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DECOMPOSITION OF MATRICES INTO COMMUTATORS OF UNIPOTENT

MATRICES OF INDEX 2∗

XIN HOU†

Abstract. Let C be the complex field. Denote by SLn(C) the group of all complex n× n matrices with determinant 1. It

is proved that every matrix in SLn(C) can be decomposed into a product of two commutators of unipotent matrices of index

2. Moreover, two is the smallest such number.
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1. Introduction. It is an interesting topic to express a matrix in a matrix group as a product of

matrices with special nature such as unipotent matrices and involutions. Let GLn(F ) be the group of all

n× n invertible matrices with over a field F . SLn(F ) stands for the subgroup of matrices with determinant

1. A unipotent matrix of index k is a matrix A satisfying (A− I)k = 0. When F is the complex field C, Fong

and Sourour in [1] investigated the group generated by unipotent matrices and proved that every matrix in

the group SLn(C) is a product of three unipotent matrices (without limitation on the index). In another

article [4], Wang and Wu gave a further result that every matrix in the group SLn(C) is a product of at

most four unipotent matrices of index 2.

Denote by [X,Y ] = XYX−1Y −1 the commutator of matrices X and Y . Decomposing matrices into

commutators of matrices with special nature is also an interesting topic. In [5], Zheng proved that if F is

the complex number field or the real number field, every matrix A in SLn(F ) is a product of at most two

commutators of involutions. In this article, we consider the problem decomposing matrices in SLn(C) into

products of commutators of unipotent matrices of index 2. Our main result is the following theorem.

Theorem 1.1. Every element in the group SLn(C) can be decomposed into a product of at most two

commutators of unipotent matrices of index 2.

Since a commutator of unipotent matrices of index 2 is a product of two conjugate unipotent matrices of

index 2, Theorem 1.1 implies Wang and Wu’s concluding result in [4] that every matrix in the group SLn(C)

is a product of at most four unipotent matrices of index 2.

2. Proof of the main result. First, one can easily verify the following remarks.

Remark 2.1. Let G be a matrix group and let k be a positive integer number. If A ∈ G is a product

of k commutators of unipotent matrices of index 2, then for any element B ∈ G, B−1AB is a product of k

commutators of unipotent matrices of index 2 as well.
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Let A and B be two matrices which may have different size. Denote by A⊕B the matrix

(
A 0

0 B

)
.

Remark 2.2. Let F be a field. If A ∈ SLm(F ) is a product of k commutators of unipotent matrices of

index 2 and B ∈ SLn(F ) is a product of l commutators of unipotent matrices of index 2, then A ⊕ B ∈
SLm+n(F ) is a product of max{k, l} commutators of unipotent matrices of index 2.

Now let us begin with 2× 2 matrices.

Lemma 2.3. The matrix [
λ 0

0 λ−1

]
, λ 6= −1,

is a commutator of unipotent matrices of index 2.

Proof. If λ = 1, there is nothing to prove. If λ 6= ±1, for each a ∈ C,[
λ a

0 λ−1

]
and

[
λ 0

0 λ−1

]
,

are similar (conjugate in SL2(C)). Choose a complex number µ such that µ2 = λ. One checks that

[
λ 2(µ− µ−1)

0 λ−1

]
=

[
2µ
µ−1

µ+1
µ−1

−µ+1
µ−1 − 2

µ−1

] [
2 µ−1

−µ 0

] [ 2µ
µ−1

µ+1
µ−1

−µ+1
µ−1 − 2

µ−1

]−1 [
2 µ−1

−µ 0

]−1

,

is a commutator of [
2µ
µ−1

µ+1
µ−1

−µ+1
µ−1 − 2

µ−1

]
and

[
2 λ−1

−λ 0

]
,

and the two matrices are both unipotent matrices of index 2. By Remark 2.1, we get the conclusion.

Lemma 2.4. The matrix [
−1 a

0 −1

]
, a 6= 0,

is a commutator of unipotent matrices of index 2.

Proof. Observe that[
−1 4i

0 −1

]
=

[
1− i −i

i 1 + i

] [
2 −i

−i 0

] [
1− i −i

i 1 + i

]−1 [
2 −i

−i 0

]−1

,

is a commutator of [
1− i −i

i 1 + i

]
and

[
2 −i

−i 0

]
,

and the two matrices are both unipotent matrices of index 2. By Remark 2.1, we get the conclusion.

Lemma 2.5. Each 2 × 2 matrix A ∈ SL2(C) can be decomposed into a product of at most two commu-

tators of unipotent matrices of index 2. Moreover, two is the smallest such number.

Proof. Since A is an element of SL2(C), it must be similar to one of the following matrices.

(a)

[
λ 0

0 λ−1

]
, λ 6= −1,
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(b)

[
−1 a

0 −1

]
, a 6= 0,

(c)

[
−1 0

0 −1

]
,

(d)

[
1 a

0 1

]
, a 6= 0.

By Lemma 2.3 and 2.4, both (a) and (b) are commutators of unipotent matrices of index 2. So we need

only to prove this lemma for (c) and (d).

If A = −I2, then A can be written as the product of[
λ 0

0 λ−1

]
and

[
−λ−1 0

0 −λ

]
,

where ±1 6= λ ∈ C. By Lemma 2.3, the two factors are both commutators of unipotent matrices of index 2.

Since a commutator of unipotent matrices of index 2 is just a product of two unipotent matrices of index 2,

by Lemma 2.8 of [2], A = −I2 is not a commutator of unipotent matrices of index 2. Thus, A = −I2 is a

product of two commutators of unipotent matrices of index 2 and two is the smallest such number.

If A is similar to (d) for some nonzero complex number a, then A can be written as the product of[
λ 0

0 λ−1

]
and

[
λ−1 λ−1a

0 λ

]
,

where ±1 6= λ ∈ C. By Lemma 2.3, A can be decomposed into a product of two commutators of unipotent

matrices of index 2.

The following factorization theorem, which is given by Sourour, is necessary for the proof of the main

result.

Theorem 2.6 ([3, Theorem 1]). Let A be a nonscalar invertible n× n matrix over a field F and let bj
and cj(1 ≤ j ≤ n) be elements of F such that

∏n
j=1 bjcj = detA. There exist n× n matrices B and C with

eigenvalues b1, b2, . . . , bn, and c1, c2, . . . , cn, respectively, such that A = BC. Furthermore, B and C can be

chosen so that B is lower triangularizable and C is simultaneously upper triangularizable.

Now let us prove Theorem 1.1 for the nonscalar case.

Theorem 2.7. Each nonscalar matrix A ∈ SLn(C) can be decomposed into a product of at most two

commutators of unipotent matrices of index 2.

Proof. If n is even, let n = 2k. Denote by σ(A) the set of all eigenvalues of A. Let a1, a−1
1 , a2, a−1

2 ,

. . ., ak, a−1
k be n different complex numbers. By Theorem 2.6, we can choose matrices B and C such that

σ(B) = σ(C) = {a1, a−1
1 , a2, a

−1
2 . . . , ak, a

−1
k } and A = BC. Therefore, both B and C are diagonalizable

and similar to diag(a1, a
−1
1 , a2, a

−1
2 . . . , ak, a

−1
k ). By Lemma 2.3, Remarks 2.1 and 2.2, both B and C are

commutators of two unipotent matrices of index 2. Thus, A can be decomposed into a product of at most

two commutators of unipotent matrices of index 2.

If n is odd, let n = 2k + 1 and a1, a−1
1 , a2, a−1

2 , . . ., ak, a−1
k be n − 1 different complex numbers. By

Theorem 2.6, we can choose matrices B and C such that σ(B) = σ(C) = {1, a1, a−1
1 , a2, a

−1
2 . . . , ak, a

−1
k }
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and A = BC. Therefore, both B and C are diagonalizable and similar to diag(1, a1, a
−1
1 , a2, a

−1
2 . . . , ak, a

−1
k ).

By Lemma 2.3, Remarks 2.1 and 2.2, both B and C are commutators of two unipotent matrices of in-

dex 2. Thus, A can be decomposed into a product of at most two commutators of unipotent matrices of

index 2.

Now let us finish the proof of Theorem 1.1.

Proof of Theorem 1.1. By Theorem 2.7, the result is true for all nonscalar matrices. So we need only

consider the case A = λIn with λn = 1.

Assume first that n is odd. Write λIn as

λIn = diag
(
λ, λ2, . . . , λn−1, 1

)
diag

(
1, λn−1, λn−2, . . . , λ

)
.

One checks that both diag(λ, λ2, . . . , λn−1, 1) and diag(1, λn−1, λn−2, . . . , λ) are similar to the matrix

1⊕ diag
(
λ, λn−1

)
⊕ diag

(
λ2, λn−2

)
⊕ · · · ⊕ diag

(
λ

n−1
2 , λ

n+1
2

)
.

For k ∈ {1, 2, . . . , (n−1)/2}, if λk = λn−k, then λk = λ−k = ±1 since λn = 1. Recall that n is odd. Then λ is

a primitive unit root of odd order. So either λk = λn−k = 1 or λk 6= λn−k holds. In both cases, diag(λk, λn−k)

is a commutator of unipotent matrices of index 2 by Lemma 2.3. Thus, both diag(λ, λ2, . . . , λn−1, 1) and

diag(1, λn−1, λn−2, . . . , λ) are commutators of unipotent matrices of index 2 by Remark 2.2. Hence, λIn is a

product of at most two commutators of unipotent matrices of index 2.

Assume now that n is even, and write n = 2k. Let K(α) = diag(α, α−1) for α ∈ C. By Lemma 2.3, if

α 6= −1, then K(α) is a commutator of unipotent matrices of index 2. Choose a complex number a such

that an 6= 1 and write λIn as

λIn =
(
λK(a)⊕ λ3K(a)⊕ · · · ⊕ λ2k−1K(a)

) (
K(a−1)⊕ λ2k−2K(a−1)⊕ · · · ⊕ λ2K(a−1)

)
.

One checks that λK(a) ⊕ λ3K(a) ⊕ · · · ⊕ λ2k−1K(a) is similar to K(λa) ⊕K(λ3a) ⊕ · · · ⊕K(λ2k−1a) and

K(a−1) ⊕ λ2k−2K(a−1) ⊕ · · · ⊕ λ2K(a−1) is similar to K(a−1) ⊕ K(λ2k−2a−1) ⊕ · · · ⊕ K(λ2a−1). Since

an 6= 1, by Lemma 2.3 and Remark 2.2 it follows that both K(λa) ⊕ K(λ3a) ⊕ · · · ⊕ K(λ2k−1a) and

K(a−1)⊕K(λ2k−2a−1)⊕ · · · ⊕K(λ2a−1) are commutators of unipotent matrices of index 2. Thus, λIn is a

product of at most two commutators of unipotent matrices of index 2 by Remark 2.1.
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