,

bk = (1, 1,−1,−1, 1, 1,06(k−1)),

ci = (06(k−i),−1, 1,−1, 1, 1, 1,06(i−1)), for i = 1, 2, . . . , k − 1,

ck = (−1,−1,−1, 1, 1, 1,06(k−1)).

For each of vectors bi, ci (i = 1, 2, . . . , k), we can check that L(Σ1)bTi = 4bTi and L(Σ1)cTi = 2cTi for

i = 1, 2, . . . , k. It is easy to verify that the vectors b1,b2, . . . ,bk are linearly independent and the vectors

c1, c2, . . . , ck are linearly independent. Thus, 4 and 2 are two eigenvalues of L(Σ1) with multiplicity at least

k, respectively.

Let n-dimensional vectors di (i = 1, 2, . . . , 2k + 1) be d1 = (−1, 1,0n−2),

di = (2, 0, 2, t5, . . . , t5︸ ︷︷ ︸
k−i

, t6,06(i−2)+3), for i = 2, . . . , k,

di = (2, 0, 2, t5, . . . , t5︸ ︷︷ ︸
2k−1−i

, t7,06(i−(k+1))+3), for i = k + 1, k + 2, . . . , 2k − 1,

d2k = (1, 0, 1, t4, . . . , t4, 1, 1, 0),

d2k+1 = (1, 0, 1, t4, . . . , t4, 1, 0, 1).

In the similar way, we get that L(Σ1)dTi = dTi for i = 1, 2, . . . , 2k + 1, and the vectors d1,d2, . . . ,d2k+1 are

linearly independent. So 1 is an eigenvalue of L(Σ1) with multiplicity at least 2k + 1. Thus, specL(Σ1) =

{52k−1, 4k, 2k, 12k+1} and proves the (i).
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The proofs (ii) and (iii) are similar and omitted here.

3.1. Γ ∈ G contains a 3-cycle. Before we give the main result of this subsection, we provide some

useful lemmas.

Lemma 13. Let Γ = (G, σ) ∈ G. Then there is no two 3-cycles that share an edge.

Proof. Suppose that there are two 3-cycles v1v2v3 and v1v2v4 that share an edge v1v2. If v3 ∼ v4, then

Γ is 3-regular. Next we assume that v3 6∼ v4. If dv3 = dv4 = 2, then G = K4 − v3v4. It is easy to verify that

(K4 − v3v4, σ) is Laplacian integral if and only if Γ ∼ (K4 − v3v4,+), which have been done. So, without

loss of generality, assume that dv4 = 3 and v5 is a new neighbor of v4. By Lemma 1, we can assume that

v1
+∼ v2, v1

+∼ v3, and v1
+∼ v4. Then the 4× 4 principal submatrix of Lσ − I corresponding to v1, v2, v3, v4 is

S =


2 −1 −1 −1

−1 2 −σ(v2v3) −σ(v2v4)

−1 −σ(v2v3) dv3 − 1 0

−1 −σ(v2v4) 0 2

 ,where dv3 ∈ {2, 3}.

By forbidden subgraphs H5 and H6, we have σ(v2v3) = +1.

If dv3 = 2, then det(S) = −12 (if σ(v2v4) = +1) and det(S) = −4 (if σ(v2v4) = −1), which is a

contradiction.

If dv3 = 3, then σ(v2v4) = +1, otherwise Γ contains the subgraph H5, this is impossible. Now we have

det(S) = −12, which is also a contradiction.

So Γ is not Laplacian integral and Γ 6∈ G. This completes the proof.

The following result implies that for any Γ ∈ G, it has no positive 3-cycle.

Lemma 14. Let Γ = (G, σ) ∈ G. Then there is no positive 3-cycle.

Proof. For a contradiction, we assume that the 3-cycle (V (C3) = {v1, v2, v3}) is all-positive. Since Γ is

connected and ∆(Γ) = 3, we may assume that dv1 = 3 and v1 has a new neighbor v′1, v1
+∼ v′1. By Lemma

13, we have v′1 6∼ v2, v3. The 4× 4 principal submatrix of Lσ − I corresponding to v1, v2, v3, v
′
1 is

S =


2 −1 −1 −1

−1 dv2 − 1 −1 0

−1 −1 dv3 − 1 0

−1 0 0 dv′1 − 1

 =

[
S′ xT

x dv′1 − 1

]
,where x = (−1, 0, 0).

First we consider the 3 × 3 principal submatrix S′ of Lσ − I corresponding to v1, v2, v3, direct calculations

show that det(S′) = (dv2 − 2)(dv3 − 2) + (dv2 − 1)(dv3 − 1) − 5 ≥ 0 if and only if dv2 = dv3 = 3. However,

we have det(S) = −3 for dv2 = dv3 = 3 and dv′1 ∈ {2, 3}, which contradicts Proposition 2.1. So the 3-cycle

must be negative.

Remark 3.1. By Lemmas 13, 14 and forbidden subgraph H7, we can conclude that the negative 3-cycle

has at least one vertex of degree 2.

By Remark 3.1, it suffices to consider that the negative 3-cycle has one or two vertices of degree 2 (see

Lemmas 15 and 16).
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Lemma 15. Let Γ = (G, σ) be a connected signed graph with n vertices. If Γ contains one negative

3-cycle which has exactly two vertices of degree 2, then Γ ∈ G if and only if Γ is switching equivalent to the

signed graph Σ1 or Σ2 (see Fig. 6).

Proof. Sufficiency. Lemma 12 shows that Σ1 and Σ2 are Laplacian integral.

Necessity. Suppose that a negative 3-cycle is on vertices v1, v2, v3 such that dv1 = dv2 = 2 and dv3 = 3.

By Lemma 1, we can assume that v1
−∼ v2, v1

+∼ v3 and v2
+∼ v3. Let v4 be the new neighbor of v3 and v3

+∼ v4.

Since dv4 ≥ 2, then v4 has one new neighbor v5, v4
+∼ v5. The 4×4 principal submatrix of Lσ−I corresponding

to vertices v1, v3, v4, v5 is

S =


1 −1 0 0

−1 2 −1 0

0 −1 dv4 − 1 −1

0 0 −1 dv5 − 1

 , where dvi ∈ {2, 3} for i = 4, 5.

Direct calculations show that det(S) = (dv4 − 2)(dv5 − 1) − 1. Then det(S) ≥ 0 if and only if dv4 = 3. So

there is one new vertex v6 that is adjacent to v4, v4
+∼ v6. If v5 ∼ v6, then {v4, v5, v6} is a negative 3-cycle

and v5
−∼ v6. By forbidden subgraph H8, we have dv5 = dv6 = 2. So Γ ∼ Σ1 with order 6. If v5 6∼ v6, then

the 5× 5 principal submatrix of Lσ − I corresponding to vertices v1, v3, v4, v5, v6 is

S =


1 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 −1

0 0 −1 dv5 − 1 0

0 0 −1 0 dv6 − 1

 , where dvi ∈ {2, 3} for i = 5, 6.

Direct calculations show that det(S) = (dx5 − 2)(dx6 − 2)− 1. Then det(S) ≥ 0 if and only if dv5 = dv6 = 3.

Without loss of generality, assume that v7, v8 are the new neighbors of v5, v5
+∼ v7, v8. If v6 is adjacent to

none of v7, v8, or exactly one vertex of v7, v8, then {v1, v2, v3, v4, v5, v6, v7, v8} together with the neighbors of

v6 induces the forbidden subgraphs H9,H10, or H11, contradiction. So v6 ∼ v7, v8. By Lemma 13, we have

v7 6∼ v8. Note that {v3, v4, v5, v6, v7, v8} induces the G1 (see Fig. 5), by Lemma 9, then v6
−∼ v7, v8 and there

is a new vertex v9 that is adjacent to v7 and v8 with σ(v7v9)σ(v8v9) = −1.

Case 1. dv9 = 2.

So Γ ∼ Γ1 (see Fig. 8), which is the signed graph Σ2 with order 9.

Case 2. dv9 = 3.

Γ1 Γ2

Γ4 Γ5

{52, 42, 2, 14} {53, 42, 22, 15}

{55, 43, 23, 17} {56, 44, 23, 18}

Γ3{54, 43, 22, 16}

Fig. 8. The signed graphs Γi (i = 1, 2, 3, 4, 5) in the proof the Lemma 15.
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Let v10 be the neighbor of v9 and v9
+∼ v10. As dv10 ≥ 2, let v11 be the new neighbor of v10, v10

+∼ v11.

Note that {v7, v8, v9, v10, v11} induces a subgraph Gσ3 (see Fig. 5), then dv10 = 3 (by Lemma 10 (i)). So

there is one new vertex v12 that is adjacent to v10, v10
+∼ v12.

Subcase 2.1. v11 ∼ v12.

Then {v10, v11, v12} is a negative 3-cycle and v11
−∼ v12. By forbidden subgraph H12, we have dv11 =

dv12 = 2. Hence Γ ∼ Γ2 (see Fig. 8), which is the signed graph Σ1 with order 12.

Subcase 2.2. v11 6∼ v12.

As in the case of the vertices v5, v6, we have dv11 = dv12 = 3. Let v13, v14 be two new neighbors of v11,

v11
+∼ v13, v14. By forbidden subgraphs H11, H13, and H14, we have v12 ∼ v13, v14. Similarly to the v7, v8, by

Lemmas 13 and 9, we have v13 6∼ v14, v12
−∼ v13, v14 and there is a new vertex v15 that is adjacent to v13 and

v14 with σ(v13v15)σ(v14v15) = −1.

If dv15 = 2, then Γ ∼ Γ3 (see Fig. 8), which is the signed graph Σ2 with order 15.

If dv15 = 3, let v16 be the new neighbor of v15, v15
+∼ v16. Similar to the v10, we have dv16 = 3, and let

v17, v18 be two new neighbors of v16, v16
+∼ v17, v18.

If v17 ∼ v18, similar to subcase 2.1, we have v17
−∼ v18 and dv17 = dv18 = 2. Hence Γ ∼ Γ4 (see Fig. 8),

which is the signed graph Σ1 with order 18. If v17 6∼ v18, similar to subcase 2.2, we have dv17 = dv18 = 3

and v17 has two new neighbors v19, v20, v17
+∼ v19, v20, v18

−∼ v19, v20, v19 6∼ v20 (by Lemma 13) and there is

a new vertex v21 that is adjacent to v19 and v20 with σ(v19v21)σ(v20v21) = −1 (by Lemma 9).

If dv21 = 2, then Γ ∼ Γ5 (see Fig. 8) by similar discussions. So Γ is the signed graph Σ2 with order 21.

If dv21 = 3, continuing the above process, then Γ is switching equivalent to the signed graph Σ1 or Σ2.

Lemma 16. Let Γ = (G, σ) be a connected signed graph with n vertices. If Γ contains one negative

3-cycle which has exactly one vertex of degree 2, then Γ ∈ G if and only if Γ is switching equivalent to the

signed graph Σ4 (see Fig. 9).

Proof. Suppose that the negative 3-cycle is on vertices v1, v2, v3 such that dv1 = 2 and dv2 = dv3 = 3.

By Lemma 1, we may assume that v1
+∼ v2, v1

+∼ v3 and v2
−∼ v3. Let v4 be the new neighbor of v2 and v2

+∼ v4.

By Lemma 13, we have v3 6∼ v4. So v3 has a new neighbor v5 and v3
+∼ v5. If v4 6∼ v5, since dvi ≥ 2 for

i = 4, 5, then each vi has a new neighbor and Γ must contain the subgraph H15, which is a contradiction.

So v4
+∼ v5 (by forbidden subgraph H16). The 5× 5 principal submatrix of Lσ − I corresponding to vertices

v1, v2, v3, v4, v5 is

S =


1 −1 −1 0 0

−1 2 1 −1 0

−1 1 2 0 −1

0 −1 0 2 −1

0 0 −1 −1 dv5 − 1

 .

{12, 22, 52}

Fig. 9. The signed graph Σ4.
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Then det(S) = dv5−3 ≥ 0 if and only if dv5 = 3. So v5 ∼ v6, otherwise contains the forbidden subgraph H15.

Further, we have v5
−∼ v6 as {v4, v5, v6} is a negative 3-cycle. By forbidden subgraph H17, we have dv6 = 2.

So Γ ∼ Σ4 (see Fig. 9), which is Laplacian integral. This completes the proof.

3.2. Γ contains no 3-cycle. We now attention to the signed graphs that contain no 3-cycle. Before

giving the main result of this subsection, we present one lemma.

Lemma 17. Let Γ = (G, σ) ∈ G. If Γ contains no 3-cycle, then each vertex of degree 3 is adjacent to at

most one vertex of degree 2.

Proof. Let u be the vertex of degree 3 and its neighbor set be {w, x, y}. Since Γ contains no 3-cycle, then

x 6∼ y, x 6∼ w, and y 6∼ w. By Lemma 1, assume that u
+∼w, x, y. The 4 × 4 principal submatrix of Lσ − I

corresponding to u,w, x, y is

S =


2 −1 −1 −1

−1 dx − 1 0 0

−1 0 dy − 1 0

−1 0 0 dw − 1

 .
If at least two of dx, dy, dw are 2, we have det(S) = −1, which contradicts Proposition 2.1. So at most one

of dx, dy, dw is 2 and completes the proof.

Now we are ready to give the main result of this subsection.

Lemma 18. Let Γ = (G, σ) be a connected signed graph with n vertices. If Γ contains no 3-cycle, then

Γ ∈ G if and only if Γ is switching equivalent to the signed graph Σ3.

Proof. Sufficiency. Lemma 12 shows that Σ3 is Laplacian integral.

Necessity. Let v1 be the vertex of degree 2, v2 and v3 be two neighbors of v1 and v1
+∼ v2, v3. Since Γ

contains no 3-cycle, then v2 6∼ v3 and dv2 = dv3 = 3 (by Lemma 11). Without loss of generality, assume that

v2 has two new neighbors v4, v5 and v2
+∼ v4, v5. By Lemma 17, we have dv4 = dv5 = 3. The 5 × 5 principal

submatrix of Lσ − I corresponding to v1, v2, v3, v4, v5 is

S =


1 −1 −1 0 0

−1 2 0 −1 −1

−1 0 2 −x −y
0 −1 −x 2 0

0 −1 −y 0 2

 ,where x = σ(v3v4) and y = σ(v3v5).

Then det(S) = −(x + y + 1)(x + y + 3) − 1 ≥ 0 if and only if x = y = −1. So v3
−∼ v4, v5. Let v6 be

the new neighbor of v4, v4
+∼ v6, by forbidden subgraphs H3 and H4, we have v5

−∼ v6. If dv6 = 2, then

Γ ∼ Σ3 with order 6. If dv6 = 3, let v7 be the new neighbor of v6, v6
+∼ v7. As dv7 ≥ 2, then v7 has a

new neighbor v8, v7
+∼ v8. Note that {v4, v5, v6, v7, v8} induces the Gσ3 , then dv7 = 3 (by Lemma 10 (i)).

So there is one new vertex v9 that is adjacent to v7, v7
+∼ v9. Also note that {v4, v5, v6, v7, v8, v9} induces

the Gσ4 , then dv8 = dv9 = 3 (by Lemma 10 (ii)). Without loss of generality, assume that v8 has two new

neighbors v10, v11, v8
+∼ v10, v11. By forbidden subgraphs H11, H13, and H14, v9 is adjacent to v10, v11. Note

that {v6, v7, v8, v9, v10, v11} induces the G1 (see Fig. 5), by Lemma 9, then v9
−∼ v10, v11 and there is one new

vertex v12 that is adjacent to v10 and v11 with σ(v10v12)σ(v11v12) = −1.
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Γ6 Γ7{53, 43, 21, 15} {55, 44, 22, 17}

Fig. 10. The signed graphs Γi (i = 6, 7) in the proof of Lemma 18.

If dv12 = 2, then Γ ∼ Γ6 (see Fig. 10), which is the signed graph Σ3 with order 12. If dv12 = 3, then v12

has a new neighbor v13, v12
+∼ v13. Similar to the v7, we have dv13 = 3, and let v14, v15 be two new neighbors

of v13 and v13
+∼ v14, v15. Similar to the v8, v9, we have dv14 = dv15 = 3 and v14 has two new neighbors v16, v17,

v14
+∼ v16, v17. By forbidden subgraphs H11, H13, H14 and Lemma 9, we have v15

−∼ v16, v17 and there is one

new vertex v18 that is adjacent to v16 and v17 with σ(v16v18)σ(v17v18) = −1.

If dv18 = 2, then Γ ∼ Γ7 (see Fig. 10) by similar discussions. So Γ is the signed graph Σ3 with order 18.

If dv18 = 3, continuing the above process, then Γ is switching equivalent to Σ3.

Putting Lemmas 4, 5, 15, 16, and 18 together, we obtain the main result of this paper.

Theorem 19. Let Γ = (G, σ) be a connected Laplacian integral signed graph of maximum degree 3, then

Γ is switching equivalent to

(i) the signed graphs Σ1,Σ2,Σ3,Σ4,

(ii) the unsigned graphs of Fig. 3,

(iii) the 3-regular signed graphs in Figs. 1 and 2, or their negations.
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