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ON THE ESTIMATION OF xTA−1x FOR SYMMETRIC MATRICES∗
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Abstract. The central mathematical problem studied in this work is the estimation of the quadratic form xTA−1x for

a given symmetric positive definite matrix A ∈ Rn×n and vector x ∈ Rn. Several methods to estimate xTA−1x without

computing the matrix inverse are proposed. The precision of the estimates is analyzed both analytically and numerically.
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1. Introduction. Let A be a symmetric positive definite matrix of order n and x ∈ Rn. The subject

of this work is to estimate the quadratic form xTA−1x without the direct computation of the matrix A−1.

The motivation behind our approach is to avoid the expensive evaluation of a matrix inverse that results

in O(n3) required for floating point operations. Furthermore, for special choices of the vector x, we can

estimate useful quantities arising frequently in many applications. For instance, by choosing appropriate

columns of the identity matrix for vector x, estimates for the diagonal entries of A−1 are developed.

The quality of the proposed estimates for xTA−1x will be assessed by specifying upper bounds for the

absolute error of the estimation. A crucial role in deriving these bounds is played by the Kantorovich

inequality (cf. [6, Formula 7.4.12.1], [7])

(1.1)
(xTx)2

(xTAx)(xTA−1x)
≥ 4λminλmax

(λmin + λmax)2
,

where λmin and λmax denote the minimum and the maximum eigenvalues of the matrix A, respectively.

We will express some of the bounds for the error of the estimation of xTA−1x in terms of the index of

proximity, which is defined for a given symmetric positive definite matrix A of order n and a vector x as

(1.2) ρ(x) =
‖x‖2xTA2x

(xTAx)2
.

The index of proximity can be regarded as an easily computable measure of closeness of x to an eigenvector

of A, in accordance with the following observation.

Observation 1.1. Let A ∈ Rn×n be a positive definite matrix and x ∈ Rn be a nonzero vector.

Then ρ(x) ≥ 1. Moreover, ρ(x) = 1 if and only if x is an eigenvector of A.
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Proof. The inequality ρ(x) ≥ 1 follows from the Cauchy–Schwarz inequality (xTAx)2 ≤ (xTx)(xTA2x).

Furthermore, we have

ρ(x) = 1 ⇔ ‖x‖2 · ‖Ax‖2

(xTAx)2
= 1 ⇔ |xTAx| = ‖x‖ · ‖Ax‖.

By the Cauchy–Schwarz inequality, |xTAx| = ‖x‖ · ‖Ax‖ if and only if the vectors x and Ax are linearly

dependent, i.e., Ax = λx for some λ ∈ R. Hence, ρ(x) = 1 iff x is an eigenvector of A.

The paper is structured as follows: Section 2 overviews an appropriate vector decomposition that forms

the base for deriving the estimates. In Section 3, we present explicit estimates for xTA−1x and upper

bounds for the related absolute error. Section 4 describes how the results of Section 3 can be applied for the

estimation of the bilinear form xTA−1y. Section 5 reports numerical examples that illustrate the performance

of the proposed estimates. Finally, conclusions are drawn in Section 6.

Throughout the paper ‖ · ‖ is the 2-norm, the superscript T denotes the transpose, κ is the condition

number of a matrix, and the vector δi stands for the ith column of the identity matrix. For the sake of

brevity, the index of proximity ρ(x) will be usually denoted simply as ρ.

2. Overview of the method. Let A ∈ Rn×n be a positive definite symmetric matrix and x ∈ Rn. We

start from a decomposition of the vector x in the form

x = a− b,

where a is a vector parallel to Ax, so a = αAx for an α > 0, and the vector b represents the residual part.

That is,

(2.3) x = αAx− b.

The decomposition (2.3) implies

A−1x = αx−A−1b;

hence

(2.4) xTA−1x = α‖x‖2 − xTA−1b.

The term α‖x‖2 stands for the estimate of xTA−1x, and xTA−1b is the difference between the estimate and

the true value. The absolute value of xTA−1b will be denoted as Eabs and is actually the absolute error.

The aforementioned ideas can be inverted. Consider an estimation

(2.5) xTA−1x ≈ Est,

where the value Est is in principle arbitrary. Setting

(2.6) α =
Est

‖x‖2
,

and

(2.7) b = αAx− x,

the quadratic form xTA−1x obviously satisfies

(2.8) xTA−1x = Est− xTA−1b,

so the error of the estimate (2.5)—the difference between the estimate and the true value—can be again

expressed as a scalar product xTA−1b:
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(2.9) Est− xTA−1x = xTA−1b,

where b is given by (2.7).

Let us now focus on the error term xTA−1b appearing in formulas (2.4) and (2.8). In Proposition 2.1,

we derive upper bounds on the error in case of a general estimate xTA−1x ≈ α‖x‖2. More specific versions

of the bounds, adapted for particular choices of the decomposition (2.3) or for specifically chosen α, will be

derived later in forthcoming sections.

Proposition 2.1. Let A ∈ Rn×n be a positive definite symmetric matrix and x ∈ Rn. Then the absolute

error of the approximation (xTA−1x) ≈ α‖x‖2 obeys the following upper bounds.

Eabs =
∣∣∣α‖x‖2 − xTA−1x

∣∣∣ ≤


1 + κ2

2κ
· ‖x‖

2

‖Ax‖
· ‖b‖ (Upper Bound I);

1 + κ2

2κ
· ‖b‖

2

‖Ab‖
· ‖x‖ (Upper Bound II);

(1 + κ)2

4κ
· ‖x‖

2

√
xTAx

· ‖b‖
2

√
bTAb

(Upper Bound III),

where b = αAx − x, the symbol λmin denotes the minimum eigenvalue of A, and κ = λmax

λmin
is the condition

number of A.

Proof. For estimate Est = α‖x‖2, the absolute error is given by (2.9) as

Eabs =
∣∣∣α‖x‖2 − xTA−1x

∣∣∣ = |xTA−1b|,

where b = αAx− x. Let us now find bounds on |xTA−1b|.

Upper Bound I. Since A is symmetric, and so is A−1, we have

|xTA−1b| = |(A−1x)T b| ≤ ‖A−1x‖ · ‖b‖ .

A bound on the quantity ‖A−1x‖ can be obtained by using the Kantorovich inequality as follows. Since A2

is a symmetric positive definite matrix, we have

(xTx)2

(xTA2x)(xT (A2)−1x)
≥ 4λmin(A2)λmax(A2)

(λmin(A2) + λmax(A2))2
.

Obviously, λmin(A2) = λ2min and λmax(A2) = λ2max, where λmin and λmax are the minimum and the maximum

eigenvalues of the matrix A, respectively. Thus,

(xTx)2

(xTA2x)(xTA−2x)
≥ 4λ2minλ

2
max

(λ2min + λ2max)2
,

and so

xTA−2x ≤ ‖x‖4

xTA2x

(λ2min + λ2max)2

4λ2minλ
2
max

.

Hence, we obtain

‖A−1x‖ =
√

(A−1x)TA−1x =
√
xTA−2x ≤

√
‖x‖4

xTA2x

(λ2min + λ2max)2

4λ2minλ
2
max

=
‖x‖2√
xTA2x

λ2min + λ2max

2λminλmax
.
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Noting that xTA2x = (Ax)TAx = ‖Ax‖2 and

λ2min + λ2max

2λminλmax
=

1 + κ2

2κ
,

we conclude that

(2.10) ‖A−1x‖ ≤ ‖x‖
2

‖Ax‖
· 1 + κ2

2κ
.

To sum up,

|(A−1x)T b| ≤ ‖A−1x‖ · ‖b‖ ≤ ‖x‖
2

‖Ax‖
· 1 + κ2

2κ
· ‖b‖ .

Upper Bound II. Similarly as above, applying the Cauchy–Schwarz inequality

|xTA−1b| ≤ ‖x‖ · ‖A−1b‖,

together with Kantorovich inequality

‖A−1b‖ ≤ ‖b‖2√
bTA2b

· 1 + κ2

2κ
=
‖b‖2

‖Ab‖
· 1 + κ2

2κ
,

we get

|xTA−1b| ≤ ‖x‖ · ‖b‖
2

‖Ab‖
· 1 + κ2

2κ
.

Upper Bound III. We have

|xTA−1b| = |(A−1/2x)TA−1/2b| ≤ ‖A−1/2x‖ · ‖A−1/2b‖ =
√

(xTA−1x) · (bTA−1b) .

The Kantorovich inequality gives the bounds

xTA−1x ≤ ‖x‖
4

xTAx
· (1 + κ)2

4κ
and bTA−1b ≤ ‖b‖

4

bTAb
· (1 + κ)2

4κ
;

hence

|xTA−1b| ≤
√
‖x‖4
xTAx

· (1 + κ)2

4κ
· ‖b‖

4

bTAb
· (1 + κ)2

4κ
=
‖x‖2√
xTAx

· ‖b‖
2

√
bTAb

· (1 + κ)2

4κ
.

3. Estimation of xTA−1x. In this section, we introduce explicit estimates for the quadratic form

xTA−1x. They will be obtained in two different manners: by minimizing the upper bound on the error and

heuristically from certain identities valid for vectors with property ρ(x) = 1, that is, for eigenvectors of A.

Efficient explicit bounds on the error will be also derived.

3.1. Minimization of the bounds on the error. The idea consists in searching for the value α such

that the decomposition (2.3) minimizes some of the upper bounds on the absolute error Eabs = |xTA−1b| that

were formulated in Proposition 2.1. Recall that for a chosen α, the residual part b is given by equation (2.7)

as b = αAx− x.

In forthcoming paragraphs, we will consider three of the upper bounds of the absolute error |xTA−1b|
presented in Proposition 2.1, namely, Upper Bound I, Upper Bound II, and Upper Bound III.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 549-561, July 2021.

553 On the estimation of xTA−1x for symmetric matrices

Upper Bound I. Let us start with Upper Bound I, i.e.,

(3.11) Eabs ≤
1 + κ2

2κ
· ‖x‖

2

‖Ax‖
· ‖b‖ .

The smaller ‖b‖ is, the smaller the quantity on the right-hand side is. With regard to equation (2.7), the

norm of b becomes minimal for b being perpendicular to Ax. Then equation (2.3) gives

xTAx = (αAx− b)TAx = α(Ax)TAx− bTAx = α‖Ax‖2 − 0;

hence

α =
xTAx

‖Ax‖2
.

In this way, we have obtained the estimate

xTA−1x ≈ α‖x‖2 =
xTAx

‖Ax‖2
‖x‖2 ;

let us denote it Est1.

Remark 3.1. This estimate can be obtained also via the extrapolation method shown in [4]. The present

derivation elucidates its connection with error minimization. Therefore, it allows to express an upper bound

for the absolute error, which is not possible through the extrapolation procedure of [4].

Let us proceed to finding an explicit upper bound on the error term. Equation (2.3) gives

(3.12) b = αAx− x =
xTAx

‖Ax‖2
Ax− x.

Then the orthogonality of vectors Ax, b together with the Pythagorean theorem implies

‖b‖ = ‖x‖

√
1− (xTAx)2

‖x‖2‖Ax‖2
= ‖x‖

√
1− 1

ρ
.

Combining this result with (3.11), we arrive at the following bound on the error:

(3.13) Eabs ≤
1 + κ2

2κ
·
√

1− 1

ρ
· ‖x‖

3

‖Ax‖
.

Let us note that Proposition 2.1 allows to find other explicit expressions for the upper bound on the error

of estimate Est1.

Upper Bound II. Now we will derive an estimate that minimizes Upper Bound II, which reads

Eabs ≤
1 + κ2

2κ
· ‖x‖ · ‖b‖

2

‖Ab‖
.

The quantity on the right-hand side is minimized for
‖b‖2

‖Ab‖
being as small as possible.

Using (2.7), we obtain

‖b‖2 = bT b = (αAx− x)T (αAx− x) = α2(xTA2x)− 2α(xTAx) + ‖x‖2,
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and

‖Ab‖2 = bTA2b = α2(xTA4x)− 2α(xTA3x) + xTA2x .

For the sake of brevity, let us denote

ck = xTAkx, k = 0, 1, 2, . . .

Then

(3.14)
‖b‖2

‖Ab‖
=

α2c2 − 2αc1 + c0√
α2c4 − 2αc3 + c2

.

Regarding this quantity as a function of a variable α, one can find its minimum by differential calculus. The

derivative is zero for

2(αc2 − c1)(α2c4 − 2αc3 + c2) = (α2c2 − 2αc1 + c0)(αc4 − c3) .

After a manipulation, the above equation leads to the problem of finding roots of a polynomial of degree 3,

namely,

c2c4α
3 − 3c2c3α

2 + (2c22 + 2c1c3 − c0c4)α+ c0c3 − 2c1c2 = 0.

Finding the real roots and choosing the root α̂ that minimizes (3.14), we obtain the estimate

xTA−1x ≈ α̂‖x‖2 .

In what follows, this estimation will be referred to as Est2.

By construction, estimate Est2 corresponds to Upper Bound II on the error, given by

Eabs ≤ ‖x‖ ·
1 + κ2

2κ
· α̂2(xTA2x)− 2α̂(xTAx) + ‖x‖2√

α̂2(xTA4x)− 2α̂(xTA3x) + xTA2x
.

Other upper bounds on the absolute error of estimate Est2 can be obtained using Proposition 2.1.

Upper Bound III. Finally, let us explore Upper Bound III on the absolute error, i.e.,

Eabs ≤
(1 + κ)2

4κ
· ‖x‖

2

√
xTAx

· ‖b‖
2

√
bTAb

.

The bound becomes minimized for
‖b‖2√
bTAb

being as small as possible.

We can proceed similarly as above. Applying (2.7), we get

bTAb = α2(Ax)TA2x− 2α‖Ax‖2 + xTAx = α2c3 − 2αc2 + c1 .

Hence,

(3.15)
‖b‖2√
bTAb

=
α2c2 − 2αc1 + c0√
α2c3 − 2αc2 + c1

.

Differentiating this quantity as a function of a variable α, we find that the derivative is zero for

c2c3α
3 − 3c22α

2 + (4c1c2 − c0c3)α+ c0c2 − 2c21 = 0.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 549-561, July 2021.

555 On the estimation of xTA−1x for symmetric matrices

Calculating the roots and selecting the root α̂ that minimizes (3.15), we get the estimate

xTA−1x ≈ α̂‖x‖2 ,

which we will referred to as Est3.

Estimate Est3 features the following Upper Bound III on the absolute error:

Eabs ≤
‖x‖2√
xTAx

· (1 + κ)2

4κ
· α̂2(xTA2x)− 2α̂(xTAx) + ‖x‖2√

α̂2(xTA3x)− 2α̂(xTA2x) + xTAx
.

One can also apply Proposition 2.1 for getting other upper bounds (i.e., Upper Bounds I and II).

3.2. Estimates based on the index of proximity. In this section, we will present another method

to construct estimates for xTA−1x with the property of being exact if ρ(x) = 1. It is based on the following

observation.

Observation 3.2. Let A ∈ Rn×n be a positive definite matrix and x ∈ Rn be a nonzero vector. The

following statements are equivalent:

• ρ(x) = 1;

• ρ(Akx) = 1 for any k ∈ R.

Proof. By Observation 1.1, ρ(x) = 1 iff x is an eigenvector of A. This is further equivalent to Akx being

an eigenvector of A, and so with ρ(Akx) = 1 for any k ∈ R.

Let us now consider a particular value of k, namely, k = −1/2. The reason for this choice is that ρ(A−1/2x),

when evaluated by equation (1.2), contains explicitly the quadratic form xTA−1x, which is readily seen from

the derivation below:

ρ(A− 1
2x) =

‖A− 1
2x‖2 · ‖A 1

2x‖2

((A− 1
2x)TA

1
2x)2

=
((A− 1

2x)TA− 1
2x)((A

1
2x)TA

1
2x)

(xTx)2
=

(xTA−1x)(xTAx)

‖x‖4
.

Hence, we can express xTA−1x,

(3.16) xTA−1x =
‖x‖4

xTAx
ρ(A− 1

2x) .

In view of Observation 3.2, we can approximately replace ρ(A− 1
2x) with any expression of type

ρ(A− 1
2x) ≈ ρ(Ak1x)p1 · · · ρ(Akmx)pm ,

where k1, . . . , km are nonnegative integers and p1, . . . , pm ∈ R, and the approximation becomes identity for

ρ(x) = 1. In this way, one can construct a variety of estimates of xTA−1x that are exact for ρ(x) = 1.

For example, estimate Est1 is obtained by replacing ρ(A− 1
2x) approximately with ρ(x)−1; indeed, we

have

xTA−1x =
‖x‖4

xTAx
ρ(A− 1

2x) ≈ ‖x‖
4

xTAx
(ρ(x))−1 =

‖x‖4

xTAx
· (xTAx)2

‖x‖2 · ‖Ax‖2
=
‖x‖2xTAx
‖Ax‖2

= Est1.

Below we will establish another estimate of xTA−1x that suggests itself naturally. We start from the ansatz

(3.17) ρ(A− 1
2x) · ρ(A

1
2x) = ρ(x)2 ,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 549-561, July 2021.

P. Fika et al. 556

that is, we assume that ρ(A0x) is equal to the geometric mean of ρ(A− 1
2x) and ρ(A

1
2x). Combining (3.17)

with (3.16), we obtain

xTA−1x =
‖x‖4

xTAx
ρ(A− 1

2x) ≈ ‖x‖
4

xTAx
· ρ(x)2

ρ(A
1
2x)

,

and since

ρ(x) =
‖x‖2xTA2x

(xTAx)2
=
‖x‖2‖Ax‖2

(xTAx)2
,

ρ(A
1
2x) =

‖A 1
2x‖2(A

1
2x)TA2A

1
2x

((A
1
2x)TAA

1
2x)2

=
(xTAx)(xTA3x)

‖Ax‖4
,

we get

xTA−1x ≈ ‖x‖
4

xTAx
·
(
‖x‖2‖Ax‖2

(xTAx)2

)2

· ‖Ax‖4

(xTAx)(xTA3x)
=

‖x‖8‖Ax‖8

(xTAx)6(xTA3x)
.

From now on let us refer to the estimate

(3.18) xTA−1x ≈ ‖x‖8 · ‖Ax‖8

(xTAx)6 · (xTA3x)
,

as to Est4. Its error can be bounded by means of Proposition 2.1, where we set

α =
Est4

‖x‖2
=

1

‖x‖2
· ‖x‖8 · ‖Ax‖8

(xTAx)6(xTA3x)
=

‖x‖6 · ‖Ax‖8

(xTAx)6(xTA3x)
,

and

b = αAx− x =
‖x‖6 · ‖Ax‖8

(xTAx)6(xTA3x)
Ax− x.

4. Estimation of the bilinear form xTA−1y. Note that the results of Section 3 can be applied for

the estimation of the bilinear form xTA−1y. This is done by the polarization identity

xTA−1y =
1

4
(wTA−1w − vTA−1v),

where w = x+ y and v = x− y. In particular, the upper and lower bounds for the quadratic forms wTA−1w

and vTA−1v give bounds for xTA−1y.

5. Numerical Implementation. In this section, numerical experiments and comparisons for the es-

timation of the quadratic form xTA−1x are presented for several positive definite symmetric matrices.

5.1. Numerical Examples. The following tables display the estimations Est2, Est3, Est4 and the

lower and upper bounds for the exact value of (xTA−1x). In most of the cases, the upper and lower bounds

on (xTA−1x) arising from a given estimate Est are calculated as Est+UB and Est-UB, respectively, for UB

being the corresponding minimal upper bound for the error Eabs. In some of the test examples, the upper

bounds for the error Eabs are reported as well. In particular, the third column of these Tables contains the
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corresponding upper bounds for the error, for each estimation. For notational simplicity, the upper bounds

Upper Bound I to Upper Bound III will be denoted as UB1–UB3, respectively.

In the following examples, all computations are conducted using MATLAB codes (R2015b 64-bit

(win64), on an Intel Core i5-6200U with 8 GB RAM at 2.3 GHz). We test miscellaneous matrices to examine

the behavior of the derived estimates for the quadratic form xTA−1x and the bilinear form xTA−1y. We

choose the vectors x and y to be either columns of the identity matrix or linear combinations of them, or

vectors with random entries. Most of the test matrices A are obtained by using the gallery function in

MATLAB. The estimates resulting from the polarization identity are denoted as Est2 PI, Est3 PI, and Est4

PI.

Example 1: A=BTB, where B= Parter matrix from Matlab Gallery, n = 1000, κ = 17.8983 (B =

gallery(‘parter’,1000))

Parter is a Cauchy and Toeplitz matrix with entries B(i, j) = 1/(i− j + 0.5). In Tables 1 and 2, we test the

estimates for xTA−1x, where A = BTB, for x = −δ10 + δn, and a random vector x whose entries are drawn

from the standard normal distribution, respectively. �

Example 2: A=Poisson matrix from Matlab Gallery, n = 900, κ = 388.8121 (A = gallery(‘poisson’, 30))

Let us consider the Poisson matrix which is symmetric, block tridiagonal (sparse), and arises from the

five-point finite difference approximation of the Poisson equation in a unit square with an m × m mesh.

This matrix can be also given by using the gallery function in Matlab. The Poisson matrix is of the form

A = tridiag(−Im, T,−Im), where each block T = tridiag(−1, 4,−1) has dimension m. In Table 3, we test

the estimates for xTA−1x, for x = −δ1 +
1

2
δ3 and a random vector x with entries in the interval (0, 1). �

Table 1

x = −δ10 + δn, ρ = 1.0188, exact value of xTA−1x = 0.2219

A = BTB, Estimated Upper Bounds on Eabs Bounds on xTA−1x

B = Parter matrix value UB1 UB2 UB3 Lower Upper

Est2 0.2272 0.3020 0.3834 0.1975 0.0296 0.4247

Est3 0.2191 0.2717 0.4004 0.1922 0.0269 0.4113

Est4 0.2197 0.2733 0.3980 0.1922 0.0274 0.4119

Best lower and upper bound on xTA−1x 0.0296 0.4113

Table 2

x=random vector, ρ = 1.0004, exact value of xTA−1x = 100.2273

A = BTB, Estimated Bounds on xTA−1x

B = Parter matrix value Lower Upper

Est2 101.3859 83.5054 119.2664

Est3 101.2371 83.3527 119.1215

Est4 99.6773 81.7518 117.6028

Best lower and upper

bound on xTA−1x 83.5054 117.6028
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Table 3

Estimates for xTA−1x, for the Poisson matrix

A = Poisson matrix Estimated value

x = −δ1 +
1

2
δ3, ρ = 1.0875 x = random vector, ρ = 4.5325

Est2 0.3231 1.8326e2

Est3 0.3125 1.8452e2

Est4 0.3462 5.4155e3

Exact value of xTA−1x 0.3490 8.9657e3

Table 4

x = δ1 − 2δ2 + δ20, ρ = 1.0256, exact value of xTA−1x = 3.1963

A=Heatflow matrix Estimated Upper Bounds on Eabs Bounds on xTA−1x

value UB1 UB2 UB3 Lower Upper

Est2 3.1752 0.7552 0.7621 0.6485 2.5267 3.8236

Est3 3.1099 0.7325 0.7702 0.6429 2.4670 3.7527

Est4 3.1943 0.7642 0.7628 0.6522 2.5422 3.8465

Best lower and upper bound on xTA−1x 2.5422 3.7527

Remark: In Table 3, we notice that, for x = random vector, all the estimates underestimate the form

xTA−1x. This is due to the value of ρ = 4.5325. Indeed, since the upper bounds for the error, expressed in

subsection 3.1, increase as ρ moves away from the unit, the estimates are becoming less satisfactory. �

In the next example, we demonstrate the behaviour of the estimates for the approximation of bilinear

forms by applying the polarization identity, as described in Section 4.

Example 3: A=Heatflow matrix, n = 104, κ = 2.5986

Let us consider the Heatflow matrix. This matrix is symmetric, block tridiagonal (sparse), and comes

from the discretization of the linear heat flow problem using the simplest implicit finite difference method.

The coefficient matrix A of the resulted linear system of equations is a m2 × m2 block tridiagonal ma-

trix A = tridiag(C,D,C), where D is a m × m tridiagonal matrix D = tridiag(−u, 1 + 4u,−u), C =

diag([−u,−u, . . . ,−u]), u = ∆t/h2, ∆t is the timestep, and h is the spacing interval. The Heatflow matrix

A is symmetric positive definite for u > 0. We test this matrix for u = 0.2. In Table 4, we see the results for

estimating xTA−1x, for x = δ1 − 2δ2 + δ20. �

In Table 5, we see the estimations of the bilinear form xTA−1y for the vectors x = δ1, y = δ2 and for

random vectors x, y.

5.2. Comparison with other methods. In this section, the methods of the present paper for the

estimation of the quadratic form xTA−1x are compared with some other approaches known in the literature.

In particular, we consider the following two methods.

The Gauss quadrature – Lanczos method. First, the most studied method for approximating the quadratic

form xTA−1x for symmetric matrices is the Gauss quadrature – Lanczos approach. Through this method, the

bilinear form is expressed as a Riemann–Stieltjes integral which is then approximated by applying Gaussian
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Table 5

Estimates for xTA−1y, for the Heatflow matrix

A = Heatflow x = δ1, y = δ2, exact value xTA−1y = 0.0659 x, y random, exact value xTA−1y = 2.4738e3

matrix ρ(x+ y) = 1.0234, ρ(x− y) = 1.0150 ρ(x+ y) = 1.0795, ρ(x− y) = 1.0492

Estimated Bounds on xTA−1y Estimated Bounds on xTA−1y

value Lower Upper value Lower Upper

Est2 PI 0.0635 −0.0342 0.1612 2.3367e3 1.6779e3 2.9956e3

Est3 PI 0.0621 −0.0351 0.1593 2.3043e3 1.6443e3 2.9642e3

Est4 PI 0.0660 −0.0324 0.1644 2.4617e3 1.7848e3 3.1386e3

Best lower and upper

bound on xTA−1y -0.0281 0.1557 1.7996e3 2.9527e3

quadrature rules. One needs to construct a sequence of orthogonal polynomials that is realized by using

the Lanczos algorithm (cf. [5]). The computational complexity of the Lanczos algorithm is of the order

O(kn2), where k is the number of the employed (Lanczos) iterations. If the Gauss quadrature rule is used,

the obtained estimates also serve as lower bounds for the exact value. Gauss Lobatto quadrature rule gives

estimates that are upper bounds of the exact value, but it requires the knowledge of the maximum eigenvalue

of the underlying matrix. Gauss Radau quadrature rule can give estimates that are either lower or upper

bounds of the exact value, depending on the usage of either the minimum or the maximum eigenvalue,

respectively.

The extrapolation method. Another method for the estimation of the quadratic form xTA−1x is based on

the extrapolation of the moments of the matrix A (cf. [2]). In particular, the first few terms of the sequence

xTAkx, k ∈ N are extrapolated to xTA−1x, by expressing the quadratic forms as summations. A family

of estimates that depends on a parameter ν ∈ R (cf. [4]) have been proposed. The involved computations

require only one matrix-vector product, for symmetric matrices.

In the following explicit numerical examples, we compare our estimates Est3 and Est4 with the afore-

mentioned methods. The newly proposed estimates require only 2 matrix vector products for their imple-

mentation.

Example 4: A=Sample covariance matrix, n = 1000.

Let us consider a symmetric positive definite matrix A = [aij ], whose entries are computed via a decaying

positive definite covariance function, i.e. aii = 1 + ia and aij =
1

|i− j|b
for i 6= j [1]. The elements of this

matrix show a decaying behavior away from the main diagonal, which simulates the decreasing correlation

of high-dimensional data samples in covariance matrix analysis (cf. [8] and references therein).

In Table 6, the quadratic forms xTA−1x are approximated by using the iterative Gauss quadrature –

Lanczos method and the extrapolation method, for different values of the parameter ν. In particular, we test

the Gauss, Gauss Radau, and Gauss Lobatto quadrature rules. The numbers of Lanczos iterations k are also

reported for the applied quadrature rules. For Gauss Radau and Gauss Lobatto, we use the ‘exact’ smallest

(λmin) and largest (λmax) eigenvalues. These methods are compared with the best value of the estimations

developed in the present work. The order of the relative errors of the estimations and their computational

complexity, in terms of the required matrix vector products (mvp’s), are displayed in Table 6. The Gaussian

quadrature rules allow better accuracy as the number of the Lanczos iterations increase, but this is achieved

at the cost of increasing computational complexity. �
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Table 6

Comparison of methods for sample covariance matrices

a = 1/2, b = 1, x = δ10, κ = 37.1945 a = 2, b = 1, x = δ5, κ = 5.9180e5

ρ = 1.1838, exact value (x,A−1x) = 0.2708 ρ = 1.0045, exact value (x,A−1x) = 0.0387

Method Relative error mvp’s Relative error mvp’s

Estimates Est4, O(10−2) 2 Est3, O(10−3) 2

Extrapolation ν = −1, O(10−2) 1 ν = −1, O(10−4) 1

ν = 0, ν = 1 (Est1), O(10−1) 1 ν = 0, ν = 1 (Est1), O(10−3) 1

Gauss k = 2, O(10−2)−O(10−1) 2 k = 2, O(10−3)−O(10−2) 2

(Radau or Lobatto) k = 10, O(10−6)−O(10−5) 10 k = 50, O(10−3)−O(10−2) 50

Table 7

Sample covariance matrix, a = 1/2, b = 2. Estimation of the entire diagonal of A−1

Est4 Extrapolation (Est1) Gauss quadrature rule

n mre time (s) mre time (s) mre time (s)

1000 5.9141e-4 0.0523 1.8188e-2 0.0046 (k=2) 3.88521e-4 2.2968

3000 1.9807e-4 1.0572 7.5561e-3 0.0375 (k=1) 3.8273e-3 23.1837

(k=2)1.3016e-4 55.2502

5000 1.1895e-4 4.5469 4.9587e-3 0.1118 (k=1) 2.5075e-3 1.2371e2

(k=2) 7.8177e-5 2.0482e2

Example 5: Estimation of the entire diagonal of the matrix inverse

In this example, we see the application of the estimates for the approximation of the entire diagonal of the

matrix inverse. By estimating the quadratic form xTA−1x for x = δi, estimates for the ith diagonal element

of the matrix A−1 are obtained. The estimation formulae proposed in the present paper are easily applicable

for the approximation of the whole diagonal of the matrix inverse. In Table 7, we see the mean relative error

(mre) and the execution time in seconds for the approximation of the entire diagonal of the inverse of sample

covariance matrices of dimension n = 1000, n = 3000, and n = 5000, by using the estimates Est4, Est1 and

the Gaussian ones. In general, the Gaussian estimates are not well suited for this approximation because of

their element-by-element implementation that leads to high execution time. �

6. Conclusions. In this work, we developed estimates for the quadratic form xTA−1x. The main

advantage of the derived estimates is the avoidance of the explicit computation of the matrix inverse. The

proposed formulae are of low computational complexity and satisfy certain rather sharp bounds according

to the value of the index of proximity. The developed approach can be applied for the estimation of the

bilinear form xTA−1y as well through the polarization identity. The presented numerical comparison shows

that the newly proposed estimates outperform the others on a majority of test cases, with the estimate

Est4 having a slight edge over all the others. The Gauss quadrature – Lanczos method, as an iterative

method, can attain better accuracy as the number of the Lanczos iterations grows; however, this naturally

increases the computational complexity. By contrast, the approach presented in this paper leads to simple

and readily implemented formulae which give fair and easy-to-compute estimations. The implementation of

the proposed formulae needs neither a special software nor the a priori knowledge of any characteristic of

the underlying matrix. Thus, in particular for applications such as the estimation of the entire diagonal of

the matrix inverse, the proposed estimates are extremely fast. Their computational cost is 2 matrix-vector

products and the attained relative error is mostly of order O(10−4) − O(10−2). Moreover, the approach
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can be applied also in cases where the matrix is not known explicitly, but only through matrix-vector

products.
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