# BEYOND THE FAN-HOFFMAN INEQUALITY* 

STEPHEN DRURY ${ }^{\dagger}$


#### Abstract

We establish a singular value inequality inspired by the Fan-Hoffman inequality and resolve the $j$-conjecture of Yang and Zhang.


Key words. Singular value, Eigenvalue, $j$-conjecture.

AMS subject classification. 15A42.

1. Introduction. Majorization inequalities for the eigenvalues and singular values of matrices are commonplace. Inequalities that compare the $j^{\text {th }}$ eigenvalue or singular value of one matrix to that of another are more special. One such inequality is the Fan-Hoffman inequality [2] which asserts that

$$
\lambda_{j}(\Re(A)) \leq \sigma_{j}(|A|) \text { for } j=1, \ldots, n
$$

for an $n \times n$ complex matrix $A$. The notation $A^{*}$ denotes the adjoint matrix of $A, \Re(A)$ denotes the hermitian part $\frac{1}{2}\left(A+A^{*}\right)$ of $A$, and $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$ the absolute value of $A$. For a hermitian matrix $H, \lambda_{j}(H)$ denotes the $j^{\text {th }}$ eigenvalue taken in decreasing order and $\sigma_{j}(A)=\lambda_{j}(|A|)$, the $j^{\text {th }}$ singular value of $A$. For more details on these concepts, the reader may consult Bhatia [1].

In a related paper [3], R.C. Thompson establishes the following result.
Theorem 1. For any pair $A, B$ of $n \times n$ complex matrices, there exist unitary $n \times n$ matrices $U$ and $V$ such that $|A+B| \leq U^{*}|A| U+V^{*}|B| V$ where $\leq i s$ understood in the positive semidefinite sense.

An immediate consequence is the following.
Corollary 2. For any $n \times n$ complex matrix $A$ and any $n \times n$ contraction $C$, we have

$$
\sigma_{j}(C+A) \leq \lambda_{j}(I+|A|) \text { for } j=1, \ldots, n
$$

Here, we have denoted by $I$ the $n \times n$ identity matrix.

By a contraction $C$, we mean a complex matrix with its spectral norm $\|C\| \leq 1$. It is this corollary that we intend to generalize by establishing the following.

Theorem 3. For any $n \times n$ complex matrix $A$, any $n \times n$ contraction $C$ and any positive nondecreasing function $f:[0,\|A\|] \rightarrow(0, \infty)$, the inequality

$$
\begin{equation*}
\sigma_{j}((C+A) f(|A|)) \leq \lambda_{j}((I+|A|) f(|A|)) \text { for } j=1, \ldots, n \tag{1.1}
\end{equation*}
$$

holds.

[^0]For a hermitian matrix $H$ with spectral decomposition

$$
H=\sum_{j=1}^{n} \lambda_{j}(H) e_{j} e_{j}^{*}
$$

with $\left\{e_{j}, j=1, \ldots, n\right\}$ an orthonormal basis, we have denoted

$$
f(H)=\sum_{j=1}^{n} f\left(\lambda_{j}(H)\right) e_{j} e_{j}^{*}
$$

the standard symbolic calculus for hermitian matrices. Note that $(I+|A|) f(|A|)$ is hermitian since $I+|A|$ and $f(|A|)$ are commuting hermitian matrices.

As a consequence, we will establish the $j$-conjecture of Yang and Zhang [4].
Theorem 4. Let $A$ be a strict contraction. Then

$$
\lambda_{j}\left(\Re\left((I-A)^{-1}\right)\right) \geq \lambda_{j}\left((I+|A|)^{-1}\right), \text { for } j=1,2, \ldots, n
$$

## 2. Proofs of the results.

Proof. Proof of Theorem 3.
Since $|A|$ has only finitely many eigenvalues, we may always extend $f$ to a continuous positive nondecreasing function defined on $(0, \infty)$ which we do without change of notation. The function $g$ given by $g(t)=(1+t) f(t)$ is continuous and strictly increasing tending to $\infty$ at $\infty$. The inverse function $h$ of $g$ is also a strictly increasing continuous function.

Equivalent to 1.1, we will show

$$
\begin{equation*}
\lambda_{j}\left(B\left(C^{*} C+C^{*} A+A^{*} C+A^{*} A\right) B\right) \leq \lambda_{j}((I+|A|) B)^{2} \tag{2.1}
\end{equation*}
$$

where $B=f(|A|)$. We will assume that 2.1 is false and find a contradiction. Then there exists a real number $\nu$ such that

$$
\lambda_{j}\left(B\left(C^{*} C+C^{*} A+C A^{*}+A^{*} A\right) B\right)>\nu^{2} \quad \text { and } \quad \nu>\lambda_{j}((I+|A|) B) .
$$

Also we have $B=f(|A|) \geq f(0) I$ so that $f(0) \leq \lambda_{n}(B) \leq \lambda_{j}(B) \leq \lambda_{j}((I+|A|) B)$. Hence by the intermediate value theorem, there exists $\mu$ such that $(1+\mu) f(\mu)=g(\mu)=\nu$. Hence, there is a linear subspace $E$ of dimension $j$ such that

$$
\xi^{*} B\left(C^{*} C+C^{*} A+C A^{*}+A^{*} A\right) B \xi>(1+\mu)^{2} f(\mu)^{2}\|\xi\|^{2},
$$

for all nonzero $\xi \in E$.
Let

$$
(I+|A|) B=\sum_{k=1}^{n} \lambda_{k}((I+|A|) B) \eta_{k} \eta_{k}^{*}
$$

be the spectral decomposition of $(I+|A|) B$ where the $\eta_{k}$ are the mutually orthogonal unit eigenvectors. Let $F$ be the linear subspace of dimension $n+1-j$ spanned by $\left\{\eta_{k} ; j \leq k \leq n\right\}$. On $F$ we have $(I+|A|) B \leq \nu I$.

Since $h$ is increasing and $f$ is nondecreasing

$$
|A|=h((I+|A|) B) \leq h(\nu I)=\mu I \quad \text { and } \quad|B|=f(|A|) \leq f(\mu) I
$$

on $F$. Note also that $F$ is invariant under both $|A|$ and $B$ since $|A|=h((I+|A|) B), B=f(|A|)$ and using the symbolic calculus of hermitian matrices.

By dimensionality, the intersection $E \cap F$ is forced to be nonzero. We choose a unit vector $\xi \in E \cap F$. Then

$$
\begin{aligned}
(1+\mu)^{2} f(\mu)^{2} & <\xi^{*} B\left(C^{*} C+C^{*} A+C A^{*}+A^{*} A\right) B \xi \\
& \leq\|C B \xi\|^{2}+2 \Re \xi^{*} B C^{*} A B \xi+\xi^{*} B|A|^{2} B \xi \\
& \leq\|B \xi\|^{2}+2\left|\xi^{*} B C^{*} A B \xi\right|+\mu^{2} f(\mu)^{2} \\
& \leq \xi^{*} B^{2} \xi+2\|C B \xi\|\|A B \xi\|+\mu^{2} f(\mu)^{2} \\
& \leq f(\mu)^{2}+2\|B \xi\|\|A B \xi\|+\mu^{2} f(\mu)^{2} \\
& \leq\left(1+\mu^{2}\right) f(\mu)^{2}+2 \sqrt{\xi^{*} B^{2} \xi} \sqrt{\xi^{*} B A^{*} A B \xi} \\
& \leq\left(1+\mu^{2}\right) f(\mu)^{2}+2 \sqrt{f(\mu)^{2}} \sqrt{\xi^{*} B|A|^{2} B \xi} \\
& \leq\left(1+\mu^{2}\right) f(\mu)^{2}+2 f(\mu) \sqrt{\mu^{2} f(\mu)^{2}}=(1+\mu)^{2} f(\mu)^{2}
\end{aligned}
$$

This contradiction establishes 2.1.
Proof. Proof of Theorem 4
We replace $A$ by $-A$ which is also a strict contraction, and we will therefore prove that

$$
\lambda_{j}\left(\Re\left((I+A)^{-1}\right)\right) \geq \lambda_{j}\left((I+|A|)^{-1}\right), \text { for } j=1,2, \ldots, n
$$

We have

$$
\begin{aligned}
2 \Re\left((I+A)^{-1}\right) & =\left(I+A^{*}\right)^{-1}+(I+A)^{-1} \\
& =\left(I+A^{*}\right)^{-1}\left(2 I+A^{*}+A\right)(I+A)^{-1} \\
& =\left(I+A^{*}\right)^{-1}\left(\left(I+A^{*}+A+A^{*} A\right)+\left(I-A^{*} A\right)\right)(I+A)^{-1} \\
& =I+\left(I+A^{*}\right)^{-1}\left(I-A^{*} A\right)(I+A)^{-1}
\end{aligned}
$$

On the other hand, we have

$$
2(I+|A|)^{-1}=I+(I+|A|)^{-\frac{1}{2}}(I-|A|)(I+|A|)^{-\frac{1}{2}}
$$

Therefore, it suffices to show that

$$
\lambda_{j}\left(\left(I+A^{*}\right)^{-1}\left(I-A^{*} A\right)(I+A)^{-1}\right) \geq \lambda_{j}\left((I+|A|)^{-\frac{1}{2}}(I-|A|)(I+|A|)^{-\frac{1}{2}}\right)
$$

or equivalently

$$
\sigma_{j}\left(\left(I-|A|^{2}\right)^{\frac{1}{2}}(I+A)^{-1}\right) \geq \sigma_{j}\left((I-|A|)^{\frac{1}{2}}(I+|A|)^{-\frac{1}{2}}\right)
$$

or since $\sigma_{j}(X)=\left(\sigma_{n+1-j}\left(X^{-1}\right)\right)^{-1}$ that

$$
\sigma_{n+1-j}\left((I+A)\left(I-|A|^{2}\right)^{-\frac{1}{2}}\right) \leq \sigma_{n+1-j}\left((I+|A|)^{\frac{1}{2}}(I-|A|)^{-\frac{1}{2}}\right)
$$

But

$$
(I+|A|)^{\frac{1}{2}}(I-|A|)^{-\frac{1}{2}}=(I+|A|)\left(I-|A|^{2}\right)^{-\frac{1}{2}}
$$

so finally, it remains to show that

$$
\sigma_{n+1-j}((I+A) f(|A|)) \leq \sigma_{n+1-j}((I+|A|) f(|A|))
$$

where $f(t)=\left(1-t^{2}\right)^{-\frac{1}{2}}$. But $f$ is a positive increasing function on $[0,\|A\|]$ and the result follows from Theorem 3 taking $C=I$.

Acknowledgments. The author thanks Professor Minghua Lin for helpful discussions and the referee for helpful suggestions.

> REFERENCES
[1] R. Bhatia, Matrix Analysis. Springer-Verlag, New York, 1997.
[2] K. Fan and A.J. Hoffman. Some metric inequalities in the space of matrices. Proc. Amer. Math. Soc., 6:111-116, 1955.
[3] R.C. Thompson. Convex and concave functions of singular values of matrix sums. Pacific J. Math., 66:285-290, 1976.
[4] C. Yang and F. Zhang. Harnack type inequalities for matrices in majorization. Linear Algebra Appl., 588:196-209, 2020.


[^0]:    *Received by the editors on October 2, 2020. Accepted for publication on March 18, 2021. Handling Editor: Ren-Cang Li.
    $\dagger$ Department of Mathematics and Statistics, McGill University, Montreal, Canada H3A 0B9. (stephen.drury@mcgill.ca).

