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SHARP LOWER BOUNDS FOR THE DIMENSION OF
LINEARIZATIONS OF MATRIX POLYNOMIALS∗
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Abstract. A standard way of dealing with matrix polynomial eigenvalue problems is to use

linearizations. Byers, Mehrmann and Xu have recently defined and studied linearizations of dimen-

sions smaller than the classical ones. In this paper, lower bounds are provided for the dimensions of

linearizations and strong linearizations of a given m×n matrix polynomial, and particular lineariza-

tions are constructed for which these bounds are attained. It is also proven that strong linearizations

of an n × n regular matrix polynomial of degree � must have dimension n� × n�.
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1. Introduction. We will say that a matrix polynomial of degree � ≥ 1

P (λ) = λ�A� + λ�−1A�−1 + · · · + λA1 + A0, (1.1)

where A0, A1, . . . , A� ∈ Cm×n and A� �= 0, is regular if m = n and detP (λ) is not
identically zero as a polynomial in λ. We will say that P (λ) is singular otherwise. A
linearization of P (λ) is a matrix pencil L(λ) = λX +Y such that there exist unimod-
ular matrix polynomials, i.e., matrix polynomials with constant nonzero determinant,
of appropriate dimensions, E(λ) and F (λ), such that

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 Is

]
, (1.2)

where Is denotes the s × s identity matrix. Classically s = (� − 1)min{m,n}, but
recently linearizations of smaller dimension have been considered [3]. In fact, we will
see that Is is not necessarily present in (1.2) for some polynomials, a situation that
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corresponds to s = 0. The classical value s = (� − 1)min{m,n} is obtained, for
instance, in the linearizations given by the first and second companion forms of P (λ)
[8].

Linearizations of regular matrix polynomials have been widely used in contexts
like the Polynomial Eigenvalue Problem (see [1, 9, 10, 12, 13, 15] and the references
therein) or the solution of Linear Differential Algebraic Equations (see [14] and the
references therein). On the other hand, though linearizations of singular matrix poly-
nomials have not been formally defined, they appear in different problems of Control
Theory (see [2, 16] and the references therein). In the classical text on regular matrix
polynomials [8] linearizations play a relevant role in the study of the spectral proper-
ties of the matrix polynomials. This reference is also a good introduction to some of
the mentioned applications.

The advantage of linearizations is that they allow us to reduce a problem of higher
degree to a problem of degree one, without affecting the spectral information of the
finite eigenvalues of the matrix polynomial. This spectral information is contained in
the finite elementary divisors of the polynomial [6, Ch. VI]. In most situations, it is
also relevant to preserve the spectral information of the infinite eigenvalue. This in-
formation is given by the elementary divisors corresponding to the zero eigenvalue in
the reversal polynomial P �(λ) = λ�P (1/λ), which are usually called infinite elemen-
tary divisors. Unfortunately, linearizations of a matrix polynomial do not necessarily
have the same infinite elementary divisors as the polynomial. In order to preserve the
infinite elementary divisors one has to work with strong linearizations [7]. A matrix
pencil L(λ) is a strong linearization of P (λ) if it is a linearization of P (λ) and the
reversal pencil L�(λ) is also a linearization of the reversal polynomial P �(λ). There-
fore, strong linearizations have the same finite and infinite elementary divisors as the
matrix polynomial. Note, however, that linearizations of singular polynomials do not
necessarily preserve the singular structure, contained in the so-called minimal indices
[5]. In fact, the most classical linearizations of a given matrix polynomial, known as
the first and the second companion forms, do not have the same minimal indices as
the matrix polynomial, although they are related in a simple way [4].

The main disadvantage of linearizations is that they increase the dimension of
the problem. In all the references mentioned above, with the exception of [3], it is
imposed by definition that the dimension of linearizations is such that the dimension
of the identity block in the right hand side of (1.2) is s = (� − 1)min{m,n}, but
it is natural to ask whether or not linearizations with lower dimension exist and, if
they exist, to ask for the minimum dimension of any linearization of a given matrix
polynomial P (λ). The solution of this problem is trivial if P (λ) is regular with no
infinite eigenvalues, i.e., if the leading n × n coefficient matrix A� is nonsingular,
because by equating the determinants of both sides in (1.2) one immediately sees
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that the dimension of L(λ) must be at least n� × n�, i.e., s ≥ (� − 1)n, since the
degree of the determinant of the right hand side is exactly n�. The solution of the
problem is not so obvious if P (λ) has infinite eigenvalues or/and it is singular, and
linearizations with s < (� − 1)min{m,n} have been recently considered in [3]. The
purpose of this paper is to show that linearizations and strong linearizations with
s < (� − 1)min{m,n} of an m × n matrix polynomial P (λ) may exist when P (λ)
has infinite eigenvalues or/and it is singular, and, more important, to provide sharp
lower bounds for their dimensions. These lower bounds will depend on the normal
rank of P (λ), the degree of the greatest common divisor of the non-identically zero
minors with largest dimension of the polynomial and the degree of the zero root in the
greatest common divisor of the non-identically zero minors with largest dimension of
the dual polynomial (these last two quantities will be called, respectively, the finite
and infinite degree of P (λ)). We will also see that if P (λ) is n× n and regular then
every strong linearization of P (λ) has dimension exactly n�× n�.

The paper is organized as follows. Basic definitions and notations are summarized
in Section 2. The main results are presented in Section 3. A brief discussion on the
largest possible dimension of linearizations and strong linearizations is included in
Section 4. Finally, the conclusions and the future work motivated by our results are
discussed in Section 5.

2. Basic definitions and notation. In this brief section, we introduce the basic
definitions that will be used in the remainder of the paper. The normal rank of a
matrix polynomial P (λ), denoted by nrankP (λ) , is the dimension of the largest minor
of P (λ) that is not identically zero as a polynomial in λ. Note that nrankP (λ) =
nrankP �(λ), and that if P (λ) is n×n and regular then nrankP (λ) = n. Throughout
this paper we will deal with matrix polynomials P (λ) with degree � ≥ 1. For the
sake of brevity we will omit the condition � ≥ 1 in the statement of our results. Note
that the idea of linearization is only interesting if � > 1. We will also assume that
the degree of P (λ) is exactly �, that is, A� �= 0 in (1.1). Recently, Lancaster [11] has
proposed a more general approach with the so-called extended degree, which allows
some of the leading matrix coefficients of the polynomial to be zero. This approach
introduces some extra infinite elementary divisors, so we have preferred to impose the
usual condition A� �= 0, even though Lancaster’s approach may allow us to simplify
some of the proofs.

We will say that two matrix polynomials P1(λ) and P2(λ) with the same dimension
are equivalent if there exist two unimodular matrix polynomials R(λ) and S(λ) such
that R(λ)P1(λ)S(λ) = P2(λ) [6, Ch. VI]. Note that this is an equivalence relation
because the inverse of a unimodular matrix polynomial is also a unimodular matrix
polynomial. An m × n matrix polynomial P (λ) is always equivalent to its Smith
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normal form

∆P (λ) =



d1(λ)
. . .

dr(λ)
0

. . .
0


, (2.1)

where the diagonal entries d1(λ), . . . , dr(λ) are nonzero monic polynomials such that
di(λ) divides di+1(λ), and they are called the invariant factors of P (λ). Notice that
the value r in (2.1) is the normal rank of P (λ). The product d1(λ) · · · dr(λ) is the
greatest common divisor of all the r× r minors of P (λ) [6, Ch. VI]. If we decompose
each invariant factor di(λ), for i = 1, . . . , r, as a product of powers of irreducible
factors

di(λ) = (λ− λ1)αi1 · · · (λ− λq)αiq , (2.2)

where αij ≥ 0 for all i, j, and λk �= λl for k �= l, then the factors (λ − λj)αij with
αij > 0 are the finite elementary divisors of P (λ). Analogously, the infinite elementary
divisors of P (λ) are the finite elementary divisors of the reversal polynomial P �(λ)
whose root is equal to zero, i.e., the ones of the form λβi with βi > 0 for P �(λ).

Next, we introduce in Definition 1 two concepts that are essential in Theorem
3.6, which is the main result of this paper.

Definition 1. Let P (λ) be a matrix polynomial with normal rank equal to r.
The finite degree of P (λ) is the degree of the greatest common divisor of all the r× r

minors of P (λ). The infinite degree of P (λ) is the multiplicity of the zero root in the
greatest common divisor of all the r × r minors of P �(λ).

In terms of the Smith normal form (2.1) of P (λ), the finite degree of P (λ) is the
degree of the product d1(λ) · · · dr(λ). On the other hand, the infinite degree of P (λ)
is the sum of the degrees of the infinite elementary divisors of P (λ). In particular,
if P (λ) is regular, then the finite degree of P (λ) is the degree of detP (λ), and the
infinite degree of P (λ) is the multiplicity of the zero root of detP �(λ). We will see in
Section 3 that the least possible dimension of any strong linearization of P (λ) depends
on the finite and infinite degrees of P (λ), while the least possible dimension of any
linearization of P (λ) depends only on the finite degree of P (λ).

Lemma 2.1 establishes that the degrees of the elementary divisors of P (λ) asso-
ciated with nonzero finite eigenvalues are equal to the degrees of the corresponding
elementary divisors of P �(λ). This result will be used in the proof of Theorem 3.6.
Its simple proof is omitted.
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Lemma 2.1. Let P (λ) be an m×n matrix polynomial with normal rank equal to r,
and P �(λ) be its reversal polynomial. Let 0 �= µ ∈ C and α be a positive integer. Then
(λ − µ)α is an elementary divisor of P (λ) if and only if (λ − 1

µ)α is an elementary
divisor of P �(λ). As a consequence, if d1(λ), . . . , dr(λ) are the invariant factors of
P (λ) and d̃1(λ), . . . , d̃r(λ) are the invariant factors of P �(λ), then

di(λ) = λαi1 (λ− λ2)αi2 · · · (λ− λq)αiq (λ2, . . . , λq �= 0)

implies

d̃i(λ) = λβi1

(
λ− 1

λ2

)αi2

· · ·
(
λ− 1

λq

)αiq

.

Observe that in general αi1 �= βi1, and that we are assuming that λ1 = 0 in (2.2).

Let us define the following elementary pencils that will be frequently used. A
Jordan block of dimension k associated with λi ∈ C is the k × k matrix pencil

Jk,λi(λ) =


λ− λi 1

. . . . . .
. . . 1

λ− λi

 ,

and an infinite Jordan block of dimension k is the k × k matrix pencil

Nk(λ) =


1 λ

. . . . . .
. . . λ

1

 .

A right singular block of dimension k × (k + 1) [6, Ch. XII] is the pencil

Sk(λ) =


λ 1

λ 1
. . .

. . .
λ 1

 .

We follow the usual convention that if S0(λ) (resp., ST
0 (λ)) appears in a direct sum,

i.e., in a block diagonal matrix, then a zero column (resp., a zero row) of the proper
dimension is included in the matrix resulting from the direct sum. For instance,

S0(λ) ⊕N2(λ) ⊕ ST
0 (λ) =

 0 1 λ

0 0 1
0 0 0

 .
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Finally, 0p×q denotes the p× q matrix whose entries are equal to zero. We also follow
the convention that if 00×q (resp., 0p×0) appears in a direct sum then q zero columns
(resp., p zero rows) are included in the matrix.

3. Minimal dimensions of linearizations. We have seen in the introduction
that if the matrix polynomial (1.1) has a nonsingular n×n leading coefficient matrix
A�, i.e., if P (λ) is regular without infinite elementary divisors, then the dimension
of any linearization of P (λ) must be at least n� × n�. The situation is completely
different when A� is singular, and, even in the case when P (λ) is regular, linearizations
of smaller dimension may exist. Consider, for instance, P (λ) =

[
λ2

λ
−λ
0

]
and L(λ) =[

0
λ

−λ
0

]
, which is clearly a linearization of P (λ) because L(λ) is obtained from P (λ)

by adding to the first column λ times the second one. However, L(λ) is not a strong
linearization of P (λ) because detP �(λ) = λ2 and detL�(λ) = 1.

In this section we will find the minimum possible value of s in (1.2) both for
linearizations and strong linearizations. In addition, we will prove that every strong
linearization of a regular n×n matrix polynomial with degree � has dimension n�×n�.

3.1. Strong linearizations of regular polynomials. If L(λ) is a strong lin-
earization of a matrix polynomial P (λ), then the finite and the infinite degrees of
L(λ) are equal to those of P (λ). We will prove that this property forces any strong
linearization of an n× n regular matrix polynomial with degree � to have dimension
n�× n�. For this purpose we need first to prove Lemma 3.1.

Lemma 3.1. Let P (λ) be an n × n regular matrix polynomial of degree � with
finite degree α and infinite degree β. Then α + β = n�.

Proof. Set detP (λ) = a0λ
α + a1λ

α−1 + · · ·+ aα. By the definition of the reversal
polynomial, we have

detP �(λ) = λn� detP (1/λ) = λn�(a0(1/λ)α+a1(1/λ)α−1+· · ·+aα) = a0λ
n�−α+· · · ,

where the dots at the end of the right hand side correspond to terms with higher
degree. This means that β = n�− α, and the result is proved.

Theorem 3.2. Let L(λ) be a strong linearization of an n × n regular matrix
polynomial of degree �. Then L(λ) has dimension n�× n�.

Proof. Let α and β be the finite and infinite degrees of P (λ), respectively. Since
L(λ) is a strong linearization, there exist unimodular matrices R(λ), S(λ), R̃(λ), S̃(λ)
such that

R(λ)L(λ)S(λ) =
[

P (λ) 0
0 Is

]
and R̃(λ)L�(λ)S̃(λ) =

[
P �(λ) 0

0 Is

]
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for a certain s. Then detL(λ) = c detP (λ) and detL�(λ) = c̃ detP �(λ) for some
nonzero constants c, c̃. These equalities imply, in the first place, that the degrees of
detL(λ) and detP (λ) are both equal to α and, in the second place, that if detP �(λ) =
λβq(λ) with q(0) �= 0, then also detL�(λ) = λβ q̃(α) with q̃(0) �= 0. Therefore, the
finite and infinite degrees of L(λ) are also α and β. By Lemma 3.1 applied on P (λ),
we have that α + β = n�, and by Lemma 3.1 applied on L(λ), we have that the
dimension of L(λ) is α + β = n�, because the degree of L(λ) is one.1

We have obtained that strong linearizations of regular matrix polynomials cannot
have smaller dimension than the usual ones [8], but for singular matrix polynomials
this may happen, as the following example shows.

Example 1. Let us consider the following 2× 2 singular matrix polynomial with
degree 2,

P (λ) =
[

λ2 λ

λ 1

]
,

and the 2 × 2 matrix pencil

L(λ) =
[

λ 1
0 0

]
.

This pencil is a linearization of P (λ), as it can be seen from the identity[
0 1
1 −λ

]
P (λ) = L(λ).

Moreover, L(λ) is a strong linearization of P (λ) because[
1 0
−λ 1

]
P �(λ) = L�(λ).

Example 1 presents an extreme case where the strong linearization has the same
dimension as the polynomial. Note that, by definition, linearizations with smaller
dimension than the polynomial do not exist. As a consequence of our main result,
Theorem 3.6, it is easy to derive precise conditions for this extreme situation to hold.
In order to prove Theorem 3.6, we need to state some technical lemmas.

1The degree of L(λ) cannot be zero, because, as it was mentioned in Sections 1 and 2, we are

assuming � ≥ 1. This implies by Lemma 3.1 that α + β > 0, and according to our definitions, a

pencil with zero degree has both the finite and the infinite degrees equal to zero.
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3.2. Technical lemmas. We will use the symbol ∼ to denote equivalence of
matrix polynomials by unimodular matrices as it was defined in Section 2.

Lemma 3.3. Let λ1, . . . , λk be complex numbers with λi �= λj for i �= j. Then the
following k × k matrix polynomials are equivalent:

1.


(λ − λi)k

1
. . .

1

 ∼ Jk,λi(λ) =


λ− λi 1

. . . . . .
. . . 1

λ− λi

 .

2.


(λ− λ1)f1 · · · (λ − λk)fk

1
. . .

1

 ∼

 (λ − λ1)f1

. . .
(λ− λk)fk

 ,

where f1, f2, . . . , fk are positive integer numbers.
3. If λi �= 0, then

J�
k,λi

(λ) ∼



(
λ− 1

λi

)k

1
. . .

1

 .

4. J�
k,0(λ) = Nk(λ) ∼ Ik.

5. In addition, the following k × (k + 1) matrix polynomials are equivalent:

S�
k(λ) ∼ Sk(λ) ∼ [Ik 0k×1].
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Proof. The proof of the lemma is elementary by using, for instance, the ideas in
[6, Ch. VI, Sec. 6]. We only prove the third claim. Note that

J�
k,λi

(λ) =


1 − λλi λ

. . . . . .
. . . λ

1 − λλi



∼


λ− 1

λi

λ
λi

. . . . . .
. . . λ

λi

λ− 1
λi

 ≡ Tk(λ).

Let us denote by Dp(λ) the greatest common divisor of all the minors of dimension p

in Tk(λ). So, Dk(λ) =
(
λ− 1

λi

)k

. In addition, the (k − 1) × (k − 1) minor of Tk(λ)

complementary of the (k, 1) entry is mk1 = (λ/λi)k−1, and the minor complementary
of the (1, 1) entry is m11 = (λ − 1/λi)k−1. Note that both minors have no common
roots, and therefore, Dk−1(λ) = 1. By using the definition of invariant factors in [6,
Ch. VI, Sec. 3], we get that Tk(λ) has k−1 invariant factors equal to 1 and one equal

to
(
λ− 1

λi

)k

, and the result is proved by [6, Cor. 1, p. 141].

Lemma 3.4. Let p, q and t be positive integers such that p ≥ t and q ≥ t, and at
least one of these inequalities is strict. Then the following statements hold:

1. There exists a p× q matrix pencil T (λ) of degree 1, with normal rank equal
to t, and having neither finite nor infinite elementary divisors.

2. Therefore,

T (λ) ∼ It ⊕ 0(p−t)×(q−t) and T �(λ) ∼ It ⊕ 0(p−t)×(q−t).

Proof. The pencil T (λ) satisfying the conditions of the statement may be not
unique. We will show how to construct one of them. Let us consider three cases:

1. If p = q > t, then T (λ) = St(λ) ⊕ 0(p−t)×(q−(t+1)).
2. If p > q ≥ t, then T (λ) = St(λ)T ⊕ 0(p−(t+1))×(q−t).
3. If q > p ≥ t, then T (λ) = St(λ) ⊕ 0(p−t)×(q−(t+1)).

The rest of the proof is a direct consequence of the fifth claim of Lemma 3.3.

Lemma 3.5 below will be used in the proof of our main result, and besides it allows
us to see that the minimal dimensions of linearizations found in Theorem 3.6 are less
than or equal to the dimension in (1.2) with the usual value s = (�− 1)min{m,n}.
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Lemma 3.5. Let P (λ) be an m × n matrix polynomial of degree � with normal
rank r, finite degree α and infinite degree β. Then α + β ≤ r�.

Proof. Let Z(λ) be a square r × r submatrix of P (λ) with nonzero determinant,
and Z̃(λ) be the submatrix of P �(λ) corresponding to the same rows and columns
as those of Z(λ). The r × r matrix polynomial Z(λ) is regular. Let �z be its degree
(�z ≤ �), and αz and βz be its finite and infinite degrees. By Lemma 3.1, αz+βz = r �z.
Note that Z̃(λ) = λ�−�zZ�(λ). Let us denote by µ the multiplicity of the zero root in
det Z̃(λ) and by µ′ the multiplicity of the zero root in detZ�(λ). Then α ≤ αz and
β ≤ µ = µ′ + r(�− �z) = βz + r(�− �z). So, α + β ≤ αz + βz + r(�− �z) = r�.

3.3. The main result. Now we are in the position to state and prove the main
result of this paper.

Theorem 3.6. Let P (λ) be an m × n matrix polynomial with normal rank r,
finite degree α and infinite degree β. Then the following statements hold:

1. There exists a linearization of P (λ) with dimension

(max{α, r} + m− r) × (max{α, r} + n− r), (3.1)

and there are no linearizations of P (λ) with dimension smaller than (3.1).
2. There exists a strong linearization of P (λ) with dimension

(max{α + β, r} + m− r) × (max{α + β, r} + n− r), (3.2)

and there are no strong linearizations of P (λ) with dimension smaller than (3.2).

Proof. For brevity, we will only prove the second claim, i.e., the result on the
strong linearizations, because the first claim is simpler and similar. We will present
at the end of this proof some brief comments on the proof of (3.1).

The matrix polynomial P (λ) is equivalent to its Smith normal form (2.1) and
also the reversal polynomial P �(λ) is equivalent to the Smith normal form of P �(λ),
denoted by ∆P �(λ). Decompose the invariant factors of P (λ) as a product of the
elementary divisors as in (2.2). Let us decompose in a similar way the invariant
factors of P �(λ), d̃1(λ), . . . , d̃r(λ), in the form

d̃i(λ) = λβiqi(λ), for i = 1, . . . , r,

with qi(0) �= 0. Notice that with the notation of (2.2), α =
∑

ij αij and β =
∑r

i=1 βi.
Recall also the result in Lemma 2.1. Now, we will consider two cases:

1. Case α + β ≥ r. Then the block diagonal matrix pencil

L(λ) =
r⊕

i=1,αi1>0

Jαi1,λ1(λ) · · ·
r⊕

i=1,αiq>0

Jαiq,λq(λ)
r⊕

i=1,βi>0

Nβi(λ)
⊕

0(m−r)×(n−r)
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has dimension (3.2). Now, by using the equivalences of Lemma 3.3, it is easy to see
that

L(λ) ∼
[

∆P (λ) 0
0 Is

]
and L�(λ) ∼

[
∆P �(λ) 0

0 Is

]
,

with s = α + β − r. Hence, L(λ) is a strong linearization of P (λ) of dimension (3.2).
2. Case α+β < r. Define the numbers p ≡ m−(α+β) > 0, q ≡ n−(α+β) > 0,

and t ≡ r − (α + β) > 0. Note that p ≥ t and q ≥ t, and at least one of these
inequalities is strict, because, otherwise m = n = r, which implies that P (λ) is
regular and α + β = n� ≥ r, by Lemma 3.1. This is a contradiction. Therefore, p, q,
and t satisfy the conditions of Lemma 3.4, and the corresponding p × q pencil T (λ)
exists. Then the block diagonal matrix pencil

L(λ) =
r⊕

i=1,αi1>0

Jαi1,λ1(λ) · · ·
r⊕

i=1,αiq>0

Jαiq,λq(λ)
r⊕

i=1,βi>0

Nβi(λ)
⊕

T (λ),

has dimension (3.2), and, by using Lemmas 3.3 and 3.4, it can be seen that

L(λ) ∼ ∆P (λ) and L�(λ) ∼ ∆P �(λ).

Hence, L(λ) is a strong linearization of P (λ) of dimension (3.2).

Notice that in the particular case where α = 0 and β1 = · · · = βr = 1 the
pencil L(λ) = Ir

⊕
0(m−r)×(n−r) defined in the first item is not a strong linearization

because L�(λ) = L(λ), with no elementary divisors, so the infinite degree of L(λ) is
zero in this case (and the one of P (λ) is r). But this case is impossible, because a
matrix polynomial P (λ) with this conditions satisfies P �(0) = 0, that is A� = 0, in
contradiction with our initial assumptions.

We still have to prove that there are no strong linearizations of P (λ) with dimen-
sion smaller than (3.2). For this purpose, let L(λ) be a strong linearization of P (λ).
We may assume that α+ β > r because, otherwise, the result is a consequence of the
definition of linearization. The finite and infinite degrees of L(λ) are equal to those of
P (λ) because they are determined by the elementary divisors. Let s be the dimension
of the identity matrix in (1.2). Then L(λ) is of dimension (m + s) × (n + s). Since
the normal rank is invariant under equivalence, nrankL(λ) = nrank

[
P (λ)

0
0
Is

]
= r+ s,

and Lemma 3.5 applied on L(λ) implies that α+ β ≤ r + s, i.e., α + β − r ≤ s. Note
that the degree of L(λ) cannot be zero, because a pencil with zero degree has its finite
and infinite degrees equal to zero, and in our case α + β > r ≥ 0.

The proof of the result for linearizations that are not necessarily strong follows
the same steps, but it is simpler because the reversal linearization is not involved in
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the argument. In this case, it is easy to see that the block diagonal matrix pencil

L(λ) =
r⊕

i=1,αi1>0

Jαi1,λ1(λ) · · ·
r⊕

i=1,αiq>0

Jαiq ,λq(λ)
⊕

0(m−r)×(n−r)

⊕
Ir−α ,

where the last identity block is only present if r − α > 0, has dimension (3.1) and is
a linearization of P (λ).

Notice that the degree of P (λ) is irrelevant in the statement of Theorem 3.6.
Besides, note that we have constructed in the proof of Theorem 3.6 linearizations with
the minimal possible dimensions (3.1) and (3.2), but that these are not necessarily
the unique linearizations with these dimensions.

4. Remarks on the largest possible dimension of linearizations. Theo-
rem 3.6 establishes strict lower bounds for the dimension of linearizations. In the case
of P (λ) being an n × n regular matrix polynomial we know that r = n and, from
Lemma 3.1, that α+ β = n�, then (3.2) implies that n�×n� is the minimum possible
dimension of a strong linearization of P (λ). However, we know from Theorem 3.2
that n�× n� is, in fact, the exact dimension of any strong linearization of P (λ). This
raises the following natural theoretical question: can we extend Theorem 3.6 to obtain
upper bounds of the dimension of linearizations? The answer is obviously negative
in the case of linearizations that are not strong, because if L(λ) is a linearization of
P (λ), then L(λ) ⊕ Iq is also a linearization of P (λ) for any possible value of q. So,
there exist linearizations of any dimension (m + s) × (n + s) larger than (3.1). This
argument does not hold for strong linearizations because Iq may produce extra infinite
elementary divisors. However, in the next theorem, we show that for singular matrix
polynomials, there exist strong linearizations of any dimension larger than (3.2).

Theorem 4.1. Let P (λ) be an m × n matrix polynomial with normal rank r,
finite degree α and infinite degree β. Then the following statements hold:

1. There exists a linearization of P (λ) with dimension k1 × k2 for any

k1 ≥ (max{α, r} + m− r) and k2 ≥ (max{α, r} + n− r)

satisfying m + k2 = n + k1.
2. If, in addition, P (λ) is singular, then there exists a strong linearization of

P (λ) with dimension k1 × k2 for any

k1 ≥ (max{α + β, r} + m− r) and k2 ≥ (max{α + β, r} + n− r) (4.1)

satisfying m + k2 = n + k1.

(Note that the condition m+k2 = n+k1 is imposed by the definition of linearization.)
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Proof. We will only sketch the proof of the claim for strong linearizations of
singular matrix polynomials, because the first claim is trivial. For the sake of brevity,
we will set d = α + β along the proof. Apart from this, we use the same notation as
in the proof of Theorem 3.6.

We consider the case where the inequalities in (4.1) are strict, because the equal-
ities correspond to the linearizations with minimum dimensions found in the proof of
Theorem 3.6. The linearization we look for will have the form

L(λ) =
r⊕

i=1,αi1>0

Jαi1,λ1(λ) · · ·
r⊕

i=1,αiq>0

Jαiq,λq (λ)
r⊕

i=1,βi>0

Nβi(λ)
⊕

H(λ),

where H(λ) is a singular (k1 − d)× (k2 − d) matrix pencil which is to be determined.
Note that k1−d > 0 and k2−d > 0. If H(λ) has neither finite nor infinite elementary
divisors and it has normal rank equal to k1 − d− (m− r) (which is equal to k2 − d−
(n− r)), then the Smith form of L(λ) is

∆L(λ) =
[

∆P (λ)
Is

]
,

and the Smith form of L�(λ) is

∆L�(λ) =
[

∆P �(λ)
Is

]
,

where s = k1 − m = k2 − n. Then L(λ) would be a k1 × k2 strong linearization of
P (λ). Hence, it is enough to show that it is always possible to find a matrix pencil
H(λ) with dimension (k1 − d)× (k2 − d) and normal rank equal to k1 − d− (m− r) =
k2 − d− (n− r) having neither finite nor infinite elementary divisors. The existence
of the pencil H(λ) follows from Lemma 3.4 with p = k1 − d > 0, q = k2 − d > 0 and
t = k1 − d− (m− r) = k2 − d− (n− r) > 0. This last inequality is a consequence of
the fact that the inequalities in (4.1) are strict. The fact that P (λ) is singular implies
that at least one of the inequalities p ≥ t or q ≥ t is strict.

5. Conclusions and future work. We have found sharp lower bounds for the
dimensions of linearizations of a given matrix polynomial P (λ) in terms of the normal
rank and the finite degree of the polynomial. In the case of strong linearizations, the
infinite degree of the polynomial is also involved in the lower bound. The proof of these
lower bounds requires to construct linearizations with minimum possible dimension.
However, the linearizations that we have constructed are based on the eigenvalues
and the elementary divisors of P (λ) that are precisely the information that one wants
to get when a linearization of P (λ) is used. Therefore, the linearizations that we
have constructed are not useful in practice, although they have been very useful to
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prove the results that we have presented. It remains as an open problem to devise
practical methods for constructing linearizations with minimum possible dimension,
and also to construct structured linearizations with minimum dimension for structured
polynomials. In the important case of P (λ) being a regular n× n matrix polynomial
with degree � ≥ 1, we have proved that all its strong linearizations have dimension
n�× n�.
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