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Abstract. In this paper the structure of the zero minors of totally positive matrices is studied

and applications are presented.
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1. Introduction and Notation. Totally positive (TP) matrices are matrices
all of whose minors are nonnegative. In this paper we will study the possible “singu-
larities” of the minors of such matrices. That is, we ask what can be said about the
structure of the zero minors of totally positive matrices.

For ease of exposition we assume in this paper that A = (aij) is an n × m TP
matrix with n ≤ m. We also assume, in our main result, that every n columns
of A are linearly independent. (Equivalently, every k rows and every k columns of
A are linearly independent for k = 1, . . . , n = min{n, m}.) This assumption will
significantly ease our analysis.

We start with some notation, initially with regard to submatrices and minors.
For each 1 ≤ i1 < · · · < ip ≤ n and 1 ≤ j1 < · · · < jq ≤ m we let

A

[
i1, . . . , ip
j1, . . . , jq

]
:= (aikj�

)pk=1
q
�=1

denote the p×q submatrix of A determined by the rows indexed i1, . . . , ip and columns
indexed j1, . . . , jq. When p = q we let

A

(
i1, . . . , ip
j1, . . . , jp

)
:= det (aikj�

)pk,�=1

denote the associated minor, i.e., the determinant of the submatrix. If A is an n× n

matrix, then its principal submatrices are the submatrices of the form

A

[
i1, . . . , ip
i1, . . . , ip

]
.
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That is, principal submatrices are the square submatrices of A whose diagonal ele-
ments are diagonal elements of A. The principal minors are their determinants

A

(
i1, . . . , ip
i1, . . . , ip

)
.

Zero entries of TP matrices and zero values of minors are evidence of boundary
behavior within the class of TP matrices and, as such, are not arbitrary in nature. A
zero entry of an n × m TP matrix A and a zero minor of this TP matrix portends
linear dependence or “throws a shadow”. That is, under suitable linear independence
assumptions all minors of the same order to the right and above it, or to the left
and below it, are also zero. Let us define these notions more exactly. We start with
individual entries. The right shadow of the entry aij is the submatrix (ars)ir=1

m
s=j ,

and the left shadow of the entry aij is the submatrix (ars)nr=i
j
s=1. For minors we have

the following definition. Assume that we are given a submatrix of A composed of r

consecutive rows and columns, namely,

A

[
i + 1, . . . , i + r

j + 1, . . . , j + r

]
.

Then its right shadow is the (i + r) × (m − j) submatrix

A

[
1, . . . , i + r

j + 1, . . . , m

]
,

and its left shadow is the (n − i)× (j + r) submatrix

A

[
i + 1, . . . , n
1, . . . , j + r

]
.

With these definitions we can now state our main result.

Theorem 1.1. Let A be an n × m TP matrix, n ≤ m. Assume that every n

columns of A are linearly independent. Let (αk, βk, rk)�k=1 be the set of all triples such
that for each k ∈ {1, . . . , �}

A

(
αk + 1, . . . , αk + rk

βk + 1, . . . , βk + rk

)
= 0, k = 1, . . . , �,

and no principal minors of the rk × rk submatrix

A

[
αk + 1, . . . , αk + rk

βk + 1, . . . , βk + rk

]
(1)

vanish. For such minors we have either

αk + m − n < βk,
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or

αk > βk.

Moreover

A

(
i1, . . . , ip
j1, . . . , jp

)
= 0

if and only if for some k ∈ {1, . . . , �} there is an rk × rk principal minor of

A

[
i1, . . . , ip
j1, . . . , jp

]

that lies in the right shadow of the submatrix (1) if αk + m − n < βk, or in its left
shadow if αk > βk.

That is, all vanishing minors are derived in the above specific manner from the
given set of vanishing minors based on consecutive rows and columns.

2. Preliminaries. Theorem 1.1 is based upon various known results. For com-
pleteness, we present these results here. The first result can be found in de Boor,
Pinkus [1, p. 85].

Proposition 2.1. If A is an n × m TP matrix and

rankA

[
i + 1, . . . , i + r

j + 1, . . . , j + r

]
= r − 1,

then at least one of the following holds. Either the rows i+1, . . . , i+ r or the columns
j + 1, . . . , j + r of A are linearly dependent, or the right or left shadow of

A

[
i + 1, . . . , i + r

j + 1, . . . , j + r

]

has rank r − 1.

The second result is the following. A different proof may be found in Karlin [10,
p. 89].

Proposition 2.2. Let A be an n×n TP nonsingular matrix. Then all principal
minors of A are strictly positive.

Proof. We first prove directly that arr > 0 for all r ∈ {1, . . . , n}. Assume that
arr = 0. From Proposition 2.1 we have four options. But all four options contradict
the nonsingularity of A. Obviously we cannot have that the rth row or column of A

is zero. Thus either the left or right shadow of arr is zero. Assume that it is the right
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shadow which vanishes. Then aij = 0 for all i ≤ r and all j ≥ r, implying that the
first r rows of A are linearly dependent. This is a contradiction and therefore arr > 0.

We derive the general result by applying an induction argument on the size of
the minor and using Sylvester’s Determinant Identity. We assume that for any TP
nonsingular n × n matrix (any n) all principal minors of order at most p − 1 are
strictly positive (p < n). We prove that this same result holds for all principal minors
of order p . We have proven the case p = 1. For any 1 ≤ i1 < · · · < ip ≤ n set

bk� = A

(
i1, . . . , ip−1, k

i1, . . . , ip−1, �

)
,

for k, � ∈ {1, . . . , n}\{i1, . . . , ip−1}, and let B = (bk�). As an immediate consequence
of Sylvester’s Determinant Identity and our induction hypothesis it follows that B is
totally positive and nonsingular. Thus the diagonal entries of B are strictly positive.
As

0 < bipip =
[
A

(
i1, . . . , ip−1

i1, . . . , ip−1

)]p−2

A

(
i1, . . . , ip
i1, . . . , ip

)

and, by our induction hypothesis, we have

A

(
i1, . . . , ip−1

i1, . . . , ip−1

)
> 0

it therefore follows that

A

(
i1, . . . , ip
i1, . . . , ip

)
> 0.

An immediate consequence of Proposition 2.2 is the following.

Proposition 2.3. Let A be an n×m TP matrix, n ≤ m, and assume that every
n columns of A are linearly independent. If α ≤ β ≤ α + m − n then

A

(
α + 1, . . . , α + r

β + 1, . . . , β + r

)
> 0,

for r = 1, . . . ,min{n − α, m − β}, α = 0, . . . , n − r.

Proof. The minor in question is a principal minor of the n × n nonsingular TP
matrix

A

[
1, . . . , n

β − α + 1, . . . , β − α + n

]
.

Apply Proposition 2.2.
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The next result can be found in Gantmakher, Krein [3, p. 453], see also Karlin
[10, p. 88].

Proposition 2.4. Let A be an n × m TP matrix, and let ak denote the kth
row of A, k = 1, . . . , n. Given 1 = i1 < · · · < ir+1 = n, assume the r + 1 vectors
ai1 , . . . ,air+1 are linearly dependent, while the r vectors ai1 , . . . ,air and ai2 , . . . ,air+1

are each linearly independent. Then A is necessarily of rank r.

We will use the following consequence of Proposition 2.4, also to be found in
Gantmakher, Krein [3, p. 454], see also Karlin [10, p. 89].

Proposition 2.5. Let A be an n×m TP matrix. Assume 1 = i1 < · · · < ir+1 = n

and 1 = j1 < · · · < jr+1 = m. If

A

(
i1, . . . , ir+1

j1, . . . , jr+1

)
= 0,

while

A

(
i1, . . . , ir
j1, . . . , jr

)
, A

(
i2, . . . , ir+1

j2, . . . , jr+1

)
> 0,

then A is of rank r.

3. Proof of Theorem 1.1. We are now in a position to prove Theorem 1.1

Proof of Theorem 1.1. Assume that

A

(
αk + 1, . . . , αk + rk

βk + 1, . . . , βk + rk

)
= 0,

and no principal minors of

A

[
αk + 1, . . . , αk + rk

βk + 1, . . . , βk + rk

]

vanish. From Proposition 2.3 we have for each k ∈ {1, . . . , �} either

αk + m − n < βk,

or

αk > βk.

By assumption, every set of rk rows and columns is linearly independent. Thus,
from Proposition 2.1, each such vanishing minor either throws a right or a left shadow.
If αk + m − n < βk, then it must throw a right shadow since the left shadow of

A

[
αk + 1, . . . , αk + rk

βk + 1, . . . , βk + rk

]
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is

A

[
αk + 1, . . . , n
1, . . . , βk + rk

]
,

which contains the nonsingular rk × rk minor

A

[
αk + 1, . . . , αk + rk

αk + 1, . . . , αk + rk

]
.

But this contradicts Proposition 2.2 (or Proposition 2.3). Similarly, if αk > βk then

A

[
αk + 1, . . . , αk + rk

βk + 1, . . . , βk + rk

]

must throw a left shadow.

Now if

A

[
i1, . . . , ip
j1, . . . , jp

]

contains an rk × rk principal minor that lies either in the right shadow of one of the

A

[
αk + 1, . . . , αk + rk

βk + 1, . . . , βk + rk

]

if αk + m − n < βk, or in its left shadow if αk > βk, then from Proposition 2.1 that
principal minor must vanish. It now follows from Proposition 2.2 that

A

(
i1, . . . , ip
j1, . . . , jp

)
= 0.

This proves the easier direction of the theorem.

Let us now assume that

A

(
i1, . . . , ip
j1, . . . , jp

)
= 0 (2)

for some choice of 1 ≤ i1 < · · · < ip ≤ n and 1 ≤ j1 < · · · < jp ≤ m. If p = 1 the
theorem is a direct consequence of Proposition 2.1. As such we assume that p > 1.
We may also assume, in what follows, that no principal minors of this minor vanish.
(Otherwise replace the minor (2) by a principal minor with the same property.) As

A

(
i1, . . . , ip
j1, . . . , jp

)
= 0

while

A

(
i1, . . . , ip−1

j1, . . . , jp−1

)
, A

(
i2, . . . , ip
j2, . . . , jp

)
> 0
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it follows from Proposition 2.5 that the (ip − i1 + 1)× (jp − j1 + 1) TP matrix

A

[
i1, i1 + 1, . . . , ip
j1, j1 + 1, . . . , jp

]

(composed of consecutive rows and columns) has rank p − 1.

We claim that

jp − i1 ≤ p − 2 or ip − j1 ≤ p − 2− m + n.

Assume not. Then

jp − i1 ≥ p − 1 and ip − j1 ≥ p − 1− m + n. (3)

Set α = max{i1, j1 − m + n} − 1 and β = max{i1, j1} − 1. From this definition it
follows that α ≤ β ≤ α+ m − n.

We also claim that i1 ≤ α+1 < · · · < α+p ≤ ip and j1 ≤ β+1 < · · · < β+p ≤ jp.
To see this, note that if α = i1 − 1, then α + 1 = i1 and α + p = i1 + p − 1 ≤ ip
(since i1, . . . , ip are increasing integers). If α+1 = j1−m+n, then from its definition
α + 1 ≥ i1, and from (3) α + p = j1 − m + n + p − 1 ≤ ip. Similarly, if β = j1 − 1,
then β + 1 = j1 and β + p = j1 + p − 1 ≤ jp. If β + 1 = i1, then from its definition
β + 1 ≥ j1, and (3) ensures that β + p = i1 + p − 1 ≤ jp. As

A

[
i1, i1 + 1, . . . , ip
j1, j1 + 1, . . . , jp

]

has rank p − 1, it follows that

A

(
α + 1, . . . , α + p

β + 1, . . . , β + p

)
= 0.

But α ≤ β ≤ α + m − n, which contradicts Proposition 2.3. Thus jp − i1 ≤ p − 2 or
ip − j1 ≤ p − 2− m + n.

Let us assume that jp − i1 ≤ p − 2. The matrix

A

[
i1, i1 + 1, . . . , i1 − p + 1

jp − p + 1, jp − p + 2, . . . , jp

]

composed of p consecutive rows and columns has rank at most p − 1. Thus by our
assumptions of linear independence and Proposition 2.1 this submatrix throws a right
or left shadow. From the analysis in the first part of the proof of this theorem we see
that it throws a left shadow since i1 > jp − p + 1. That is,

A

[
i1, . . . , n

1, . . . , jp

]
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is of rank p − 1. As

A

[
i1, . . . , ip
j1, . . . , jp

]

lies in this submatrix, we see that

A

[
i1, . . . , ip
j1, . . . , jp

]

lies in the left shadow of

A

[
α + 1, . . . , α + p

β + 1, . . . , β + p

]
, (4)

where α = i1 − 1 and β = jp − p. In fact, from our assumption that no principal
minors of

A

[
i1, . . . , ip
j1, . . . , jp

]

vanish, it follows that (4) has rank p − 1.

The case where ip − j1 ≤ p − 2 − m + n is handled similarly. That is, it follows
that

A

[
i1, . . . , ip
j1, . . . , jp

]

is in the right shadow of the matrix

A

[
ip − p + 1, ip − p + 2, . . . , ip

j1, j1 + 1, . . . , j1 + p − 1

]

of rank p − 1.

4. Some Applications. The following five corollaries are immediate conse-
quences of Theorem 1.1. The first four we state without proof. All these results
(except for Corollary 4.4, which we could not find in the literature) were proved by
very much more complicated methods.

This first corollary was proven in Gasca, Peña [5] and then reproved in Gladwell
[8]. We recall that a matrix is strictly totally positive if all its minors are strictly
positive.

Corollary 4.1. Assume A is an n×n totally positive matrix. Then A is strictly
totally positive if

A

(
1, . . . , p

n − p + 1, . . . , n

)
> 0
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and

A

(
n − p + 1, . . . , n

1, . . . , p

)
> 0

for p = 1, . . . , n.

A similar result is the following, which can be found in Gasca, Micchelli, Peña
[4]. A matrix A = (aij) is said to be (r, s)-banded if aij = 0 whenever i − j > s or
j − i > r. That is, the only possible non-zero entries of A lie on the diagonals (ai,i+k)
for k = −s, . . . , r. We say that A is strictly (r, s)-banded if, in addition, aj+s,j 
= 0
and ai,i+r 
= 0 for all possible j and i.

Corollary 4.2. Let A be an n× n strictly (r, s)-banded totally positive matrix.
Then

A

(
i1, . . . , iq
j1, . . . , jq

)
> 0

whenever

s ≥ ik − jk ≥ −r, k = 1, . . . , q

if and only if

A

(
1, . . . , p

n − p + 1, . . . , n

)
> 0, p = n − r + 1, . . . , n,

and

A

(
n − p + 1, . . . , n

1, . . . , p

)
> 0, p = n − s + 1, . . . , n.

A nonsingular triangular n × n totally positive matrices can be regarded as a
strictly (n − 1, 0)- or (0, n − 1)-banded matrix (except that the strictness is applied
only to the 0-band). We state the next result for an upper triangular matrix. This
result was first proven in Shapiro, Shapiro [11], but also follows from Gasca, Micchelli,
Peña [4].

Corollary 4.3. Assume A is an n× n upper triangular totally positive matrix.
Then

A

(
i1, . . . , iq
j1, . . . , jq

)
> 0

for all choices of ik ≤ jk, k = 1, . . . , q, and all q if and only if

A

(
1, . . . , p

n − p + 1, . . . , n

)
> 0
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for p = 1, . . . , n.

In the infinite case, (r, s)-strictly banded totally positive matrices are as strictly
totally positive as they can possibly be.

Corollary 4.4. Assume that A is an infinite or biinfinite matrix, i.e., A =
(aij)∞i,j=1 or A = (aij)∞i,j=−∞, that is totally positive and strictly (r, s)-banded. Then

A

(
i1, . . . , iq
j1, . . . , jq

)
> 0

if and only if

s ≥ ik − jk ≥ −r, k = 1, . . . , q.

As we have seen in Proposition 2.2, if a totally positive matrix satisfies

A

(
i1, . . . , ip
j1, . . . , jp

)
> 0

then aik,jk
> 0, k = 1, . . . , p. The converse need not hold. If the converse holds, then

A is said to be an almost strictly totally positive matrix. This class of matrices was
first defined in Gasca, Micchelli, Peña [4]. They proved the following result.

Corollary 4.5. Let A be an n× n nonsingular totally positive matrix. Assume
that

A

(
i + 1, . . . , i + p

j + 1, . . . , j + p

)
> 0

if ai+k,j+k > 0, k = 1, . . . , p, for all possible i, j and p. Then A is almost strictly
totally positive.

Proof. Assume that

A

(
i1, . . . , ip
j1, . . . , jp

)
= 0.

From Theorem 1.1 there exist (α, β, r) such that

A

(
α + 1, . . . , α + r

β + 1, . . . , β + r

)
= 0,

no principal minor of

A

[
α + 1, . . . , α+ r

β + 1, . . . , β + r

]
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vanishes, and some r × r principal submatrix of

A

[
i1, . . . , ip
j1, . . . , jp

]

lies in the right shadow of

A

[
α + 1, . . . , α+ r

β + 1, . . . , β + r

]

if α < β, or in its left shadow if α > β.

The assumption of the corollary implies that r = 1. Thus we have an α 
= β such
that for some k ∈ {1, . . . , p} the aik,jk

lies in the right shadow of aα+1,β+1 = 0 if
α < β, or in its left shadow if α > β. This implies that

aik,jk
= 0.

As a further consequence of Theorem 1.1, paralleling Corollaries 4.1–4.3, one can
show that for a nonsingular totally positive matrix it is not necessary to verify all the
conditions in the statement of Corollary 4.5 in order to determine if the matrix A is
almost strictly totally positive. If we know the zero entries of A then Theorem 1.1
permits us to determine a minimal number of such conditions that must be verified.
This result was obtained using other methods in Gasca, Peña [6], Gladwell [9], and
Gasca, Peña [7].
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toires. Composito Math., 4:445–476, 1937.

[4] M. Gasca, C. A. Micchelli, and J. M. Peña. Almost strictly totally positive matrices. Numerical

Algorithms, 2:225–236, 1992.

[5] M. Gasca and J. M. Peña. Total positivity and Neville elimination. Linear Algebra Appl.,

165:25–44, 1992.

[6] M. Gasca and J. M. Peña. On the characterization of almost strictly totally positive matrices.

Adv. Comp. Math., 3:239–250, 1995.

[7] M. Gasca and J. M. Peña. Characterizations and decompositions of almost strictly totally

positive matrices. SIAM J. Matrix Anal., 28:1–8, 2006.

[8] G. M. L. Gladwell. Total positivity and the QR algorithm. Linear Algebra Appl., 271:257–272,

1998.

[9] G. M. L. Gladwell. Inner totally positive matrices. Linear Algebra Appl., 393:179–195, 2004.

[10] S. Karlin. Total Positivity, Volume 1. Stanford University Press, Stanford, CA, 1968.

[11] B. Z. Shapiro and M. Z. Shapiro. On the boundary of totally positive upper triangular matrices.

Linear Algebra Appl., 231:105–109, 1995.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 532-542, November 2008


