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LIGHTS OUT! ON GRAPH PRODUCTS OVER THE RING OF INTEGERS MODULO k∗

RYAN MUNTER† AND TRAVIS PETERS†

Abstract. LIGHTS OUT! is a game played on a finite, simple graph. The vertices of the graph are the lights, which may

be on or off, and the edges of the graph determine how neighboring vertices turn on or off when a vertex is pressed. Given an

initial configuration of vertices that are on, the object of the game is to turn all the lights out. The traditional game is played

over Z2, where the vertices are either lit or unlit, but the game can be generalized to Zk, where the lights have different colors.

Previously, the game was investigated on Cartesian product graphs over Z2. We extend this work to Zk and investigate two

other fundamental graph products, the direct (or tensor) product and the strong product. We provide conditions for which the

direct product graph and the strong product graph are solvable based on the factor graphs, and we do so using both open and

closed neighborhood switching over Zk.
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1. Introduction. The game LIGHTS OUT! is played on a finite, simple graph G. The vertices of G

are labeled using elements of Z2 = {0, 1}, where 1 denotes ‘on’ and 0 denotes ‘off.’ Each vertex can be

thought of as a button with a light. Pressing a vertex toggles that vertex and all adjacent vertices between

on and off. Given an initial configuration of buttons that are on, the object of the game is to turn all the

lights out. The graph G is said to be universally solvable if every initial configuration of lights is solvable

(can be transformed to the all off state by a sequence of presses). Giffen and Parker [4] generalized the game

to Zk, k ≥ 2. Here, the vertices of G are labeled using elements of Zk = {0, 1, 2, . . . , k − 1}, and we can

think of these elements as representing different colors of lights. Pressing a vertex increases the label of that

vertex and the vertices adjacent to it by 1 modulo k. The game is won when every vertex has label 0.

Let G = (V,E) be a simple graph of order n. For each v ∈ V , the open neighborhood N(v) of v is the

set of vertices adjacent to v, N(v) = {u ∈ V : (u, v) ∈ E}. The closed neighborhood N [v] of v is the open

neighborhood along with v itself, N [v] = N(v) ∪ {v}. In the traditional game, pressing a vertex v toggles

v as well as the vertices adjacent to v. This is called closed neighborhood switching. In a variation of the

game, pressing a vertex v toggles the vertices adjacent to v but not v itself. This is called open neighborhood

switching.

The graph G is closed universally solvable if every initial configuration is solvable using closed neigh-

borhood switching. The graph G is open universally solvable if every initial configuration is solvable using

open neighborhood switching. Throughout the paper, we denote by A(G) the adjacency matrix of G. Then,

A(G) is the open neighborhood matrix of G, and A(G) + In, where In is the n × n identity matrix, is the

closed neighborhood matrix of G.

Theorem 1.1 ([8]). A graph G is open (closed) universally solvable over Zk (k ≥ 2) if and only if A(G)

(A(G) + In) is invertible over Zk.
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We approach the problem of determining whether or not a graph G is open (closed) universally solvable

over Zk by computing the determinant of the adjacency matrix A(G) (the closed neighborhood matrix

A(G) + In). If Zk is a field, then a matrix A ∈Mn(Zk) is invertible if and only if det(A) 6= 0. However, this

result does not hold in arbitrary commutative rings. An element r of a commutative ring R is a unit if it

has a multiplicative inverse, i.e. there exists s ∈ R such that rs = 1R. The set of units of Zk consists of the

nonzero elements of Zk relatively prime to k. The set of nonzero nonunits (zero divisors) of Zk consists of

the nonzero elements of Zk not relatively prime to k, so that every nonzero element of Zk is a zero divisor

or a unit (but not both). For an arbitrary ring of integers modulo k, we need the following result.

Theorem 1.2 ([2], Corollary 2.21). Let A ∈ Mn(R), where R is a commutative ring. Then, A is

invertible if and only if det(A) is a unit of R.

Goldwasser et al. [5, 6] investigated the game applied to rectangular grid graphs. They used Fibonacci

polynomials to determine the pairs (m,n) for which the grid graph Gm,n is open and closed universally

solvable over Z2. The grid graph Gm,n is simply the Cartesian product graph Pm�Pn of the path graphs Pm

and Pn. In [9], Peters et al. generalized the game to the Cartesian product graph G�H of arbitrary finite,

simple graphs G and H, and they provided conditions for universal solvability over Z2 using both open and

closed neighborhood switching. In this paper, we investigate the game applied to two other fundamental

graph products, the direct (or tensor) product and the strong product. In particular, we provide conditions

for universal solvability over Zk of the direct product graph and the strong product graph in terms of

the factor graphs using both open and closed neighborhood switching (see Sections 3 and 4). As such,

it is useful to know the solvability of common graph families since these well-known graphs are often the

factors of the product (see [4] for a discussion of the solvability of paths, cycles, and complete bipartite

graphs over Zk). Finally, in Section 5, we extend previous results on the Cartesian product graph over Z2

to Zk.

2. Preliminaries. The three fundamental graph products (Cartesian, direct, and strong) have the

same vertex set but different edge sets. If G and H are the factors of the product, then the vertex set of the

product graph is the Cartesian product V (G)× V (H) = {(g, h) : g ∈ V (G) and h ∈ V (H)}. The edge set of

the Cartesian product G�H is E(G�H) = {(g, h)(g′, h′) : g = g′, hh′ ∈ E(H) or h = h′, gg′ ∈ E(G)}. The

edge set of the direct product G×H is E(G×H) = {(g, h)(g′, h′) : gg′ ∈ E(G) and hh′ ∈ E(H)}. Finally,

the edge set of the strong product G � H is E(G � H) = E(G�H) ∪ E(G × H). Figure 1 displays the

Cartesian product P4�P3, direct product P4 × P3, and strong product P4 � P3. For a thorough discussion

of graph products, see [7].

          P3 and P4                                    P4     P3                      P4      P3                      P4     P3 

Figure 1. The factor graphs P3 and P4 along with the Cartesian product P4�P3, direct product P4 × P3, and strong

product P4 � P3 graphs.
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The adjacency matrix of G�H is given by

A(G�H) = A(G)⊕A(H)

= A(G)⊗ I|H| + I|G| ⊗A(H),

where ⊕ denotes a Kronecker sum of matrices and ⊗ denotes a Kronecker product of matrices (see [10]).

For example, consider the graphs G = P4 and H = P3. Then

A(P4) =


0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

 ,

and

A(P3) =

 0 1 0

1 0 1

0 1 0

 .

Moreover,

A(P4�P3) = A(P4)⊕A(P3)

= A(P4)⊗ I3 + I4 ⊗A(P3)

=


A(P3) I3 O3 O3

I3 A(P3) I3 O3

O3 I3 A(P3) I3
O3 O3 I3 A(P3)

 ,

where I3 denotes the 3× 3 identity matrix and O3 denotes the 3× 3 matrix of zeros. The adjacency matrix

of G×H is given by

A(G×H) = A(G)⊗A(H).

For G = P4 and H = P3, we have

A(P4 × P3) = A(P4)⊗A(P3)

=


O3 A(P3) O3 O3

A(P3) O3 A(P3) O3

O3 A(P3) O3 A(P3)

O3 O3 A(P3) O3

 .

Finally, the adjacency matrix of G�H is given by

A(G�H) = A(G)⊕A(H) + A(G)⊗A(H)

= (A(G) + I|G|)⊗ (A(H) + I|H|)− I|G| ⊗ I|H|.
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For G = P4 and H = P3, we have

A(P4 � P3) = A(P4)⊕A(P3) + A(P4)⊗A(P3)

= (A(P4) + I4)⊗ (A(P3) + I3)− I4 ⊗ I3

=


A(P3) A(P3) + I3 O3 O3

A(P3) + I3 A(P3) A(P3) + I3 O3

O3 A(P3) + I3 A(P3) A(P3) + I3
O3 O3 A(P3) + I3 A(P3)

 .

Throughout the paper, we will use the following result concerning the determinant of a block matrix

with blocks that mutually commute.

Theorem 2.1 ([11]). Let R be a commutative subring of Mn(F ), where F is a field (or a commutative

ring), and let M ∈Mm(R). Then

detFM = detF (detRM).

For example, if M =

[
A B

C D

]
where A,B,C, and D are n×n matrices over F which mutually commute,

then Theorem 2.1 says

detFM = detF (AD−BC).

The notation detFM indicates that the determinant of M is an element of F .

3. Direct (tensor) products. Let G and H be finite, simple graphs, with |G| = m, |H| = p, and let

n = mp. Let B = [bij ] = A(G), the adjacency matrix of G, and let C = A(H), the adjacency matrix of H.

We make the following observation.

Observation 3.1. The adjacency matrix of G×H is

A(G×H) =


Op b12C . . . b1mC

b21C Op

...
...

. . . b(m−1)mC

bm1C . . . bm(m−1)C Op

 ,

where bijC is either the p×p matrix C or the p×p matrix of zeros Op as bij ∈ Z2 for all 1 ≤ i, j ≤ m. Note

that bii = 0 for all 1 ≤ i ≤ m as B is the adjacency matrix of G. The rows and columns could be permuted

to get an adjacency matrix with p m×m blocks consisting of B and Om.

By Observation 3.1, A(G×H) is a block matrix consisting of the blocks C = A(H) and the p× p matrix of

zeros Op. These two blocks along with the identity matrix Ip mutually commute, so the next result follows

from Theorem 2.1. We let pA(x) denote the characteristic polynomial of the matrix A ∈Mn(F ).

Lemma 3.2. Let G and H be finite, simple graphs, with |G| = m, |H| = p, and let n = mp. Let

B = A(G) and C = A(H). Then

det[A(G×H)] = det[p(−Bx+Imx)(C)],
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and

det[A(G×H) + In] = det[p(−Bx+Im(x−1))(C)].

If both G and H are closed universally solvable, G×H may or may not be closed universally solvable. For

example, P3, P4, and C5 are all closed universally solvable over Z2. However, P3 × C5 is closed universally

solvable over Z2, while P4 × C5 is not closed universally solvable over Z2. If just G or just H is closed

universally solvable, G×H may or may not be closed universally solvable. The graphs P3 and P6 are closed

universally solvable over Z2, and the graph P8 is not closed universally solvable over Z2. While P3 × P8 is

closed universally solvable over Z2, P6 × P8 is not closed universally solvable over Z2. The following lemma

will be used to establish the result that if G and H are not closed universally solvable over Z2, then G×H

is not closed universally solvable over Z2. It turns out that we cannot extend this result to Zk, for k ≥ 3.

For example, C3 and W4, the wheel graph of order 4, are not closed universally solvable over Z3. However,

C3 ×W4 is closed universally solvable over Z3.

Lemma 3.3 ([9]). Let G and H be finite, simple graphs, with |G| = m, |H| = p, and let n = mp. Let B =

A(G) and C = A(H). Then, p(−Bx+Im(x−1))(C) is singular if and only if gcd(p(−Bx+Im(x−1))(x), pC(x)) 6= 1.

Theorem 3.4. Let G and H be finite, simple graphs, with |G| = m, |H| = p, and let n = mp. Let

B = A(G) and C = A(H). If G and H are not closed universally solvable over Z2, then G×H is not closed

universally solvable over Z2.

Proof. Suppose G and H are not closed universally solvable over Z2. Then, det(B+Im) = det(C+Ip) =

0. Moreover, p(−Bx+Im(x−1))(1) = det[1 · Im − (−B · 1 + Im(1 − 1))] = det[B + Im] = 0. In other words, 1

is a root of the characteristic polynomial of −Bx + Im(x− 1) and x + 1 is a factor of p(−Bx+Im(x−1))(x). In

addition, pC(1) = det[1 · Ip−C] = det[C + Ip] = 0. Therefore, 1 is a root of the characteristic polynomial of

C, and x + 1 is a factor of pC(x). Hence, x + 1 is a common divisor of pC(x) and p(−Bx+Im(x−1))(x).

By Lemma 3.3, p(−Bx+Im(x−1))(C) is singular, meaning that G × H is not closed universally solvable

over Z2.

Next, we turn to open neighborhood switching for G×H. We will need the following important result

concerning the determinant of a tensor product of matrices.

Theorem 3.5 ([11]). Let F be a field (or a commutative ring), P ∈Mm(F ), and Q ∈Mn(F ). Then

detF (P⊗Q) = (detFP)n(detFQ)m.

For commutative rings, we mention the following known result about units.

Remark 3.6. Let R be a commutative ring. Then, a, b ∈ R are units in R if and only if ab is a unit in

R.

Theorem 3.7. Let G and H be finite, simple graphs, with |G| = m, |H| = p, and let n = mp. Let

B = A(G) and C = A(H). Then, G×H is open universally solvable over Zk (k ≥ 2) if and only if G and

H are open universally solvable over Zk.

Proof. Suppose G ×H is open universally solvable over Zk, k ≥ 2. By Theorem 3.5, det[A(G ×H)] =

det[B ⊗ C] = (detB)p(detC)m = r is a unit in Zk. Hence, det(B) and det(C) are units in Zk by Remark

3.6. Therefore, G and H are open universally solvable over Zk.
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Conversely, suppose G and H are open universally solvable over Zk. Then, det(B) and det(C) are units

in Zk. By Theorem 3.5, det[A(G×H)] = det[B ⊗C] = (detB)p(detC)m, and this must be a unit in Zk by

Remark 3.6. Thus, G×H is open universally solvable over Zk.

4. Strong products. Let G and H be finite, simple graphs, with |G| = m, |H| = p, and let n = mp.

Let B = [bij ] = A(G), the adjacency matrix of G, and let C = A(H), the adjacency matrix of H. We make

the following observation.

Observation 4.1. The adjacency matrix of G�H is

A(G�H) =


C b12(C + Ip) . . . b1m(C + Ip)

b21(C + Ip) C
...

...
. . . b(m−1)m(C + Ip)

bm1(C + Ip) . . . bm(m−1)(C + Ip) C

 ,

where bij(C+Ip) is either the p×p matrix C+Ip or the p×p matrix of zeros as bij ∈ Z2 for all 1 ≤ i, j ≤ m.

Note that bii = 0 for all 1 ≤ i ≤ m as B is the adjacency matrix of G. The rows and columns could be

permuted to get an adjacency matrix with p m×m blocks with B on the main diagonal.

By Observation 4.1, A(G�H) is a block matrix consisting of the blocks C = A(H), the p×p matrix (C+Ip),

and the p × p matrix of zeros Op. These three blocks mutually commute, so the next result follows from

Theorem 2.1. We let pA(x) denote the characteristic polynomial of the matrix A ∈Mn(F ).

Lemma 4.2. Let G and H be finite, simple graphs, with |G| = m, |H| = p, and let n = mp. Let

B = A(G) and C = A(H). Then

det[A(G�H)] = det[p(−B(x+1))(C)],

and

det[A(G�H) + In] = det[p(−Bx)(C + Ip)].

We will need the following lemma to establish conditions for universal solvability for closed neighborhood

switching on the strong product graph.

Lemma 4.3. Let A ∈Mn(Zk) and let x ∈ Zk, k ≥ 2. Then p(−Ax)(x) = det(A + In) · xn.

Proof. Observe that

p(−Ax)(x) = det[xIn − (−Ax)]

= det[x(A + In)]

= xn · det[A + In].

We now provide conditions for which G�H is closed universally solvable over Zk, k ≥ 2.

Theorem 4.4. Let G and H be finite, simple graphs, with |G| = m, |H| = p, and let n = mp. Let

B = A(G) and C = A(H). Then, G�H is closed universally solvable over Zk (k ≥ 2) if and only if G and

H are closed universally solvable over Zk.
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Proof. Suppose G�H is closed universally solvable over Zk, k ≥ 2. Then, det[A(G�H) + In] = r is a

unit in Zk. By Lemmas 4.2 and 4.3,

r = det[A(G�H) + In]

= det[p(−Bx)(C + Ip)]

= det[det(B + Im) · (C + Ip)m]

= [det(B + Im)]p · [det(C + Ip)]m.

Therefore, [det(B + Im)]p and [det(C + Ip)]m are units in Zk by Remark 3.6, and therefore det(B + Im) and

det(C + Ip) are units in Zk. It follows that G and H are closed universally solvable over Zk.

Conversely, suppose G and H are closed universally solvable over Zk. Then, det(B+Im) and det(C+Ip)

are units in Zk. By Remark 3.6, [det(B + Im)]p and [det(C + Ip)]m are also units in Zk. By Lemmas 4.2

and 4.3 and Remark 3.6, det[A(G �H) + In] = det[p(−Bx)(C + Ip)] = [det(B + Im)]p · [det(C + Ip)]m is a

unit in Zk. Hence, G�H is closed universally solvable over Zk.

This elegant result is quite surprising given that G�H and G×H need not be closed universally solvable

when G and H are both closed universally solvable.

Next, we turn to open neighborhood switching for G�H. If G and H are both open universally solvable,

G�H may or may not be open universally solvable. For example, P4, K4, and W6, the wheel graph of order

6, are all open universally solvable over Z2. However, P4 � K4 is open universally solvable over Z2, while

W6 � P4 is not open universally solvable over Z2. If just G or just H is open universally solvable, G � H

may or may not be open universally solvable. For example, P3 and P9 are not open universally solvable over

Z2. However, P4 �P3 is open universally solvable over Z2, but P4 �P9 is not open universally solvable over

Z2. We will show that if G and H are not open universally solvable over Zm, where m is a power of a prime,

then G�H is not open universally solvable over Zm.

Galovich [3] investigated unique factorization rings which are not integral domains, i.e., which contain

zero divisors. In a unique factorization ring, every nonzero nonunit has a unique factorization into irreducibles

(see [3]). Galovich showed that Zm is a unique factorization ring if and only if m is a power of a prime, a

result that was originally proven by Billis [1]. Recall that an element r of an arbitrary ring is nilpotent if

there exists some positive integer n such that rn = 0.

We make the following observation.

Observation 4.5. If an element of a commutative ring R is nilpotent, then the element is not a unit

of R.

Theorem 4.6. Let G and H be finite, simple graphs, with |G| = m, |H| = p, and let n = mp. Let

B = A(G) and C = A(H). If G and H are not open universally solvable over Zm, where m is a power of a

prime, then G�H is not open universally solvable over Zm.

Proof. Suppose G and H are not open universally solvable over Zm, where m is a power of a prime.

Then, det(B) = d1 and det(C) = d2, where d1 and d2 are nonunits of Zm. Moreover, p−(B(x+1))(0) =

det(0 · Im + B(0 + 1)) = det(B) = d1. Therefore, p−(B(x+1))(x) = q(x) + d1 for some q(x) ∈ Zm[x]

which has a factor of x. As every nonunit in a unique factorization ring is nilpotent [3], d1 is nilpotent.

Hence, there exists a positive integer j such that dj1 = 0. Then, (p−(B(x+1))(x))j = (q(x) + d1)j = s(x)

for some s(x) ∈ Zm[x] which has a factor of x. Then, s(x) = x · t(x) for some t(x) ∈ Zm[x]. Hence,
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det[(p−(B(x+1))(C))j ] = det[C · t(C)]. Therefore, [det(p−(B(x+1))(C))]j = det(C) · det(t(C)) = d2 · det(t(C)).

Since d2 is a nonunit, and therefore nilpotent, there exists a positive integer k such that dk2 = 0. So,

[det(p−(B(x+1))(C))]jk = dk2 ·det(t(C))k = 0, meaning that det[(p−(B(x+1))(C))] is nilpotent. By Observation

4.5, det[(p−(B(x+1))(C))] is a nonunit of Zm. Thus, G�H is not open universally solvable over Zm.

Theorem 4.6 does not hold for rings of integers modulo k which are not unique factorization rings, i.e.

when k is not a power of a prime. For example, W3, the wheel graph of order 3, and K4 are not open

universally solvable over Z6, but W3 �K4 is open universally solvable over Z6.

5. Cartesian products revisited. In characterizing the direct product and the strong product, we

were able to provide conditions for universal solvability in terms of the factor graphs. The same can be done

for open neighborhood switching for the Cartesian product.

Unfortunately, for closed neighborhood switching, we cannot say anything about the universal solvability

of G�H in terms of the factor graphs. If G and H are both closed universally solvable, G�H may or may not

be closed universally solvable. For example, the graphs P4, P6, and C5 are closed universally solvable over

Z2. While P4�P6 is closed universally solvable over Z2, P4�C5 is not closed universally solvable over Z2.

If just G or just H is closed universally solvable, G�H may or may not be closed universally solvable. For

example, P4 and P3 are closed universally solvable over Z2, and P5 and C3 are not closed universally solvable

over Z2. While P4�P5 is closed universally solvable over Z2, P3�C3 is not closed universally solvable over

Z2. Finally, if neither G nor H is closed universally solvable, G�H may or may not be closed universally

solvable. For example, P5, P8, C3, and W4, the wheel graph of order 4, are not closed universally solvable

over Z2. While W4�P8 is closed universally solvable over Z2, P5�C3 is not closed universally solvable over

Z2.

Turning to open neighborhood switching, if G and H are both open universally solvable, G�H may or

may not be open universally solvable. For example, the graphs P4, P6, K4, and P8 are open universally

solvable over Z2. While P4�P6 is open universally solvable over Z2, K4�P8 is not open universally solvable

over Z2. If just G or just H is open universally solvable, G�H may or may not be open universally solvable.

For example, P4 is open universally solvable over Z2, and C4 and C5 are not open universally solvable over

Z2. While P4�C4 is open universally solvable over Z2, P4�C5 is not open universally solvable over Z2.

Finally, if neither G nor H is open universally solvable over Zm, where m is a power of a prime, then G�H

is not open universally solvable over Zm.

As observed in [9], det[A(G�H)] = det[p−B(C)], where B is the adjacency matrix of G, C is the

adjacency matrix of H, and p−B(x) is the characteristic polynomial of −B.

Theorem 5.1. Let G and H be finite, simple graphs, with |G| = m, |H| = p, and let n = mp. Let

B = A(G) and C = A(H). If G and H are not open universally solvable over Zm, where m is a power of a

prime, then G�H is not open universally solvable over Zm.

Proof. Suppose G and H are not open universally solvable over Zm, where m is a power of a prime. Then,

det(B) = d1 and det(C) = d2, where d1 and d2 are nonunits of Zm. Moreover, p−B(0) = det(0 ·Im−(−B)) =

det(B) = d1. Therefore, p−B(x) = q(x) + d1 for some q(x) ∈ Zm[x] which has a factor of x. As every

nonunit in a unique factorization ring is nilpotent [3], d1 is nilpotent, so there exists a positive integer

j such that dj1 = 0. Then, (p−B(x))j = (q(x) + d1)j = s(x) for some s(x) ∈ Zm[x] which has a factor

of x. Then, s(x) = x · t(x) for some t(x) ∈ Zm[x]. Hence, det[(p−B(C))j ] = det[C · t(C)]. Therefore,

[det(p−B(C))]j = det(C) · det(t(C)) = d2 · det(t(C)). Since d2 is a nonunit, and therefore nilpotent, there
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exists a positive integer k such that dk2 = 0. So, [det(p−B(C))]jk = dk2 · det(t(C))k = 0, meaning that

det[(p−B(C))] is nilpotent. By Observation 4.5, det[(p−B(C))] is a nonunit of Zm. Thus, G�H is not open

universally solvable over Zm.

Theorem 5.1 does not hold for rings of integers modulo k which are not unique factorization rings, i.e.

when k is not a power of a prime. For example, C5 and K10 are not open universally solvable over Z6, but

C5�K10 is open universally solvable over Z6.
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