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ISOTROPIC SUBSPACES FOR PAIRS OF HERMITIAN MATRICES∗
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Abstract. The maximal dimension of a subspace which is neutral with respect to two hermitian
matrices simultaneously, is identified (in many cases) in terms of inertia of linear combinations of
the matrices.
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1. Introduction. Let F be the real field R, the complex field C, or the skew field
of real quaternions H. We denote by Fm×n the set of m× n matrices with entries in
F. If A ∈ Fn×n then we say that an F-subspace M ⊆ Fn×1 (understood as the right
vector space in the quaternionic case) is A-neutral (or A-isotropic) if x∗Ay = 0 for all
vectors x, y ∈ M. Here, X∗ stands for the conjugate transpose (=transpose if F = R)
of the matrix or vector X . We will use the notion of neutral subspace for hermitian
(=symmetric if F = R) matrices A. Denoting by i+(A), resp. i−(A), the number
of nonnegative, resp. nonpositive, eigenvalues of a hermitian matrix A counted with
multiplicities, we have the following well-known properties for a hermitian matrix A:

(a) If M is A-neutral, then

dimM ≤ min{i+(A), i−(A)} (1.1)

(the dimension is understood in the sense of F; thus, Hn×1 has dimension n)
(b) The maximal dimension of an A-neutral subspace is equal to

min{i+(A), i−(A)}.
For a proof, see for example [5] or [1] (for the quaternionic case).

If A,B ∈ Fn×n are two hermitian matrices, it is of interest to study subspaces
that are (A,B)-neutral, i.e., simultaneouslyA-neutral andB-neutral. In the context of
selfadjoint complex matrices with respect to indefinite inner products, such subspaces
play a key role in many problems of symmetric factorization and other applications
[9, 14, 15, 8, 13]. It easily follows from (a) that

dimM ≤ min
0≤θ<2π

{i+((cos θ)A + (sin θ)B)} (1.2)

for every (A,B)-neutral subspace M. Denoting by γ(A,B) the maximal dimension of
(A,B)-neutral subspaces, and by mi+(A,B) the right hand side of (1.2), we therefore
have

γ(A,B) ≤ mi+(A,B). (1.3)
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Note that also

mi+(A,B) = min
a,b∈R

{i+(aA+ bB)} = min
0≤θ<2π

{i−((cos θ)A + (sin θ)B)}.

A natural question arises whether or not the equality persists in (1.3) for all pairs
of hermitian matrices A and B. Using the techniques of higher rank numerical ranges,
it was proved in [12] that this is indeed the case if F = C. However, in the real case

a strict inequality may occur in (1.3): Let A =
[
0 1
1 0

]
, B =

[
1 0
0 −1

]
. Then

the right hand side of (1.3) is 1, but the only real (A,B)-neutral subspace is the zero
subspace. Of course, in accordance with [12] there exist complex, as well as quater-
nionic, 1-dimensional (A,B)-neutral subspaces. Namely, the complex (A,B)-neutral

subspaces (there are only two of them) are given by SpanC

{[
1
±i

]}
, and a contin-

uum of quaternionic (A,B)-neutral subspaces is given by SpanH

{[
1

bi + cj+ dk

]}
,

where b, c, d ∈ R are such that b2 + c2 + d2 = 1. Here and in the sequel, we denote by
SpanF {x1, . . . , xp} the F-subspace spanned by the vectors x1, . . . , xp.

In this paper we study the relation between γ(A,B) and mi+(A,B) for a pair of
hermitian matrices A and B. Our approach is based on (essentially known) unified
canonical form for pairs of hermitian matrices over R,C,H. In particular, we provide
another proof of equality in (1.3) in the complex case, and show that the equality
holds in the quaternionic case as well as in many situations when F = R. We state
the main result in the next section. The proof will be given in Section 3. In the last
Section 4 we prove some partial results concerning the cases of inequality in (1.3).

We conclude the introduction with notation to be used throughout the paper. We
denote by diag (X1, X2, . . . , Xp), or by X1 ⊕X2⊕ · · ·⊕Xp, the block diagonal matrix
with diagonal blocks X1, . . . , Xp (in that order). The notation AT and A∗ stand
for the transpose and the conjugate transpose, respectively, of the matrix A. The
vector ej ∈ Rk×1 is the unit coordinate vector: 1 in the jth position, zeros elsewhere.
The r × r identity and zero matrix are denoted Ir and 0r, respectively. Finally, we
introduce real symmetric matrices in special forms:

Fm :=




0 · · · · · · 0 1
... 1 0
... . . .

...

0 1
...

1 0 · · · · · · 0



= F−1

m ∈ Rm×m, (1.4)
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Gm :=




0 · · · · · · 1 0
... 0 0
... . . .

...

1 0
...

0 0 · · · · · · 0



=

[
Fm−1 0
0 0

]
∈ Rm×m, (1.5)

H2m =




0 . . . 1 0
0 −1

1 0
0 −1

... . . . . . .
...

1 0
0 −1 . . . 0



∈ R2m×2m,

Z2m(t, µ, ν) := (t+ µ)F2m + νH2m +
[
F2m−2 0

0 02

]
∈ R2m×2m, (1.6)

where µ, ν are real and ν > 0. Here t is a real parameter.

2. Main result: equality of γ(A,B) and mi+(A,B). We start with the canon-
ical form which will be convenient to recast in terms of matrix pencils. Let F be one of
R, C, H. Two n×nmatrix pencils A1+tB1 and A2+tB2, where A1, A2, B1, B2 ∈ Fn×n

are hermitian matrices, are said to be F-congruent, if

S∗(A1 + tB1)S = A2 + tB2

for some invertible matrix S ∈ Fn×n.
Theorem 2.1. Every hermitian matrix pencil A+ tB, A = A∗, B = B∗ ∈ Fn×n,

is F-congruent to a real hermitian matrix pencil of the form

0u ⊕

t


 0 0 Fε1

0 0 0
Fε1 0 0


 +G2ε1+1


 ⊕ · · · ⊕


t


 0 0 Fεp

0 0 0
Fεp 0 0


 +G2εp+1




⊕ ((sin θ1)Fk1 − (cos θ1)Gk1 + t((cos θ1)Fk1 + (sin θ1)Gk1))⊕
· · · ⊕ ((sin θr)Fkr − (cos θr)Gkr + t((cos θr)Fkr + (sin θr)Gkr ))
⊕ Z2m1(t, µ1, ν1)⊕ · · · ⊕ Z2ms(t, µs, νs). (2.1)

Here 0 ≤ θj < 2π, µj , νj are real numbers, and νj > 0.
The form (2.1) is uniquely determined by A + tB up to a permutation of the

blocks.
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The form (2.1) is well known for the case F = R; see [18, 10], for example, and
references there, and [19], also [16], for the version presented in Theorem 2.1 that
includes the sine/cosine functions. It is also well known that the canonical form of
pairs of hermitian quaternionic matrices can be taken in the set of complex matrices
[7, 16, 4, 3]. For the complex case, the form (2.1) originates in author’s discussions
with Bella and Olshevsky [2]; it can be obtained from the standard canonical form
for complex hermitian pencils under C-congruence (as presented in [10], for example)
using the following observation: Any complex matrix that is selfadjoint with respect
to a nondegenerate inner product in Cn×1, is similar to a real matrix.

We now state the main result:
Theorem 2.2. Let A,B ∈ Fn×n be hermitian matrices. Assume in addition that

in case F = R only, the following condition is satisfied:
(A) For every fixed ordered pair µ0, ν0, where µ0 ∈ R and ν0 > 0, the number

of blocks Z2m(t, µ0, ν0) with odd m in the canonical form of A+ tB is even (perhaps
zero).

Then

γ(A,B) = mi+(A,B). (2.2)

Condition (A) can be interpreted in terms of the Kronecker form (the canonical
form under strict equivalence A+ tB −→ S(A+ tB)T , where S and T are invertible
real matrices) of the real matrix pencil A + tB. Namely, (A) holds if and only if
for every complex nonreal eigenvalue λ of A + tB, the number of odd multiplicities
associated with λ is even.

The next section is devoted to the proof of Theorem 2.2.

3. Proof of Theorem 2.2. We start with recalling a version of the well known
interlacing property for eigenvalues of real symmetric matrices:

Proposition 3.1. Let X ∈ Rp×p, Y ∈ Rq×q be real symmetric matrices, with
eigenvalues λ1 ≥ · · · ≥ λp and µ1 ≥ · · · ≥ µq, respectively. Assume p ≥ q. Then there
exists an isometry Q ∈ Rp×q, i.e., QTQ = I, such that QTXQ = Y if and only if the
interlacing inequalities

λ1 ≥ µ1 ≥ λp−q+1, λ2 ≥ µ2 ≥ λp−q+2, . . . , λq ≥ µq ≥ λp

are satisfied.
Proposition 3.1 is valid also in the complex and quaternionic cases (replacing

transposition with conjugate transposition), but only the real version will be used in
the present paper. The “only if” part is the interlacing property of the eigenvalues;
see, e.g., [11, Chapter 8] or [6, Chapter 4]. The “if” part (for the special case of
q = p − 1 from which the general case follows easily by induction) is found in [17,
Chapter 10] or [6, Chapter 4].

To complete preparations for the proof of Theorem 2.2, we state and prove a
lemma:
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Lemma 3.2. Let A1, B1 ∈ Rm×m and A2, B2 ∈ R�×� be hermitian matrices, and
let

A = A1 ⊕A2, B = B1 ⊕B2.

Assume furthermore that for some integer k, 0 ≤ k ≤ m/2, there exists an (m− k)-
dimensional (A1, B1)-neutral subspace M ⊆ Fm×1, where F is either R, C, or H, and
for some θ0, 0 ≤ θ0 < 2π, the rank of the hermitian matrix (cos θ0)A1 + (sin θ0)B1 is
equal to 2k. Then

mi+(A,B) = m− k +mi+(A2, B2). (3.1)

Proof. First observe that for every θ ∈ [0, 2π) the number k′ of negative eigenval-
ues (counted with multiplicities) of (cos θ)A1+(sin θ)B1 does not exceed k; otherwise,
there would be a nonzero intersection of the (m−k)-dimensional (cos θ)A1+(sin θ)B1-
neutral subspace and the negative k′-dimensional (cos θ)A1 +(sin θ)B1-invariant sub-
space, which is impossible. Analogously, the number of negative eigenvalues of
(cos θ)A1 + (sin θ)B1 does not exceed k.

Thus,

i+((cos θ)A1 + (sin θ)B1) ≥ m− k, ∀ θ ∈ [0, 2π).

For every fixed θ we have

i+((cos θ)A+ (sin θ)B) = i+((cos θ)A1 + (sin θ)B1) + i+((cos θ)A2 + (sin θ)B2)
≥ m− k + i+((cos θ)A2 + (sin θ)B2).

Taking first minimum of the right hand side with respect to θ ∈ [0, 2π), and then
minimum of the left hand side, the inequality ≥ in (3.1) follows.

To prove the opposite inequality, first of all observe that for every θ ∈ [0, 2π),
after a suitable unitary similarity the matrix (cos θ)A1 + (sin θ)B1 has a top left
(m− k)× (m− k) zero block, and therefore the rank of (cos θ)A1 + (sin θ)B1 cannot
exceed 2k. Since by the hypotheses, this rank is actually equal to 2k for some θ0, it
easily follows that

rank ((cos θ)A1 + (sin θ)B1) = 2k

for all θ ∈ [0, 2π) save at most a finite set of values θ. On the other hand, because of
continuity of the spectrum, if θ1 ∈ [0, 2π) is such that

mi+(A2, B2) = i+((cos θ1)A2 + (sin θ1)B2),

then we also have

mi+(A2, B2) = i+((cos θ′)A2 + (sin θ′)B2)) (3.2)

for all θ′ sufficiently close to θ1. Now select θ′ so that (3.2) holds and also

rank ((cos θ′)A1 + (sin θ′)B1) = 2k.
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We must have then that the number of positive, resp. negative, eigenvalues of
(cos θ′)A1 +(sin θ′)B1 is exactly k, and therefore i+((cos θ′)A1 +(sin θ′)B1) = m− k.
Now

i+((cos θ′)A+ (sin θ′)B) = i+((cos θ′)A1 + (sin θ′)B1) + i+((cos θ′)A2 + (sin θ′)B2)

= m− k +mi+(A2, B2),

and the inequality ≤ in (3.1) follows. ✷

The following corollary is easily obtained from Lemma 3.2:
Corollary 3.3. Under the hypotheses of Lemma 3.2, if γ(A2, B2) = mi+(A2, B2),

then also γ(A,B) = mi+(A,B).
Indeed, if M2 is an (A2, B2)-neutral subspace of dimension γ(A2, B2), then M⊕

M2 is an (A,B)-neutral subspace of dimension m− k +mi+(A2, B2), so

γ(A,B) ≥ mi+(A,B),

whereas the opposite inequality is obvious (see (1.3)).

Proof of Theorem 2.2. Without loss of generality we may assume that the
pencil A + tB is given by the right hand side of (2.1). In particular, A and B are
both real (but the (A,B)-neutral subspaces we are after, are still in Fn×1).

We use induction on the size n. So we are done if one (or more) of the blocks in
(2.1) has the properties of (A1, B1) of Lemma 3.2. It is easy to see that such are the
blocks 0u (with k = 0),

t


 0 0 Fε

0 0 0
Fε 0 0


+G2ε1

(with k = ε),

(sin θ)Fm − (cos θ)Gm + t((cos θ)Fm + (sin θ)Gm)

for m even (with k = m/2), and Z2p(t, µ, ν) (with k = p), where for the real case p
must be even. For example, if F = C or F = H, and if p is odd, then

SpanF {ep + iep+1, ep+2, . . . , e2p}

is a p-dimensional (A1, B1)-neutral subspace, where the matrices A1 and B1 are de-
fined by A1 + tB1 := Z2p(t, µ, ν). Also, if (in the real case only) we have a pair of
blocks

A1 + tB1 := Z2p(t, µ0, ν0)⊕ Z2q(t, µ0, ν0)
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with odd p and q, then it is easy to verify that the real subspace

SpanR {ep+2, ep+3, . . . , e2p, e2p+q+2, e2p+q+3, . . . , e2p+2q, ep ∓ e2p+q+1, ep+1 ± e2p+q}
is (p+ q)-dimensional and (A1, B1)-neutral.

Thus, the proof is reduced to the case when

A+ tB = ((sin θ1)Fk1 − (cos θ1)Gk1 + t((cos θ1)Fk1 + (sin θ1)Gk1))⊕
· · · ⊕ ((sin θr)Fkr − (cos θr)Gkr + t((cos θr)Fkr + (sin θr)Gkr )) , (3.3)

where kj ’s are odd positive integers. So assume A and B are given by (3.3). We
reduce the proof further to the case when all kj ’s are equal 1. (If kj = 1, the matrix
Gkj disappears from (3.3).) Denote

A′ + tB′ = (sin θ1F1 + t cos θ1F1)⊕ · · · ⊕ (sin θrF1 + t cos θrF1) ∈ Rr×r.

Assuming Theorem 2.2 is already proved for the pair A′, B′, let

w = mi+(A′, B′),

and let

M′ := SpanF

{
r∑

q=1

x1qeq,

r∑
q=1

x2qeq, . . . ,

r∑
q=1

xwqeq

}
, xsq ∈ F,

be a w-dimensional (A′, B′)-neutral subspace. Let M be the subspace spanned (over
F) by the following vectors in Fk×1, where k = k1 + k2 + · · ·+ kr:

e(k1+1)/2+1, . . . , ek1 , ek1+(k2+1)/2+1, . . . , ek1+k2 , . . . , ek1+···+kr−1+(kr+1)/2+1, . . . ek,

r∑
q=1

x1qek1+···+kq−1+((kq+1)/2),

r∑
q=1

x2qek1+···+kq−1+((kq+1)/2), . . . ,

r∑
q=1

xwqek1+···+kq−1+((kq+1)/2).

(We take k0 = 0.) One verifies that M is (A,B)-neutral and dimM = mi+(A,B).
Finally, we prove Theorem 2.2 for the pair A, B, where

A = diag (sin θ1, sin θ2, . . . , sin θr), B = diag (cos θ1, cos θ2, . . . , cos θr),

with 0 ≤ θ1 ≤ · · · ≤ θr < 2π. We leave aside the trivial case when A and B are
linearly dependent. Note that we may replace A and B with aA+ bB and cA+ dB,
respectively, where the real numbers a, b, c, d are such that ad − bc �= 0. Therefore,
without loss of generality we may assume that

i+(A) = mi+(A,B).
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Furthermore, replacing if necessary A with A + εB for sufficiently small positive ε,
we may assume that A is invertible. Applying simultaneous congruence to A and B
with a suitable permutation congruence matrix, we may further assume that

A =
[
Is 0
0 −Ir−s

]
, (3.4)

where

s = mi+(A,B). (3.5)

Obviously, s ≤ r − s. We also replace B with A + ε′B for sufficiently small positive
ε′; thus, B will have the form

B =
[
diag (d1, . . . , ds) 0

0 diag (−c1, . . . ,−cr−s)

]
, (3.6)

where d1 ≥ d2 ≥ · · · ≥ ds, c1 ≥ c2 ≥ · · · ≥ cr−s are positive numbers. For A and B
given by (3.4), (3.6), we seek an s-dimensional (A,B)-neutral subspace in the form of

the column space of the matrix
[
I
Q

]
, for some Q ∈ R(r−s)×s. The (A,B)-neutrality

of the subspace amounts to equalities

QTQ = I, QTdiag (c1, . . . , cr−s)Q = diag (d1, . . . , ds).

By Proposition 3.1 we need only to verify the interlacing inequalities

c1 ≥ d1 ≥ cr−2s+1, c2 ≥ d2 ≥ cr−2s+2, . . . , cs ≥ ds ≥ cr−s. (3.7)

Indeed, suppose (3.7) does not hold, say cj < dj for some index j. Let x > 0 be such
that xdj > 1 > xcj . Then a straightforward computation shows that A − xB has
less than s nonnegative eigenvalues, a contradiction with (3.5). Analogously, suppose
dj < cr−2s+j for some j. Let y > 0 be such that ydj < 1 < ycr−2s+j. Then −A+ yB
has at most s− 1 nonnegative eigenvalues, a contradiction again. This completes the
proof of Theorem 2.2.

4. The exceptional case. In this section we consider briefly the exceptional
case not covered in Theorem 2.2, i.e., F = R and the condition (A) is not satisfied. In
this case we have a lower bound on γ(A,B):

Theorem 4.1. Assume F = R. Let A,B ∈ Rn×n be symmetric matrices, and let
β be the number of ordered pairs (µ0, ν0) such that µ0 ∈ R, ν0 > 0, and the number
of blocks Z2m(t, µ0, ν0) with odd m in the canonical form of A+ tB is odd. Then

γ(A,B) ≥ mi+(A,B)− β + �β/2�, (4.1)

where �x� is the largest integer less than or equal to x.
Proof. We let A+ tB be given by the right hand side of (2.1). Partition A and

B into two parts:

A+ tB = (A1 + tB1)⊕ (A2 + tB2),
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where

A1 + tB1 = ⊕β
j=1Z2mj (t, µj , νj), µj ∈ R, νj > 0,

with m1, . . . ,mβ odd positive integers, and where the pair (A2, B2) satisfies the hy-
potheses of Theorem 2.2. By Theorem 2.2 we have

γ(A2, B2) = mi+(A2, B2).

Also, we show (as in the proof of Lemma 3.2) that

mi+(A,B) = mi+(A1, B1) + mi+(A2, B2) = m1 + · · ·+mβ +mi+(A2, B2).

On the other hand, one can easily find an (A1, B1)-neutral subspace M1 of dimension
�β/2�+ ∑β

j=1(mj − 1); for example, if µ1 = · · · = µβ = 1 and β is even, then

M1 := SpanR {√ν2e2+
√
ν1e3,

√
ν4e6+

√
ν3e7, . . . ,

√
νβe2β−2+

√
νβ−1e2β−1} ⊆ R2β×1

will do. If M2 is any (A2, B2)-neutral subspace of dimension mi+(A2, B2), then
M1 ⊕ M2 is an (A,B)-neutral subspace of dimension mi+(A,B) − β + �β/2�, and
(4.1) follows. ✷

We say that a pair of n × n real symmetric matrices A,B is totally invertible if
det ((cos θ)A + (sin θ)B) �= 0 for all θ ∈ [0, 2π). This class can be characterized in
several ways:

Proposition 4.2. The following statements are equivalent for symmetric A,B ∈
Rn×n:

(1) The pair (A,B) is totally invertible.
(2) Only blocks of the form Z2m(t, µ, ν) are present in the canonical form of

(A,B).
(3) n must be even and i+((cos θ)A+ (sin θ)B) = n/2 for all θ.
(4) The matrix B is invertible, and B−1A has only nonreal eigenvalues.

Moreover, if (1)− (4) hold, then mi+(A,B) = n/2, and if in addition n is not divisible
by 4, then γ(A,B) < n/2.

Proof. All but the last statement follow easily from the canonical form (2.1).
Suppose now n is not divisible by 4. If (A,B) is a totally invertible pair of real
symmetric matrices, and if there exists an n/2-dimensional (A,B)-neutral subspace,
then we may apply simultaneous congruence to A and B and assume that

A =
[
0n/2 A1

AT
1 A2

]
, B =

[
0n/2 B1

BT
1 B2

]
,

where A1, A2, B1, B2 ∈ Rn/2×n/2. Since (A,B) is totally invertible, the matrix A1 is
invertible and so is tA1 + B1 for all real t. But this is impossible, because the real
odd size matrix A−1

1 B1 must have a real eigenvalue. ✷
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Example. Let A,B ∈ R4×4 be a totally invertible pair of symmetric matrices.
Then

γ(A,B) =

{
1 if B−1A has 4 distinct eigenvalues;

2 otherwise.

For verification assume that the pair (A,B) is in the canonical form and seek a

2-dimensional (A,B)-neutral subspace (if such exists) in the form Im
[

I
Q

]
for a

suitable 2× 2 matrix Q. We omit details.
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