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AN ANALOG OF THOMPSON’S TRIANGLE INEQUALITY IN EUCLIDEAN JORDAN
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Abstract. In a recent paper [Linear Algebra Appl., 461:92–122, 2014], Tao et al. proved an analog of Thompson’s triangle

inequality for a simple Euclidean Jordan algebra by using a case-by-case analysis. In this short note, we provide a direct proof

that is valid on any Euclidean Jordan algebras.
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1. Introduction. In matrix theory, the well-known Thompson’s triangle asserts that for any two com-

plex square matrices A and B of the same size, there exist unitary matrices U and V such that

|A+B| ≤ U |A|U∗ + V |B|V ∗,(1.1)

where |A| is the (unique) square root of AA∗.

In a recent paper, Tao et al. [4] extended this by proving the following result: in a simple Euclidean

Jordan algebra V , for any two elements a, b ∈ V , there exist Λ,Λ′ ∈ Aut(V ) such that

|a+ b| ≤ Λ(|a|) + Λ′(|b|),(1.2)

where Aut(V ) is the set of algebra automorphisms on V .

The result was proved by considering each of the five simple algebras. The main objective of this note

is to offer a direct proof for any Euclidean Jordan algebra. The novelty here is the direct proof based on

general results on Euclidean Jordan algebras.

2. Preliminaries. Throughout this paper, we let (V, ◦, 〈·, ·〉) denote an Euclidean Jordan algebra of

rank r with unit element e and K := {x ◦ x : x ∈ V } be the cone of squares in V [1], the Jordan product

and inner product of elements x and y in V are, respectively, denoted by x◦ y and 〈x, y〉. It is well known [1]

that any Euclidean Jordan algebra is a direct product/sum of simple Euclidean Jordan algebras and every

simple Euclidean Jordan algebra is isomorphic to one of five algebras, three of which are the algebras of n×n
real/complex/quaternion Hermitian matrices. The other two are the algebra of 3 × 3 octonion Hermitian

matrices and the Jordan spin algebra. In the algebras Sn (of all n× n real symmetric matrices) and Hn (of

all n×n complex Hermitian matrices), the Jordan product and the inner product are given, respectively, by

X ◦ Y :=
XY + Y X

2
and 〈X,Y 〉 := tr(XY),

where the trace of a real/complex matrix is the sum of its diagonal entries.
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In addition, the (trace) inner product is defined by 〈x, y〉 := tr(x ◦ y) for any x, y ∈ V . In V , one can

define the linear automorphism group Aut(V ) in the following way (see [1]): Λ ∈ Aut(V ) if Λ : V → V is

invertible and Λ(x ◦ y) = Λ(x) ◦ Λ(y) for all x, y ∈ V . We use the notation x ≥ 0 (x > 0) when x ∈ K

(respectively, x ∈ Ko (=interior (K))). An element c ∈ V is an idempotent if c2 = c; it is said to be a

primitive idempotent if it is nonzero and cannot be written as the sum of two other nonzero idempotents.

Given an idempotent c, we have the Peirce (orthogonal) decomposition [1] V = V (c, 1)+V (c, 12 )+V (c, 0),

where V (c, γ) = {x ∈ V : x◦c = γ x} with γ ∈ {1, 12 , 0}. Then, any b ∈ V can be decomposed as b = u+v+w,

where u ∈ V (c, 1), v ∈ V (c, 12 ) and w ∈ V (c, 0). We say that u is the principal component of b relative to c.

The spectral decomposition. For x ∈ V , there exists a Jordan frame {e1, . . . , er} and real numbers

λ1(x), . . . , λr(x) such that

x = λ1(x)e1 + · · ·+ λr(x)er.(2.3)

The numbers λi(x) are called the eigenvalues of x.

Given (2.3), |x| =
∑r

i=1 |λi(x)|ei and the trace of x is tr(x) = 〈x, e〉 =
∑r

i=1 λi(x) for all x ∈ V .

Throughout, given a vector x = (x1, x2, . . . , xr) in IRr, we write x↓ := (x↓1, x
↓
2, . . . , x

↓
r) for the vector

obtained by rearranging the components of x in the decreasing order. For two vectors x = (x1, x2, . . . , xr)

and y = (y1, y2, . . . , yr) in IRr, we say that x is weekly majorized by y and write x ≺w y if for each index k,

1 ≤ k ≤ n,
∑k

1 x
↓
i ≤

∑k
1 y
↓
i ; additionally, if the equality holds when k = r, we say that x is majorized by y

and write x ≺ y. For x ∈ V , let λ(x) denote the vector of eigenvalues of x written in the decreasing order.

Now we recall some known results used in this paper.

Let {e1, e2, . . . , er} be a Jordan frame. For 1 ≤ k ≤ r, let

V (k) = V{e1,e2,...,ek} := {x ∈ V : x ◦ (e1 + e2 · · ·+ ek) = x}.

For any z ∈ V , we let

z := Pe1+e2+···+ek(z) =

k∑
1

ziei +
∑

1≤i<j≤k

zij .

We call z, the principal component of z corresponding to {e1, e2, . . . , ek}.

Theorem 2.1 (see Theorem 4.2, [3]). Let V be simple and {e1, e2, . . . , er} be a Jordan frame. For any

element z ∈ V , let z denote the principal component of z with respect to {e1, e2, . . . , ek}. Then,

λi(z) ≥ λi(z) ≥ λr−k+i(z) (i = 1, 2, . . . , k).

Lemma 2.2 (Lemma 3.1, [4]). Let V be simple. Suppose that (λ1(x), λ2(x), . . . , λr(x)) and (λ1(y),

λ2(y), . . . , λr(y)) are eigenvalues (not necessarily in the decreasing order) for x ∈ V and y ∈ V , respec-

tively. If λi(x) ≤ λi(y), i = 1, 2, . . . , r, then there exists a Λ ∈ Aut(V ) such that x ≤ Λ(y).

Proposition 2.3. Let x, y ∈ V . Then,

(i) λ(x+ y) ≺ λ(x) + λ(y).

(ii) x ≤ y ⇒ λ(x) ≤ λ(y).

In the above proposition, Item (i) is stated in [2], Proposition 8. Item (ii) is a consequence of the

well-known min-max theorem of Hirzebruch [3].
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3. Results. In V , consider an element ε such that ε2 = e. Then, we could express ε =
∑r

i=1 εiei, where

εi = 1 for i = 1, 2, . . . , k and εj = −1 for j = k + 1, k + 2, . . . , r (1 ≤ k ≤ r) for a fixed Jordan frame

{e1, . . . , er}.

Lemma 3.1. Let V be simple with rank r. Then, for x ∈ V and ε with ε2 = e, there exists a Λ ∈ Aut(V )

such that x ◦ ε ≤ Λ(|x|).

Proof. As the result is obvious when ε = e or −e, we assume the spectral decomposition of ε in the

form ε =
∑r

i=1 εiei, where 1 ≤ k < r, εi = 1 for i = 1, 2, . . . , k and εj = −1 for j = k + 1, k + 2, . . . , r. We

let c =
∑k

1 ei and consider the Peirce decomposition x = u + v + w, where u ∈ V (c, 1), v ∈ V (c, 12 ) and

w ∈ V (c, 0). A direct calculation leads to x◦ε = u−w. Now, writing the spectral decompositions of u and w

in the (sub)algebras V (c, 1) and V (c, 0) in the form u =
∑k

1 uifi and w =
∑n

k+1 wifi for some Jordan frame

{f1, f2, . . . , fn} in V , we see that eigenvalues of x ◦ ε are λi(u) (1 ≤ i ≤ k) and λj(−w) (1 ≤ j ≤ r − k). We

note that u (−w) is principal component of x (−x). By Theorem 2.1, λi(u) ≤ λi(x) ≤ |λi(x)| for 1 ≤ i ≤ k

and λi(−w) ≤ λi(−x) = −λr−i+1(x) ≤ |λr−i+1(x)| for 1 ≤ i ≤ r − k, which implies λ(x ◦ ε) ≤ σ1|λ(x)| =

σ1σ(λ(|x|)), where σ and σ1 are permutation matrices. By Lemma 2.2, there exists a Λ ∈ Aut(V ) such that

x ◦ ε ≤ Λ(|x|).

Theorem 3.2. Let V be any Euclidean Jordan algebra. Then, for a, b ∈ V , there exist Λ,Λ′ ∈ Aut(V )

such that

|a+ b| ≤ Λ(|a|) + Λ′(|b|).(3.4)

Proof. First, suppose that V is simple. Let a+b =
∑k

i=1 λi(a+b)ei. Without loss of generality, we assume

that λi(a + b) ≥ 0, for i = 1, 2, . . . , k and λj(a + b) < 0 for j = k + 1, k + 2, . . . , r. Now, let ε =
∑r

i=1 εiei,

where εi = 1 for i = 1, 2, . . . , k and εj = −1 for j = k + 1, k + 2, . . . , r. Then,

|a+ b| = (a+ b) ◦ ε = a ◦ ε+ b ◦ ε.

By Lemma 3.1, there exist Λ,Λ′ ∈ Aut(V ) such that a ◦ ε ≤ Λ(|a|) and b ◦ ε ≤ Λ′(|b|). Thus,

|a+ b| ≤ Λ(|a|) + Λ′(|b|).

Now suppose that V is not simple, without loss of generality, we let V = V1 × V2, where each Vi is a simple

algebra. For a = (a1, a2) ∈ V , ai ∈ Vi, and b = (b1, b2) ∈ V , bi ∈ Vi,

|a+ b| =
[
|a1 + b1|
|a2 + b2|

]
≤
[

Λ1(|a1|) + Λ′1(|b1|)
Γ(|a2|) + Γ′(|b2|)

]
=

[
Λ 0

0 Γ

] [
|a1|
|a2|

]
+

[
Λ′1 0

0 Γ′

] [
|b1|
|b2|

]
,

where Λ1, Λ′1 ∈ Aut(V1), and Γ,Γ′ ∈ Aut(V2). It is clear that Λ :=

[
Λ 0

0 Γ

]
∈ Aut(V ) and Λ′ :=[

Λ′1 0

0 Γ′

]
∈ Aut(V ). Therefore, |a+ b| ≤ Λ(|a|) + Λ′(|b|).

Remark 3.3. In view of the previous longer and more complicated proof of Theorem 3.1 in [4], the

proof of Theorem 3.2 is much shorter and more general (for any Euclidean Jordan algebra). This is due to

Lemma 3.1. The key idea there is to introduce such an ε such that x ◦ ε happens to be principal components

of x and −x in the (sub)algebras V (c, 1) and V (c, 0). Then, thanks Cauchy interlacing theorem (Theorem

2.1), the corresponding eigenvalue inequalities can be established.

The above theorem immediately yields the following corollary.
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Corollary 3.4. Let V be any Euclidean Jordan algebra and a, b ∈ V . Then,

λ(|a+ b|) ≺
w
λ(|a|) + λ(|b|).

Proof. By Theorem 3.2, for any a, b ∈ V , there exist Λ,Λ′ ∈ Aut(V ) such that |a+ b| ≤ Λ(|a|) + Λ′(|b|).
By Item (ii) in Proposition 2.3, λi(|a + b|) ≤ λi(Λ(|a|) + Λ′(|b|)) for all i. Now, by Item (i) in Proposition

2.3, we have

λ(Λ(|a|) + Λ′(|b|)) ≺ λ(Λ(|a|)) + λ(Λ′(|b|)) = λ(|a|) + λ(|b|).

Thus, λ(|a+ b|) ≺
w
λ(|a|) + λ(|b|).

4. Applications. A function φ : IR→ IRis said to be subadditive if φ(t+s) ≤ φ(t)+φ(s) for all t, s ∈ IR.

An example is φ(t) =
√
t.

Theorem 4.1. Let V be any Euclidean Jordan algebra and a, b ∈ V . If f is nonnegative increasing

subadditive function on [0,∞), then for all i,

f(λi(|a+ b|)) ≤ f(λi(|a|)) + f(λi(|b|)).

Proof. By Theorem 3.2, for any a, b ∈ V , there exist Λ,Λ′ ∈ Aut(V ) such that |a+ b| ≤ Λ(|a|) + Λ′(|b|).
This implies that λi(|a + b|) ≤ λi(Λ(|a|) + Λ′(|b|)) for all i (see Item (ii) in Proposition 2.3). Since f is

increasing function, we have for all i,

f(λi(|a+ b|)) ≤ f(λi(Λ(|a|) + Λ′(|b|))) ≤ f(λi(Λ(|a|)) + f(λi(Λ
′(|b|)) = f(λi(|a|)) + f(λi(|b|)).

Note that the second inequality is due to the subadditivity of f .

Corollary 4.2. Let V be an any Euclidean Jordan algebra and a, b ∈ V . Then, for all i,√
λi(|a+ b|)) ≤

√
λi(|a|)) +

√
λi(|b|)).(4.5)

Proof. Since f(t) =
√
t is nonnegative increasing subadditive function on [0,∞), by Theorem 4.2, (4.5)

holds.
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