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SIGN PATTERNS ASSOCIATED WITH SOME GRAPHS THAT ALLOW OR REQUIRE

DIAGONALIZABILITY∗

SUNIL DAS†

Abstract. The problems of characterizing sign pattern matrices that allow or require diagonalizability are mostly open. In

this paper, we introduce the concept of essential index for a tree sign pattern matrix and use it to investigate the allow problem

on diagonalizability for sign pattern matrices having their graphs as trees. We characterize sign pattern matrices allowing

diagonalizability, whose graphs are star or path. We also give a sufficient condition for sign pattern matrices whose graphs are

trees to allow diagonalizability. Further, we give a necessary condition for a sign pattern matrix to require diagonalizability

and characterize all star sign pattern matrices that require diagonalizability.
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1. Introduction. A sign pattern matrix is a matrix with entries from {+,−, 0}. The qualitative class

of a matrix A is denoted by Q(A) and is defined by the set of all real matrices with the same sign pattern

as A. A sign pattern matrix A allows a property P if at least one matrix in Q(A) has the property P and

requires a property P if all matrices in Q(A) have the property P . A square sign pattern matrix A = [aij ] is

said to be combinatorially symmetric if for each i, j, either both aij , aji are zero or both aij , aji are nonzero.

Let us recall from [11] that the graph of a matrix A of order n, denoted by G(A), is defined to be a

simple undirected graph with vertices 1, 2, . . . , n and for i 6= j it has the edge [i, j] if and only if aij 6= 0 or

aji 6= 0. If this graph is a tree, then the matrix A is irreducible if and only if aij 6= 0 whenever aji 6= 0. An

irreducible sign pattern matrix whose graph is a tree is called a tree sign pattern matrix. Alternatively, a

sign pattern matrix A is a tree sign pattern matrix if A is combinatorially symmetric and G(A) is a tree.

In particular, if G(A) is a star or a path, then A is called a star sign pattern matrix or a path sign pattern

matrix, respectively.

Let A = [aij ] be a matrix of order n. The directed graph of A, denoted by D(A), is defined as the

directed graph with vertices 1, 2, . . . , n such that D(A) has the arc (i, j) from vertex i to vertex j if and

only if aij 6= 0 (see [1, p. 29]). A nonzero product of the form γ = ai1i2ai2i3 · · · aiki1 in which the index set

{i1, i2, . . . , ik} consists of distinct indices is called a simple cycle of length k (or simple k-cycle). A composite

k-cycle is a product of simple cycles whose total length is k and whose index sets are mutually disjoint. The

maximum cycle length in A is denoted by c(A) (see [14]).

We recall from [10, Section 42.6] that the maximum rank of a sign pattern matrix A is denoted by

MR(A) and is defined by MR(A) = max{rank(B) : B ∈ Q(A)}.

Lemma 1.1 ([10]). MR(A) is the maximum number of nonzero entries of A no two of which are on the

same row or the same column.
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Throughout this paper, Mn denotes the set of all n×n real matrices. If A ∈Mn, then σ(A) denotes the

set of all eigenvalues of A, σ∗(A) denotes the set of all nonzero eigenvalues of A, z(A) denotes the algebraic

multiplicity of zero as an eigenvalue of A, and PA(x) denotes the characteristic polynomial of A in x. If α

and β are subsets of {1, 2, . . . , n}, then A[α, β] is the submatrix of A having rows and columns corresponding

to the indices in α and β, respectively, and A(α, β) is the submatrix obtained from A by deleting rows and

columns corresponding to the indices in α and β, respectively. Further, A[α] = A[α, α] and A(α) = A(α, α).

In this paper, we attempt to address the problem of characterizing sign pattern matrices that allow or

require diagonalizability when the associated graph is a special type of tree. In Section 2, we introduce the

concept of essential index for a tree sign pattern matrix and find some results concerning the row spaces

and column spaces of the matrices in its qualitative class. We use it in Section 3 to investigate the problem

of allowing diagonalizability for sign pattern matrices A (not necessarily combinatorially symmetric) when

G(A) is a tree and give a sufficient condition for A to allow diagonalizability. When G(A) is either a star

or a path, we characterize sign pattern matrices A allowing diagonalizability. Finally in Section 4, we give

a necessary condition for a sign pattern matrix to require diagonalizability and characterize all star sign

pattern matrices that require diagonalizability.

2. Essential index. Let us recall that the standard determinant expansion of a square matrix A = [aij ]

is

(2.1) detA =
∑
σ

sgn(σ)a1i1a2i2 · · · anin ,

where the summation extends over all permutations σ = (i1, i2, . . . , in) of {1, 2, . . . , n} and sgn(σ) denotes

the sign of the permutation σ. We have the following characterization of sign pattern matrices that require

singularity.

Lemma 2.1 ([3, 10]). If A is a sign pattern matrix of order n, then the following statements are

equivalent.

1. A requires singularity.

2. Every term in the standard determinant expansion of A is zero.

3. A has no composite n-cycle.

Feng et al. [8] showed that a sign pattern matrix A allows diagonalizability if and only if there exists

a matrix B ∈ Q(A) such that rank(B) = rank(B2). Thus, if a sign pattern matrix A does not allow

diagonalizability, then z(B) ≥ 2 for all B ∈ Q(A). Further, Shao and Gao [14] proved that if A is a

combinatorially symmetric sign pattern matrix, then A allows diagonalizability. Therefore, when G(A) is

a tree and A is not combinatorially symmetric, the problem of A to allow diagonalizability is worth to

investigate if at least two irreducible components of A require singularity. If G(A) is a tree, then each

irreducible component of A is a tree sign pattern matrix. Moreover, for a tree sign pattern matrix A, the

determinant of every B ∈ Q(A) is a sum of products of entries of the forms bii and −bijbji. So every

term in the standard expansion of B is 0 if some biis are 0. The indices i with aii = 0 essential for A to

require singularity will be called essential indices. In Section 3, we will see that the problem of allowing

diagonalizability has a relation with the connectivity of essential indices. Now we will give a formal definition

of essential index.

A matching in an undirected graph is a set of edges in which no pair of edges shares a vertex. If M

is a matching in a graph G, then the vertices belonging to the edges of M are said to be saturated by M
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(or M -saturated). Let V (M) denotes the set of all M -saturated vertices in G. A maximum matching in a

graph is a matching that has the largest possible cardinality. Throughout this section, 〈n〉 denotes the set

{1, 2, . . . , n}.

Definition 2.2. Let A be a tree sign pattern matrix of order n. An index i is said to be an essential

index of A if there is a maximum matching M in G(A) such that i /∈ V (M) and every principal submatrix

of A whose index set contains V (M) ∪ {i} requires singularity.

An index i is said to be nonessential if it is not an essential index. The following result clearly follows

from Definition 2.2.

Theorem 2.3. If i is an essential index of a tree sign pattern matrix A, then aii = 0.

The following example illustrates the essential and nonessential indices of a tree sign pattern matrix and

establishes that the converse of Theorem 2.3 is not true.

Example 2.4. Let us consider a tree sign pattern matrix A with its graph G(A) as follows.

A =



0 0 − 0 0 0

0 0 + 0 0 0

+ − + + 0 0

0 0 − − + 0

0 0 0 + + +

0 0 0 0 + 0


1

2

3 4 5 6

Since a33, a44, a55 6= 0, by Theorem 2.3, the indices 3, 4, and 5 are nonessential.

Let us consider a maximum matching M1 = {[2, 3], [4, 5]} such that 1 /∈ V (M1). The subsets of 〈6〉
which contain V (M1) ∪ {1} are 〈5〉 and 〈6〉. Since both the principal submatrices A[〈5〉] and A[〈6〉] of A

require singularity, 1 is an essential index of A. Similarly, 2 is an essential index of A.

The maximum matchings that do not cover the vertex 6 are M ′6 = {[1, 3], [4, 5]} and M ′′6 = {[2, 3], [4, 5]}.
Let S′ = V (M ′6)∪{6} = {1, 3, 4, 5, 6} and S′′ = V (M ′′6 )∪{6} = {2, 3, 4, 5, 6}. Both the principal submatrices

A[S′] and A[S′′] allow nonsingularity. So 6 is a nonessential index of A.

Therefore, the essential indices of A are 1 and 2, and the nonessential indices of A are 3, 4, 5, and 6.

The main result of this section is given by the following theorem.

Theorem 2.5. If a tree sign pattern matrix A of order n requires singularity, then we have the following.

1. For each B ∈ Q(A), ek /∈ columnspace(B) if k is an essential index of A.

2. For each B ∈ Q(A) with rank(B) = MR(A), ek ∈ columnspace(B) if k is a nonessential index of A.

We prove Theorem 2.5 by using the following lemmas. Let us recall that if G is a simple undirected

graph, then V (G) and E(G) denote the vertex set of G and the edge set of G, respectively. If S ⊆ V (G),

then G − S is the subgraph of G obtained from G by deleting the vertices in S and the edges incident to

them. A path of length k between two vertices u and v of G is a sequence {v0, v1, . . . , vk} of distinct vertices

such that v0 = u, vk = v, and [vi−1, vi] ∈ E(G) for all i ∈ {1, 2, . . . , k}. A longest path is a path of maximum

possible length. The degree of a vertex u, denoted by deg(u), is the number of distinct vertices of G adjacent

to u. If deg(u) = 1, then u is called pendant.
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Lemma 2.6. Let A be a tree sign pattern matrix and suppose that G(A) has vertices 1 and 2, and let 2

be adjacent to 1 and deg(1) = 1. Then every maximum matching in G(A) covers the vertex 2, and thus 2 is

a nonessential index of A.

Proof. Suppose that there exists a maximum matching M in G(A) such that 2 /∈ V (M). Since deg(1) = 1

and 1 is adjacent to 2, 1 /∈ V (M). Then, M ∪ {[1, 2]} is a matching in G(A). This contradicts the

assumption thatM is a maximum matching inG(A). Therefore, every maximum matching inG(A) covers the

vertex 2.

Lemma 2.7. Let A be a tree sign pattern matrix. If aii = 0 for at most one pendant vertex i in G(A),

then A allows nonsingularity.

Proof. Let A be of order n and t be the number of vertices of degree ≥ 3 in G(A). We prove the result

by induction on t. For t = 0, A is a path sign pattern matrix having a pendant vertex i with aii 6= 0. So A

has a composite n-cycle and thus by Lemma 2.1, A allows nonsingularity. So the result is true for t = 0.

Suppose that k ≥ 1 and the result is true for all t < k. Let t = k and A be a tree sign pattern matrix

having k vertices of degree ≥ 3. Let r be the pendant vertex such that arr = 0, if it exists. Otherwise,

consider any pendant vertex r. Let P be a longest path in G(A) with an end vertex r. Then the other end

vertex, say s, of P is also pendant in G(A) so that ass 6= 0. Therefore, A[V (P)] allows nonsingularity. Since

G(A) has at least one vertex of degree ≥ 3, P covers at least one vertex of degree ≥ 3. Therefore, each

component of G(A)− V (P) is a tree such that it has at most one pendant vertex i with aii = 0 and at most

k − 1 vertices of degree ≥ 3. So by induction hypothesis, the principal submatrices corresponding to those

components allow nonsingularity. Since A(V (P)) is a direct sum of these principal submatrices, A(V (P))

allows nonsingularity.

Since both A[V (P)] and A(V (P)) allow nonsingularity, by Lemma 2.1, A[V (P)] has a composite |V (P)|-
cycle and A(V (P)) has a composite (n− |V (P)|)-cycle. Since the index sets of those two cycles are disjoint,

the product of those two cycles is a composite n-cycle of A. Therefore, by Lemma 2.1, A does not require

singularity, that is, A allows nonsingularity.

Therefore, if a tree sign pattern matrix A requires singularity, then aii = 0 for at least two pendant

vertices i in G(A).

Lemma 2.8. Suppose that A is a tree sign pattern matrix of order n with ann = 0, and G(A) has vertices

n − 1, n such that n − 1 is adjacent to n and deg(n) = 1,deg(n − 1) ≥ 2. Let i ∈ {1, 2, . . . , n − 2}. If i is

an essential index of A, then there exists a maximum matching M in G(A) such that i /∈ V (M), n ∈ V (M)

and every principal submatrix of A whose index set contains V (M) ∪ {i} requires singularity.

Proof. Since i is an essential index of A, there exists a maximum matching M in G(A) such that

i /∈ V (M) and every principal submatrix of A whose index set contains V (M) ∪ {i} requires singularity. If

n /∈ V (M), then by Lemma 2.6, n− 1 ∈ V (M). After a relabeling of the vertices 1, 2, . . . , n− 2, if required,

we can assume that [n − 2, n − 1] ∈ M . Therefore, i < n − 2. Since M is a maximum matching in G(A),

M ′ = (M \ {[n− 2, n− 1]}) ∪ {[n− 1, n]} is a maximum matching in G(A).

Let T ′ be such that V (M ′) ∪ {i} ⊆ T ′ ⊆ 〈n〉. If n − 2 ∈ T ′, then V (M) ∪ {i} ⊆ T ′. So A[T ′] requires

singularity. If n − 2 /∈ T ′, let T = (T ′ \ {n}) ∪ {n − 2}. Then, V (M) ∪ {i} ⊆ T and thus A[T ] requires

singularity. Now T \ {n− 2, n− 1} = T ′ \ {n− 1, n} ⊆ {1, 2, . . . , n− 3}, n− 2 /∈ T ′, n /∈ T and i < n− 2. If

Z = T \ {n− 2, n− 1} = T ′ \ {n− 1, n}, then we have
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A[T ′] =


A[Z]

0

x
...

0

yT an−1,n−1 an−1,n
0 · · · 0 an,n−1 0

 ,

and

A[T ] =

 A[Z] x1 x2

yT1 an−2,n−2 an−2,n−1
yT2 an−1,n−2 an−1,n−1

 .

So −an−2,n−1an−1,n−2 · detA[Z] is a sum of some terms in the standard expansion of detA[T ]. Since

A[T ] requires singularity, by Lemma 2.1, each term in the standard expansion of detA[T ] is zero. Since

an−2,n−1, an−1,n−2 6= 0, each term in the standard expansion of detA[Z] is zero.

Now each term in the standard expansion of detA[T ′] is a product of −an−1,nan,n−1 and a term in the

standard expansion of detA[Z]. Therefore, each term in the standard expansion of detA[T ′] is zero, and

thus by Lemma 2.1, A[T ′] requires singularity.

Hence, there exists a maximum matching M ′ in G(A) such that i /∈ V (M ′), n ∈ V (M ′) and every

principal submatrix of A whose index set contains V (M ′) ∪ {i} requires singularity.

Lemma 2.9. Suppose that A is a tree sign pattern matrix of order n, and G(A) has vertices n−2, n−1, n

such that n − 1 is adjacent to both n − 2, n and deg(n) = 1,deg(n − 1) = 2. Let ann = 0, Ã = A[〈n − 2〉],
and G(Ã) = G(A)− {n− 1, n}. Then, we have the following.

1. n is an essential index of A if and only if n− 2 is an essential index of A.

2. For each i ∈ {1, 2, . . . , n− 2}, i is an essential index of Ã if and only if i is an essential index of A.

Proof. According to the given conditions, we can represent G(A) as follows.

n− 2 n− 1 nG(Ã)

1. Let n − 2 be an essential index of A. Then, there exists a maximum matching M in G(A) such

that n − 2 /∈ V (M) and every principal submatrix of A whose index set contains V (M) ∪ {n − 2}
requires singularity. Since M is a maximum matching in G(A), therefore [n − 1, n] ∈ M and thus

M̃ = (M \ {[n − 1, n]}) ∪ {[n − 2, n − 1]} is a maximum matching in G(A). Since V (M̃) ∪ {n} =

V (M) ∪ {n − 2}, A[T ] requires singularity for all T satisfying V (M̃) ∪ {n} ⊆ T ⊆ 〈n〉. Further,

n /∈ V (M̃). Therefore, n is an essential index of A.

Similarly, if n is an essential index of A, then n− 2 is an essential index of A.

2. Here, ann = 0. Let T ⊆ 〈n〉 be such that n− 1, n ∈ T , and T̃ = T \ {n− 1, n}. Then, we can express

A[T ] as:
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(2.2) A[T ] =


Ã[T̃ ]

0 0
...

...

0 0

c 0

0 · · · 0 d an−1,n−1 an−1,n
0 · · · 0 0 an,n−1 0


,

where an,n−1, an−1,n 6= 0, and either both c, d are zero or both are nonzero. Thus, we have

(2.3) detA[T ] = −an−1,nan,n−1 · det Ã[T̃ ].

Suppose that i is an essential index of Ã for some i < n − 1. Then, there exists a maximum matching

M̃ in G(Ã) such that i /∈ V (M̃) and Ã[T̃ ] requires singularity for all T̃ satisfying V (M̃)∪{i} ⊆ T̃ ⊆ 〈n− 2〉.
Since M̃ is a maximum matching in G(Ã), M = M̃ ∪{[n− 1, n]} is a maximum matching in G(A). Let T be

such that V (M) ∪ {i} ⊆ T ⊆ 〈n〉. Then by (2.3), A[T ] requires singularity. Further, i /∈ V (M). Therefore, i

is an essential index of A.

Conversely, suppose that i is an essential index of A for some i < n− 1. Then there exists a maximum

matching M in G(A) such that i /∈ V (M) and A[T ] requires singularity for all T satisfying V (M) ∪ {i} ⊆
T ⊆ 〈n〉. By Lemma 2.8, we may assume without loss of generality that n ∈ V (M). Then [n − 1, n] ∈ M .

Since M is a maximum matching in G(A), M̃ = M \ {[n− 1, n]} is a maximum matching in G(Ã). Let T̃ be

such that V (M̃)∪ {i} ⊆ T̃ ⊆ 〈n− 2〉. Since an−1,n, an,n−1 6= 0, by (2.3), we can conclude that Ã[T̃ ] requires

singularity. Further, i /∈ V (M̃). Therefore, i is an essential index of Ã.

Lemma 2.10. Suppose that A is a tree sign pattern matrix of order n with ann = 0, and G(A) has vertices

n− 1, n such that n− 1 is adjacent to n and deg(n) = 1,deg(n− 1) ≥ 3. Let the principal submatrices of A

corresponding to the components of G(A)− {n− 1, n} be A1, A2, . . . , Ar.

1. If for some t ∈ {1, 2, . . . , r}, the vertices of G(At) be 1, 2, . . . , k such that k is adjacent to n−1, then

we have the following.

(a) For each i < k, i is an essential index of At if and only if i is an essential index of A.

(b) If k is an essential index of At, then both k and n are essential indices of A.

(c) If k is an essential index of A, then k is an essential index of At.

2. If n is an essential index of A, then there exists l ∈ {1, 2, . . . , r} such that p is an essential index of

Al, where p is the vertex in G(Al) adjacent to n− 1.

Proof. According to the given conditions, we can represent G(A) as follows.

···
···

G(At)

G(Ar)G(A1)

k

n

n− 1
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Let the vertices of G(At) be 1, 2, . . . , k such that k is adjacent to n − 1. Let T ⊆ 〈n〉 be such that

n− 1, n ∈ T . If Tt = T ∩ 〈k〉 and T̃ = {i ∈ T : k + 1 ≤ i ≤ n− 2}, then we can write A[T ] as:

(2.4) A[T ] =



At[Tt]

0 0 · · · 0 0 0
...

...
...

...
...

0 0 · · · 0 0 0

0 0 · · · 0 c 0

0 · · · 0 0

A[T̃ ] u 0
...

...
...

0 · · · 0 0

0 · · · 0 0

0 · · · 0 d vT an−1,n−1 an−1,n
0 · · · 0 0 0T an,n−1 0



,

where either both c and d are zero or both are nonzero. Therefore,

(2.5) detA[T ] = −an−1,nan,n−1 · detAt[Tt] · detA[T̃ ].

If T̃ = V (M ′) for some matching M ′, then

(2.6) detA[T ] = −an−1,nan,n−1 · detAt[Tt]

 ∏
[i,j]∈M ′

(−aijaji) + some more terms

 .

1(a). Suppose that i is an essential index of At for some i < k. Then there exists a maximum matching Mt

in G(At) such that i /∈ V (Mt) and At[Tt] requires singularity for all Tt satisfying V (Mt) ∪ {i} ⊆ Tt ⊆ 〈k〉.
Let M = (M1 ∪ · · · ∪Mr)∪ {[n− 1, n]}, where Mj is a maximum matching in G(Aj) for j 6= t and Mt is the

maximum matching mentioned above. Then, M is a maximum matching in G(A) and i /∈ V (M). Let T be

such that V (M)∪ {i} ⊆ T ⊆ 〈n〉. If Tt = T ∩ 〈k〉, then At[Tt] requires singularity. Therefore, by (2.5), A[T ]

requires singularity. Hence, i is an essential index of A.

Conversely, suppose that i is an essential index of A for some i < k. Then, there exists a maximum

matching M in G(A) such that i /∈ V (M) and A[T ] requires singularity for all T satisfying V (M) ∪ {i} ⊆
T ⊆ 〈n〉. By Lemma 2.8, we can assume without loss of generality that n ∈ V (M). Then, [n − 1, n] ∈ M .

Let Mj = M ∩ E(G(Aj)) for j = 1, 2, . . . , r. Then, Mt is a maximum matching in G(At) and i /∈ V (Mt).

Let Tt be such that V (Mt)∪ {i} ⊆ Tt ⊆ 〈k〉. If T = Tt ∪ (V (M1)∪ · · · ∪ V (Mr))∪ {n− 1, n}, then A[T ]

requires singularity. Then each term in the standard expression of A[T ] is zero. Therefore, by (2.6), At[Tt]

requires singularity. Hence, i is an essential index of At.

1(b). Suppose that k is an essential index of At. Then there exists a maximum matching Mt in G(At)

such that k /∈ V (Mt) and At[Tt] requires singularity for all Tt satisfying V (Mt) ∪ {k} ⊆ Tt ⊆ 〈k〉. Let

M = (M1 ∪ · · · ∪ Mr) ∪ {[n − 1, n]}, where Mj is a maximum matching in G(Aj) for j 6= t and Mt is

the above-mentioned matching. Then, M is a maximum matching in G(A) and k /∈ V (M). Therefore,

M̃ = (M \ {[n − 1, n]}) ∪ {[k, n − 1]} is also a maximum matching in G(A) and n /∈ V (M̃). Let T be such

that V (M) ∪ {k} = V (M̃) ∪ {n} ⊆ T ⊆ 〈n〉. If Tt = T ∩ 〈k〉, then At[Tt] requires singularity. Therefore by

(2.5), A[T ] requires singularity. Hence, both k and n are essential indices of A.
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1(c). Suppose that k is an essential index of A. Then by similar arguments as in the converse part of 1(a),

k is an essential index of At.

2. Suppose that there exist no t ∈ {1, 2, . . . , r} such that kt is an essential index of At, where kt is a vertex of

G(At) adjacent to n−1. Let M be a maximum matching in G(A) such that n /∈ V (M). Since n−1 ∈ V (M)

(Lemma 2.6), there exists an l ∈ {1, 2, . . . , r}, where G(Al) (after a relabeling of vertices, if required) has

vertices 1, 2, . . . , p with p being adjacent to n− 1 such that [p, n− 1] ∈M .

Since M is a maximum matching in G(A), M̃ = (M \ {[p, n− 1]})∪{[n− 1, n]} is a maximum matching

in G(A). Therefore, M̃l = M̃ ∩E(G(Al)) is a maximum matching in G(Al). Since p is a nonessential index of

Al and p /∈ V (M̃l), there exists Tl satisfying V (M̃l) ∪ {p} ⊆ Tl ⊆ 〈p〉 such that Al[Tl] allows nonsingularity.

Let Mj = M ∩ E(G(Aj)) for j = 1, 2, . . . , r. Then, V (Ml) = V (M̃l) ∪ {p}. If T = Tl ∪ (V (M1) ∪ · · · ∪
V (Mr)) ∪ {n− 1, n}, then V (M) ∪ {n} ⊆ T ⊆ 〈n〉. Therefore by (2.6), A[T ] allows nonsingularity, which is

a contradiction to the fact that n is an essential index of A.

The following result confirms the existence of an essential index of a tree sign pattern matrix that requires

singularity.

Theorem 2.11. If a tree sign pattern matrix A of order n requires singularity, then A has an essential

index.

Proof. Suppose A requires singularity. We prove the result by induction on n. For n = 1, the result is

obvious. If n = 2, then A allows nonsingularity. If n = 3, then A is given by:

A =

 0 a12 0

a21 a22 a23
0 a32 0

 ,
where a12, a21, a23, a32 ∈ {+,−}. The maximum matching M = {[2, 3]} in G(A) is such that 1 /∈ V (M).

The principal submatrix of A whose index set contains V (M) ∪ {1} is A itself, which requires singularity.

Therefore, 1 is an essential index of A, and the result is true for n = 3. Suppose the result is true for any

k < n. Let A be a tree sign pattern matrix of order n requiring singularity. Then by Lemma 2.7, we can

assume without loss of generality that ann = 0 and deg(n) = 1 in G(A). Let n be adjacent to n− 1 in G(A).

Case I: deg(n − 1) = 2. Let Ã = A[〈n − 2〉] and G(Ã) = G(A) − {n − 1, n}. Then, Ã is a tree sign

pattern matrix of order n − 2 that requires singularity. By induction hypothesis, Ã has an essential index,

say i. Since i ≤ n− 2, by Lemma 2.9, we can conclude that i is an essential index of A.

Case II: deg(n − 1) ≥ 3. Let the principal submatrices of A corresponding to the components of

G(A) − {n − 1, n} be A1, A2, . . . , Ar. Then there exists t ∈ {1, 2, . . . , r} such that At requires singularity.

Let the vertices of G(At) be 1, 2, . . . , k such that k is adjacent to n−1 in G(A). By induction hypothesis, At
has an essential index, say i. Therefore, by using Lemma 2.10, we can conclude that i is an essential index

of A.

Throughout the following discussion, ei denotes the column vector whose i-th component is 1 and all

other components are zero, 0 denotes the zero column vector, O denotes the zero matrix, and their sizes will

be clear from the context.

Lemma 2.12. Suppose that A is a tree sign pattern matrix of order n, and G(A) has vertices n − 2,

n − 1, n such that n − 1 is adjacent to both n − 2, n and deg(n) = 1,deg(n − 1) = 2. Let ann = 0 and
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Ã = A[〈n − 2〉]. If ei ∈ columnspace(B̃) for some B̃ ∈ Q(Ã), then ei ∈ columnspace(B) for all B ∈ Q(A)

with B[〈n− 2〉] = B̃. Further, en−2 ∈ columnspace(B̃) implies en ∈ columnspace(B).

Proof. We can rewrite A as:

A =

 Ã an−2,n−1 en−2 0

an−1,n−2 e
T
n−2 an−1,n−1 an−1,n

0T an,n−1 0

 ,
where an−1,n−2, an−2,n−1, an,n−1, an−1,n 6= 0.

Let ei ∈ columnspace(B̃) for some B̃ ∈ Q(Ã). Then there exists pi ∈ Rn−2 such that B̃pi = ei.

Let B ∈ Q(A) be such that B[〈n− 2〉] = B̃. Then there exist bn−1,n, bn,n−1 6= 0 such that

B =

 B̃ bn−2,n−1 en−2 0

bn−1,n−2 e
T
n−2 bn−1,n−1 bn−1,n

0T bn,n−1 0

 .
Therefore,

Bmi =

 ei
0

0

 , where mi =

 pi
0

− bn−1,n−2

bn−1,n
eTn−2 pi

 .
So ei ∈ columnspace(B).

Let en−2 ∈ columnspace(B̃). Then there exists pn−2 ∈ Rn−2 such that B̃pn−2 = en−2. Therefore,

Bmn−2 =

 0

0

bn,n−1

 , where mn−2 =

 −bn−2,n−1pn−2
1

1
bn−1,n

(bn−2,n−1bn−1,n−2 e
T
n−2 pn−2 − bn−1,n−1)

 .
So en ∈ columnspace(B).

Lemma 2.13. Suppose that A is a tree sign pattern matrix of order n with ann = 0, and G(A) has

vertices n− 1, n such that n− 1 is adjacent to n and deg(n) = 1,deg(n− 1) ≥ 3. Let the principal submatrix

corresponding to one component of G(A) − {n − 1, n} be Ã such that G(Ã) has the vertices 1, 2, . . . , k with

k being adjacent to n − 1. If ei ∈ columnspace(B̃) for some B̃ ∈ Q(Ã), then for each B ∈ Q(A) with

B[〈k〉] = B̃, ei ∈ columnspace(B).

Proof. According to the given conditions, we can express A as:

A =


Ã O ak,n−1 ek 0

O A[α] u 0

an−1,k e
T
k vT an−1,n−1 an−1,n

0T 0T an,n−1 0

 ,
where α = {k + 1, k + 2, . . . , n− 2}, u,v 6= 0 and an−1,k, ak,n−1, an−1,n, an,n−1 6= 0.

Let B̃ ∈ Q(Ã) be such that ei ∈ columnspace(B̃). Then there exists a vector pi ∈ Rk such that B̃pi = ei.

Let B ∈ Q(A) be such that B[〈k〉] = B̃. Then there exist bn−1,n 6= 0 such that

B =


B̃ O bk,n−1 ek 0

O B̂ x 0

bn−1,k e
T
k yT bn−1,n−1 bn−1,n

0T 0T bn,n−1 0

 .
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Therefore,

Bmi =


ei
0

0

0

 , where mi =


pi
0

0

− bn−1,k

bn−1,n
eTk pi

 .
Therefore, for every B ∈ Q(A) with B[〈k〉] = B̃, ei ∈ columnspace(B).

Next, we prove both parts of Theorem 2.5 separately.

Proof of Theorem 2.5.1. We prove the result by induction on n.

Induction base case. For n = 1, the result is obvious. If n = 2, then A allows nonsingularity. For n = 3,

since A requires singularity, A is given by:

A =

 0 a12 0

a21 a22 a23
0 a32 0

 ,
where a12, a21, a23, a32 ∈ {+,−}. The set of all essential indices of A is {1, 3}. Clearly, for every B ∈ Q(A),

e1, e3 /∈ columnspace(B). Thus, the result is also true for n = 3.

Induction hypothesis. Suppose that the result is true for any tree sign pattern matrix of order less than n.

Induction final step. Let A be a tree sign pattern matrix of order n such that A requires singularity.

Then by Lemma 2.7, there exist vertices in G(A), say n − 1, n, such that n is adjacent to n − 1, ann = 0,

and deg(n) = 1.

Case I: deg(n− 1) = 2. Let n− 2 be adjacent to n− 1. Then, we can rewrite A as:

(2.7) A =

 Ã an−2,n−1 en−2 0

an−1,n−2 e
T
n−2 an−1,n−1 an−1,n

0T an,n−1 0

 ,
where Ã = A[〈n− 2〉] and an−1,n, an,n−1, an−1,n−2, an−2,n−1 6= 0.

Let n be an essential index of A. Then by Lemma 2.9, n − 2 is an essential index of Ã and hence

by induction hypothesis, for every B̃ ∈ Q(Ã), en−2 /∈ columnspace(B̃). If en ∈ columnspace(B) for some

B ∈ Q(A), then there exist cn−1, cn ∈ R and p ∈ Rn−2 such that

00
1

 =

 B̃

bn−1,n−2 e
T
n−2

0T

p + cn−1

bn−2,n−1 en−2bn−1,n−1
bn,n−1

+ cn

 0

bn−1,n
0

 ,
where B̃ = B[〈n− 2〉] ∈ Q(Ã).

Since cn−1, bn−2,n−1 6= 0 and B̃p = −cn−1bn−2,n−1 en−2, en−2 ∈ columnspace(B̃), which is a contradic-

tion.
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Let i(6= n) be an essential index of A. Then by Lemma 2.6, i 6= n − 1, and by Lemma 2.9, i is an

essential index of Ã. If ei ∈ columnspace(B) for some B ∈ Q(A), then from (2.7) we can conclude that ei
is a linear combination of all but the (n− 1)-th column of B. Then for some ai ∈ R, ei +ai en−1 is a linear

combination of the first n− 2 columns of B and thus ei ∈ columnspace(B̃), where B̃ = B[〈n− 2〉] ∈ Q(Ã).

This is a contradiction to the induction hypothesis.

Case II: deg(n − 1) ≥ 3. Suppose that G(A) − {n − 1, n} has r components. Then, A[〈n − 2〉] is a

direct sum of r irreducible components, say A1, A2, . . . , Ar.

Let n be an essential index of A. Then by Lemma 2.10, there exists t ∈ {1, 2, . . . , r} such that k is

an essential index of At, where k is the vertex of G(At) adjacent to n − 1. By induction hypothesis, for

every Bt ∈ Q(At), ek /∈ columnspace(Bt). Without loss of generality, let us assume that G(At) has vertices

1, 2, . . . , k. So we can write A as:

(2.8) A =


At 0 ak,n−1 ek 0

0T A[α] u 0

an−1,k e
T
k vT an−1,n−1 an−1,n

0T 0T an,n−1 0

 ,

where α = {k + 1, . . . , n − 2}, an−1,k, ak,n−1, an−1,n, an,n−1 6= 0 and u,v 6= 0. If en ∈ columnspace(B)

for some B ∈ Q(A), then by similar arguments as provided in Case I, ek ∈ columnspace(Bt), where

Bt = B[〈k〉] ∈ Q(At). This is a contradiction to the induction hypothesis.

Let i( 6= n) be an essential index of A. Then by Lemma 2.6, i 6= n−1. Without loss of generality, we may

assume that i is a vertex of G(At) and the vertices of G(At) are 1, 2, . . . , k. Then by Lemma 2.10, i is an

essential index of At. If ei ∈ columnspace(B) for some B ∈ Q(A), then from (2.8) we can conclude that ei is

a linear combination of the first k columns and the n-th column of B. Then for some ai ∈ R, ei +ai en−1 is a

linear combination of the first k columns of B and thus ei ∈ columnspace(Bt), where Bt = B[〈k〉] ∈ Q(At).

This is a contradiction to the induction hypothesis.

Proof of Theorem 2.5.2. We prove the result by induction on n.

Induction base case. For n = 1, the result is obvious. If n = 2, then A allows nonsingularity. For n = 3,

since A requires singularity, A is given by:

A =

 0 a12 0

a21 a22 a23
0 a32 0

 ,
where a12, a21, a23, a32 ∈ {+,−}. The only nonessential index of A is 2. Clearly, e2 ∈ columnspace(B) and

rank(B) = 2 = MR(A) for all B ∈ Q(A). Thus, the result is also true for n = 3.

Induction hypothesis. Suppose that the result is true for any tree sign pattern matrix of order less than n.

Induction final step. Let A be a tree sign pattern matrix of order n such that A requires singularity.

Then by Lemma 2.7, there exist vertices in G(A), say n− 1, n, such that n is adjacent to n− 1, ann = 0 and

deg(n) = 1.
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Case I: deg(n− 1) = 2. Let n− 2 be adjacent to n− 1. Then, we can rewrite A as:

(2.9) A =

 Ã an−2,n−1 en−2 0

an−1,n−2 e
T
n−2 an−1,n−1 an−1,n

0T an,n−1 0

 ,
where Ã = A[〈n− 2〉] and an−1,n, an,n−1, an−1,n−2, an−2,n−1 6= 0. By Lemma 1.1, MR(A) = MR(Ã) + 2.

Let N be the set of all nonessential indices of Ã. Then from Lemma 2.9, we can conclude that the set

of all nonessential indices of A is given by either N ∪ {n− 1, n} or N ∪ {n− 1} accordingly as n− 2 ∈ N or

n− 2 /∈ N .

Let B ∈ Q(A) be such that rank(B) = MR(A). Then

B =

 B̃ bn−2,n−1 en−2 0

bn−1,n−2 e
T
n−2 bn−1,n−1 bn−1,n

0T bn,n−1 0

 ,

where bn−1,n, bn,n−1 6= 0, and B̃ = B[〈n− 2〉] ∈ Q(Ã). It can be easily verified that rank(B̃) = rank(B)−
2 = MR(A) − 2 = MR(Ã). Therefore, by induction hypothesis, ei ∈ columnspace(B̃) for all i ∈ N .

Hence, by Lemma 2.12, ei ∈ columnspace(B) for all i ∈ N . Since B en = bn−1,n en−1, therefore en−1 ∈
columnspace(B).

Suppose that n − 2 ∈ N . Then, en−2 ∈ columnspace(B̃). Therefore, by Lemma 2.12, en ∈
columnspace(B).

Therefore, for each B ∈ Q(A) with rank(B) = MR(A), ei ∈ columnspace(B) for all nonessential indices

i of A.

Case II: deg(n − 1) ≥ 3. Suppose that G(A) − {n − 1, n} has r components. Then, A[〈n − 2〉] is a

direct sum of r irreducible components, say A1, A2, . . . , Ar.

Let the vertices of G(A1), . . . , G(Ar) adjacent to n − 1 be k1, . . . , kr, respectively. Then, A can be

expressed as:

(2.10) A =



A1 O · · · O

O A2
. . .

...
u 0...

. . .
. . . O

O · · · O Ar
vT an−1,n−1 an−1,n
0T an,n−1 0


,

where u = ak1,n−1 ek1 + · · ·+ akr,n−1 ekr , v = an−1,k1 ek1 + · · ·+ an−1,kr ekr for some ak1,n−1, an−1,k1 , . . . ,

akr,n−1, an−1,kr 6= 0, and an−1,n, an,n−1 6= 0. Therefore, by Lemma 1.1, MR(A) = MR(A1)+· · ·+MR(Ar)+2.
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Let B ∈ Q(A) be such that rank(B) = MR(A). Then there exist bn−1,n, bn,n−1 6= 0 such that

B =



B1 O · · · O

O B2
. . .

...
x 0...

. . .
. . . O

O · · · O Br
yT bn−1,n−1 bn−1,n
0T bn,n−1 0


=

 B̃ x 0

yT bn−1,n−1 bn−1,n
0T bn,n−1 0

 ,

where B̃ = B[〈n− 2〉] and Bt ∈ Q(At) for t = 1, 2, . . . , r. It can be easily verified that

rank(B̃) = rank(B)− 2 = MR(A)− 2 = MR(A1) + · · ·+ MR(Ar),

and thus rank(Bt) = MR(At) for t = 1, 2, . . . , r.

If N = {i : i is a nonessential index of At for some t ∈ {1, 2, . . . , r}}, then the set of all nonessential

indices of A is either N ∪ {n− 1} or N ∪ {n− 1, n}.

If At allows nonsingularity, then Bt is invertible, and thus ei ∈ columnspace(Bt) for all indices i of

At. Further, by Definition 2.2, each index of At is nonessential. If At requires singularity, then by in-

duction hypothesis ei ∈ columnspace(Bt) for all nonessential indices i of At. Now by Lemma 2.10, all

nonessential indices of At are also nonessential for A. Therefore, using Lemma 2.13, we can conclude that

ei ∈ columnspace(B) for all nonessential indices i(< n − 1) of A. Further, B en = bn−1,n en−1 implies

en−1 ∈ columnspace(B).

If n is a nonessential index of A, then by Lemma 2.10.1(b), k1, . . . , kr are nonessential indices of

A1, . . . , Ar, respectively. So by Lemma 2.13, ei ∈ columnspace(B̃) for i = k1, k2, . . . , kr. Since x ∈ Q(u),

there exist nonzero bk1,n−1, . . . , bkr,n−1 such that x = bk1,n−1 ek1 + · · ·+bkr,n−1 ekr . So x ∈ columnspace(B̃).

Therefore, there exists p ∈ Rn−2 such that B̃p = x. Therefore,

Bm =

 0

0

bn,n−1

 , where m =

 −p
1

yTp−bn−1,n−1

bn−1,n

 .
So en ∈ columnspace(B). Hence, for each B ∈ Q(A) with rank(B) = MR(A), ei ∈ columnspace(B) for all

nonessential indices i of A.

The following example illustrates the necessity of maximum rank in the above theorem.

Example 2.14. Let us consider a tree sign pattern matrix A with its graph G(A) as follows.

A =


0 + + + 0

− 0 0 0 0

+ 0 0 0 0

+ 0 0 − −
0 0 0 − −


12

3

4 5

Now M2 = {[1, 3], [4, 5]} and M3 = {[1, 2], [4, 5]} are maximum matchings such that 2 /∈ V (M2) and

3 /∈ V (M3). Since V (M2) ∪ {2} = V (M3) ∪ {3} = 〈5〉 and A requires singularity, both 2, 3 are essential
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indices of A. The nonessential indices of A are 1, 4, 5, since every maximum matching saturates the vertices

1, 4, 5. Let

B =


0 2 1 3 0

−3 0 0 0 0

1 0 0 0 0

5 0 0 −2 −2

0 0 0 −2 −2

 ∈ Q(A).

Then rank(B) = 3 < 4 = MR(A). Further, e4, e5 /∈ columnspace(B).

Since A is combinatorially symmetric, we have the following corollary.

Corollary 2.15. If a tree sign pattern matrix A of order n requires singularity, then we have the

following.

1. For each B ∈ Q(A), ek /∈ rowspace(B) if k is an essential index of A.

2. For each B ∈ Q(A) with rank(B) = MR(A), ek ∈ rowspace(B) if k is a nonessential index of A.

3. Sign patterns that allow diagonalizability. The problem of characterizing sign patterns allowing

diagonalizability first came up in the study of sign patterns requiring repeated eigenvalues by Eschenbach

and Johnson [6]. Some sufficient conditions for sign patterns to allow diagonalizability were given in [6, 7, 14].

Two characterizations of sign patterns allowing diagonalizability were given in [8] in terms of allowing some

more easily checked properties.

If a sign pattern is combinatorially symmetric, then by [14, Theorem 2.6], it allows diagonalizability. In

this section, we consider sign patterns whose graphs are trees, but not necessarily combinatorially symmetric.

We give some combinatorial structures based on their graphs which are necessary and sufficient for some

specific graphs, for example, the star and path to allow diagonalizability. We also give a sufficient condition

for a more general class of sign patterns A for which G(A) is a tree to allow diagonalizability.

Let us recall the following definitions from [1, p. 39]. Let A be a square matrix of order n. For

1 ≤ i, j ≤ n, we say that i has access to j if i = j or there is a path in D(A) from vertex i to vertex j, and

that i, j communicate if i has access to j and j has access to i. This communication relation between the

vertices of D(A) is an equivalence relation, which partitions {1, 2, . . . , n} into equivalence classes, and each

equivalence class will be called a strong component of D(A). We say a strong component α has access to

another strong component β if i has access to j for all i ∈ α and for all j ∈ β. If G(A) is a tree, then each

principal submatrix of A corresponding to a strong component of D(A) is a tree sign pattern matrix.

Throughout this section, I denotes the identity matrix and |S| denotes the cardinality of a finite set S.

Lemma 3.1. Let R and S be two square matrices such that σ∗(R) ∩ σ∗(S) = ∅. Then for any X of

appropriate size, the matrix:

B =

[
R X

O S

]
,

is diagonalizable if and only if rank(B) = rank(R) + rank(S) and both R and S are diagonalizable.

Proof. Clearly, PB(x) = PR(x)PS(x). Since σ∗(R) ∩ σ∗(S) = ∅, for every λ ∈ σ∗(R) and µ ∈ σ∗(S),

z(B − λI) = z(R− λI), z(B − µI) = z(S − µI),

and nullity(B − λI) = nullity(R− λI), nullity(B − µI) = nullity(S − µI).
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Further, rank(B) ≥ rank(R) + rank(S) and z(B) = z(R) + z(S). Hence, B is diagonalizable if and only if

rank(B) = rank(R) + rank(S) and both R,S are diagonalizable.

From the proof of [14, Theorem 2.6], we have the following result.

Lemma 3.2. If a sign pattern matrix A is combinatorially symmetric, then c(A) = MR(A).

The following result was conjectured in [9] and proved in [4].

Theorem 3.3 ([4]). Let A be an n×n invertible matrix. Then there exists an n×n invertible diagonal

matrix D such that AD has n distinct eigenvalues.

With a minor modification to the proof of Theorem 1.1 in [4], the following result was obtained.

Theorem 3.4 ([8]). Let A be an n×n invertible matrix. Then there exists an n×n invertible diagonal

matrix D with positive diagonal entries such that AD has n distinct eigenvalues.

Since the eigenvalues of a matrix depend continuously on its entries, we have the following lemma.

Lemma 3.5. If A ∈ Mn has an invertible principal submatrix of order k such that all principal subma-

trices of higher orders are singular, then there are invertible diagonal matrices D1, D2 ∈ Mn with positive

diagonal entries such that both D1A and AD2 have exactly k distinct nonzero eigenvalues.

Proof. Without loss of generality, we may assume that the leading principal minor of A of order k is

invertible. Then, we can write A as:

A =

[
A1 A2

A3 A4

]
,

where A1 is the leading principal minor of order k. So by Lemma 3.4, there exists a diagonal matrix D

with positive diagonal entries such that DA1 has distinct nonzero eigenvalues. Let Dε = D ⊕ εIn−k. Since

all principal submatrices of A of order > k are singular, all principal submatrices of DεA of order > k are

singular for all ε > 0. Again since the eigenvalues of a matrix depend continuously on its entries, we can

choose ε > 0 such that DεA has exactly k distinct nonzero eigenvalues. Thus, there is an invertible diagonal

matrix D1 ∈Mn with positive diagonal entries such that D1A has exactly k distinct nonzero eigenvalues.

Similarly, there exists an invertible diagonal matrix D2 ∈ Mn with positive diagonal entries such that

AD2 has exactly k distinct nonzero eigenvalues.

The following result is from [7, Theorem 2.3].

Lemma 3.6 ([7]). If a sign pattern matrix A is combinatorially symmetric, then there exists a diago-

nalizable matrix B ∈ Q(A) with rank(B) = MR(A).

Let A be a sign pattern matrix such that G(A) is a tree. Since D(A) has finitely many strong components,

there are strong components α1, . . . , αl of D(A) such that each αi is accessible only from itself and there

are strong components β1, . . . , βm of D(A) such that each βi has access only to itself. Accordingly, we can

represent D(A) as follows.
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α1

α2

αl

β1

β2

βm

Strong components

which have access to some
other strong components and

are also accessible from some
other strong components

Let SC(v) be the strong component of D(A) containing v. Let EO be a set of essential indices such that

v ∈ EO if and only if there is an arc in D(A) from v to some vertex u of another strong component of D(A)

distinct from SC(v), and let EI be a set of essential indices such that v ∈ EI if and only if there is an arc in

D(A) to v from some vertex u of another strong component of D(A) distinct from SC(v). Similarly, let NO
be a set of nonessential indices such that v ∈ NO if and only if there is an arc in D(A) from v to some vertex

u of another strong component of D(A) distinct from SC(v), and let NI be a set of nonessential indices such

that v ∈ NI if and only if there is an arc in D(A) to v from some vertex u of another strong component of

D(A) distinct from SC(v). Let V (−→p ) denotes the set of all vertices in a directed path −→p .

Lemma 3.7. Let A be a sign pattern matrix such that G(A) is a tree. If all possible directed paths between

the essential indices of the principal submatrices corresponding to two distinct strong components of D(A)

contain nonessential indices from at least one of those strong components, then either there exists i such that

EO ∩ αi = ∅ or there exists j such that EI ∩ βj = ∅.

Proof. Suppose that EO ∩ αi 6= ∅ for all i ∈ {1, 2, . . . , l}, and EI ∩ βj 6= ∅ for all j ∈ {1, 2, . . . ,m}.

Note that for every r ∈ {1, 2, . . . , l}, there exists s ∈ {1, 2, . . . ,m} such that αr has access to βs, and for

every s ∈ {1, 2, . . . ,m}, there exists r ∈ {1, 2, . . . , l} such that βs has access from αr.

Fix i1 ∈ EO ∩ α1. Since all possible directed paths between the essential indices of the principal

submatrices corresponding to two distinct strong components of D(A) contain nonessential indices from at

least one of those strong components, there exists a natural number k and vertices i1, i2, . . . , i4k+2 such that

the followings hold, after a possible relabeling of αs and βs.

1. For every t ∈ {1, 2, . . . , k + 1}, there is a directed path −→pt from i4t−3 ∈ EO ∩ αt to i4t−2 ∈ NI ∩ βt
such that −→pt does not contain any vertex from SC(i4t−3) and SC(i4t−2) except i4t−3 and i4t−2,

respectively.

2. For every t ∈ {1, 2, . . . , k}, there is a directed path −→qt from i4t ∈ NO ∩ αt+1 to i4t−1 ∈ EI ∩ βt such

that −→qt does not contain any vertex from SC(i4t) and SC(i4t−1) except i4t and i4t−1, respectively.

3. α1, α2, . . . , αk and β1, β2, . . . , βk are distinct strong components of D(A).

4. Either αk+1 ∈ {α1, α2, . . . , αk} or βk+1 ∈ {β1, β2, . . . , βk}.
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If either V (−→qt ) ∩ V (−→pt ) 6= ∅ or V (−−→pt+1) ∩ V (−→qt ) 6= ∅ for some t ∈ {1, 2, . . . , k}, then there exists a cycle

in G(A) of length at least 3.

If V (−→qt )∩ V (−→pt ) = ∅ and V (−−→pt+1)∩ V (−→qt ) = ∅ for all t ∈ {1, 2, . . . , k}, then there exists a cycle in G(A)

of length at least 4, since either αk+1 ∈ {α1, α2, . . . , αk} or βk+1 ∈ {β1, β2, . . . , βk}.

In each case, we have a contradiction to the fact that G(A) is a tree.

We know that if a sign pattern matrix A allows nonsingularity or A is combinatorially symmetric, then

A allows diagonalizability. The following theorem gives a sufficient condition for a class of sign pattern

matrices (not necessarily combinatorially symmetric) that require singularity to allow diagonalizability.

Theorem 3.8. Let A be a sign pattern matrix such that G(A) is a tree and A requires singularity. If

there are no directed paths between the essential indices of the principal submatrices corresponding to two

distinct strong components of D(A), or if all possible directed paths between the essential indices of the

principal submatrices corresponding to two distinct strong components of D(A) contain nonessential indices

from at least one of those strong components, then there exists a diagonalizable matrix B ∈ Q(A) with

rank(B) = MR(A).

Proof. We prove this by induction on r, the number of distinct strong components of D(A). If r = 1,

then A is combinatorially symmetric and thus by Lemma 3.6, there exists a diagonalizable matrix B ∈ Q(A)

with rank(B) = MR(A). Suppose that the theorem is true for any matrix A with the number of distinct

strong components of D(A) equal to r − 1.

Let A be a sign pattern matrix satisfying the given conditions such that the number of distinct strong

components of D(A) is r.

If there are no directed paths between the essential indices of the principal submatrices corresponding

to two distinct strong components of D(A), then either there exists i such that EO ∩αi = ∅ or there exists j

such that EI ∩βj = ∅. If all possible directed paths between the essential indices of the principal submatrices

corresponding to two distinct strong components of D(A) contain nonessential indices from at least one of

those strong components, then by Lemma 3.7, either there exists i such that EO ∩ αi = ∅ or there exists j

such that EI ∩ βj = ∅.

Without loss of generality assume that EO ∩ α1 = ∅. Since the number of strong components of D(A)

is at least 2, NO ∩ α1 6= ∅. Let A1 = A[α1] and α1 = {1, 2, . . . , k}. Let NO ∩ α1 = {k1, k2, . . . , kt}. Then,

k1, k2, . . . , kt are nonessential. Moreover, A can be written as:

A =

[
A1 A2

O A3

]
,

where the nonzero rows of A2 are k1-th row, k2-th row, and so on up to kt-th row. Since k1, k2, . . . , kt
are nonessential for A1, by Theorem 2.5, ek1 , ek2 , . . . , ekt ∈ columnspace(B′) for all B′ ∈ Q(A1) with

rank(B′) = MR(A1), which implies MR(A) = MR(A1) + MR(A3). Using induction hypothesis, we can

choose B3 ∈ Q(A3) such that B3 is diagonalizable and rank(B3) = MR(A3). By Lemma 3.6, we can choose

a diagonalizable matrix B1 ∈ Q(A1) with rank(B1) = MR(A1) such that σ∗(B1) ∩ σ∗(B3) = ∅. Since

ek1 , ek2 , . . . , ekt ∈ columnspace(B1),

B =

[
B1 B2

O B3

]
∈ Q(A),
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implies rank(B) = rank(B1) + rank(B3). Therefore, rank(B) = MR(A), and by Lemma 3.1, B is diagonal-

izable.

In the following example, we show that a sign pattern matrix allows diagonalizability using Theorem 3.8.

Example 3.9. Let

A =



0 0 − 0 0 0 0 0 0 0 0 0

0 0 + 0 0 0 0 0 0 0 0 0

+ − + + 0 0 0 0 0 0 0 0

0 0 − − + 0 0 0 0 0 0 0

0 0 0 + + + 0 0 0 0 0 0

0 0 0 0 + 0 0 0 0 0 0 0

0 0 0 0 0 0 0 + 0 0 0 0

0 0 0 0 0 0 + 0 − 0 0 0

0 0 0 0 0 − 0 − 0 0 0 0

0 0 0 0 0 0 0 0 0 0 + 0

0 0 0 0 0 0 0 0 0 − + −
0 0 0 0 0 + 0 0 0 0 − 0



.

The digraph D(A) of A is given as follows.

1

3

2

12

6

97 8

4 5

10 11

In this example, G(A) is a tree and strong components of D(A) are α = {1, 2, 3, 4, 5, 6}, β = {7, 8, 9}
and γ = {10, 11, 12}. Using Example 2.4, we can conclude that the essential indices are 1, 2, 7, 9, 10, 12. We

see that all directed paths from the essential indices in both β and γ to the essential indices in α contain

nonessential indices from α. Therefore, there exists B ∈ Q(A) with rank(B) = MR(A).

The following example establishes that the converse of Theorem 3.8 is not true.

Example 3.10. Let us consider the sign pattern:

A =


0 + 0 +

+ 0 0 0

+ 0 0 0

0 0 0 0

 .
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The digraph D(A) of A is given as follows.

3 1

2

4

Here, G(A) is a tree and the strong components of D(A) are α = {1, 2}, β = {3} and γ = {4}. The

essential indices are 3 and 4. So there is a directed path in D(A) between essential indices of β and γ, namely

3→ 1→ 4, containing no other vertex from β and γ. So A does not satisfy the conditions of Theorem 3.8.

Let

B =


0 1 0 1

1 0 0 0

1 0 0 0

0 0 0 0

 ∈ Q(A).

Then, PB(x) = x2(x2 − 1). So σ(B) = {0, 1,−1}, where z(0) = 2. Further, nullity(B) = 2. Therefore, B is

diagonalizable.

If we restrict G(A) in Theorem 3.8 to be a path, then the converse is also true.

A matrix of order n, whose graph is a path, is permutationally similar to a matrix of the form:

(3.11)



a1 b2 0 · · · 0

c2 a2 b3
. . .

...

0
. . .

. . .
. . . 0

...
. . . cn−1 an−1 bn

0 · · · 0 cn an


,

where |bi|+ |ci| 6= 0.

A path sign pattern matrix requiring singularity is of the form:

(3.12)



a1 b1 0 · · · · · · 0

c1 a2 b2
. . .

...

0 c2 a3 b3
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . c2n−1 a2n b2n

0 · · · · · · 0 c2n a2n+1


,

where a1 = a3 = · · · = a2n+1 = 0 and bici 6= 0 for i = 1, 2, . . . , 2n. In this case, the essential indices are

1, 3, 5, . . . , 2n+ 1.
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Theorem 3.11. Let A be a sign pattern matrix such that G(A) is a path. Then A allows diagonalizability

if and only if A allows nonsingularity, or A requires singularity and there are no directed paths between the

essential indices of the principal submatrices corresponding to any two distinct strong components of D(A).

Proof. The ‘if’ part is established by Theorem 3.4 and 3.8. For the ‘only if’ part, suppose that A requires

singularity, and there is a directed path in D(A) between essential indices of two distinct strong components

in D(A). Suppose that A has the form (3.11). If K ∈ Q(A), then we can write

K =


X F O O O

G R O O O

O B S O O

O O C T D

O O O E Y

 ,

where X and Y may be vacuous, R and T are matrices of the form (3.12), S is a tridiagonal matrix such that

si+1,i 6= 0 for all i, exactly one of F,G is a zero matrix, and exactly one of D and E is a zero matrix. Let R, S,

and T have the orders n1, n2, and n3, respectively. Since A is of the form (3.11), b1n1 , c1n2 6= 0 and bij , cij = 0

for all other i, j. Characteristic polynomial of K is PK(x) = PX(x)PR(x)PS(x)PT (x)PY (x). Since both R

and T are singular, z(K) ≥ z(X) + z(Y ) + 2. Further, rank(K) ≥ rank(X) + rank(Y ) + n1 + n2 + n3 − 1.

Therefore, nullity(K) ≤ nullity(X) + nullity(Y ) + 1 < z(X) + z(Y ) + 2 ≤ z(K). So K is not diagonalizable.

Thus, A does not allow diagonalizability, a contradiction.

If G(A) is a star, then the converse of Theorem 3.8 is not valid, as it is shown in Example 3.10. However,

the following result characterizes all sign pattern matrices whose graph is a star to allow diagonalizability.

From [2, p. 294], we note that the Hadamard product of two m×n matrices A = [aij ] and B = [bij ], denoted

by A ◦B, is defined by A ◦B = [aijbij ].

A matrix of order n, whose graph is a star, is permutationally similar to a matrix of the form:

(3.13)



a1 b2 b3 · · · bn
c2 a2 0 · · · 0

c3 0 a3
. . .

...
...

...
. . .

. . . 0

cn 0 · · · 0 an


,

where |bi|+ |ci| 6= 0.

Theorem 3.12. Let A be a sign pattern matrix of the form (3.13) with n ≥ 2 and P = {2, 3, . . . , n}.
Let S = {i ∈ P : ai = 0} and T = {i ∈ P : bici 6= 0}. Then A allows diagonalizability if and only if one of

the following conditions hold.

1. S = ∅.
2. S 6= ∅, T = ∅, a1 6= 0 and either bi = 0 for all i ∈ S or ci = 0 for all i ∈ S.
3. S, T 6= ∅, S ∩ T = ∅ and either bi = 0 for all i ∈ S or ci = 0 for all i ∈ S.
4. S ∩ T 6= ∅.

Proof. We first show that if one of the conditions 1, 2, 3, and 4 holds, then A allows diagonalizability.
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1. If S = ∅, then A allows nonsingularity and thus by Theorem 3.4, A allows diagonalizability.

2. Suppose that S 6= ∅, T = ∅, a1 6= 0 and either bi = 0 for all i ∈ S or ci = 0 for all i ∈ S. We

can choose B ∈ Q(A) such that all nonzero diagonal entries of B are distinct. Since T = ∅, the

eigenvalues of B are its diagonal entries. Since a1 6= 0, z(B) = |S| = nullity(B). Therefore, B is

diagonalizable, and thus A allows diagonalizability.

3. Suppose that S, T 6= ∅, S ∩ T = ∅ and either bi = 0 for all i ∈ S or ci = 0 for all i ∈ S. Then A or

AT is permutationally similar to [
A(S) C

O O

]
,

which is of the form (3.13). Since T 6= ∅, A(S) allows nonsingularity. So by Theorem 3.4, we can

choose B ∈ Q(A) such that all eigenvalues of B(S) are nonzero and distinct. Further, z(B) = |S| =
nullity(B). Therefore B is diagonalizable, and thus A allows diagonalizability.

4. Suppose that S ∩ T 6= ∅. Then, A is permutationally similar to:[
A[T ] E

C D

]
,

which is of the form (3.13) such that E◦CT = O and D is a diagonal sign pattern matrix. By Lemma

3.5, there exists F ∈ Q(A[T ]) such that all nonzero eigenvalues of F are distinct. Further, there exists

G ∈ Q(D) such that all nonzero diagonal entries of G are distinct and σ∗(F ) ∩ σ∗(G) = ∅. Let us

choose B ∈ Q(A) such that B[T ] = F and B(T ) = G. Since E◦CT = O, PB(x) = PB[T ](x)·PB(T )(x)

and thus z(B) = z(B[T ]) + z(B(T )). Since S ∩ T 6= ∅, for some i > 1, the i-th column of each

one of B[T ], B[T ]T is a nonzero scalar multiple of [1 0 · · · 0]T . Therefore, rank(B) = rank(B[T ]) +

rank(B(T )). Further, nullity(B[T ]) = |S ∩ T | − 1 = z(B[T ]). So z(B) = nullity(B). Therefore B is

diagonalizable, and thus A allows diagonalizability.

Now we prove the converse part by contradiction. Suppose none of the conditions 1, 2, 3, and 4 are satisfied.

Then, we have one of the following.

Case I: S 6= ∅, T = ∅ and a1 = 0.

Case II: S ∩ T = ∅ and there exist i, j ∈ S such that bi 6= 0 and cj 6= 0. In this case, A is permutationally

similar to [
A(S) D

C O

]
,

which is of the form (3.13) such that D ◦ CT = O and both C and D are nonzero.

In Case I, for every B ∈ Q(A), z(B) = |S| + 1, and rank(B) ≥ n − |S|. So nullity(B) ≤ |S| < z(B).

Therefore B is not diagonalizable and hence A does not allow diagonalizability.

In Case II, for every B ∈ Q(A), PB(x) = x|S|PB(S)(x) and thus z(B) = |S|+z(B(S)). Since rank(B) =

n − |S| + 1, nullity(B) = |S| − 1 ≤ z(B(S)) + |S| − 1 < z(B) and thus B is not diagonalizable. Hence, A

does not allow diagonalizability.

4. Sign patterns that require diagonalizability. If a sign pattern matrix requires all distinct eigen-

values, then it requires diagonalizability. Some necessary and/or sufficient conditions for sign patterns to

require distinct eigenvalues can be found in [5, 12, 13]. Lists of sign patterns upto order 4 requiring distinct

eigenvalues are given in [12, 13].

Lemma 4.1 ([14]). If A is a sign pattern matrix, then c(A) ≤ MR(A).
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In the following result, we give a necessary condition in terms of the maximum cycle length and the

maximum rank for a sign pattern matrix to require diagonalizability.

Theorem 4.2. If a sign pattern matrix A requires diagonalizability, then c(A) = MR(A).

Proof. Let A be a sign pattern matrix of order n. By Lemma 4.1, c(A) ≤ MR(A). Let c(A) < MR(A).

Let B ∈ Q(A) be such that rank(B) = MR(A). Now Ei(B) = 0 for all i ≥ c(A) + 1, where Ei(B) is

the sum of all i × i principal minors of B for i = 1, 2, . . . , n. Then xn−c(A) is a factor of PB(x). So

nullity(B) = n−MR(A) < n− c(A) ≤ z(B). Therefore, B is not diagonalizable. Hence, c(A) = MR(A).

The following example shows that the converse of Theorem 4.2 is not true.

Example 4.3. Let us consider the sign pattern matrix:

A =

[
+ +

− −

]
.

Here c(A) = MR(A) = 2. But A does not require diagonalizability, since

B =

[
1 1

−1 −1

]
∈ Q(A),

and B is not diagonalizable.

In the above example, all terms in the standard determinant expansion of A have different signs. When

c(A) = MR(A), then even the condition “all terms in the standard determinant expansion of A have the

same sign” does not necessarily imply that A requires diagonalizability. The following example illustrates

this for both reducible and irreducible sign pattern matrices.

Example 4.4. Let us consider the sign pattern matrices:

A1 =

[
+ +

0 +

]
and A2 =

[
+ +

− +

]
.

Here, c(A1) = MR(A1) = 2 and c(A2) = MR(A2) = 2. But neither A1 nor A2 require diagonalizability, since

B1 =

[
1 1

0 1

]
∈ Q(A1) and B2 =

[
4 1

−1 2

]
∈ Q(A2),

and both B1 and B2 are non-diagonalizable.

The next few results enable us to reduce the problem of determining star sign pattern matrices, which

require diagonalizability for any arbitrary order n to the same problem for the matrices of orders less

than or equal to 4. A signature sign pattern matrix is a diagonal sign pattern matrix whose all di-

agonal entries are nonzero. A sign pattern matrix B is signature similar to a sign pattern matrix A

if there exists a signature sign pattern matrix S such that B = SAS. Two sign pattern matrices are

said to be equivalent if one is obtained from the other by negation and/or permutation and/or signature

similarity.
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Any star sign pattern matrix of order n is permutation and signature similar to a matrix of the form:

(4.14) S =



a1 + + · · · +

b2 a2 0 · · · 0

b3 0 a3
. . .

...
...

...
. . .

. . . 0

bn 0 · · · 0 an


,

where a1, . . . , an ∈ {+,−, 0} and b2, . . . , bn ∈ {+,−}.

Lemma 4.5. If a star sign pattern matrix of the form (4.14) requires diagonalizability, then there are no

i, j with i 6= j and i, j ≥ 2 such that bi 6= bj and ai = aj.

Proof. Let a star sign pattern matrix S of the form (4.14) be such that bi 6= bj and ai = aj for

some i 6= j with i, j ≥ 2. Suppose that the symbol ai appears multiple times for some i ≥ 2, and let

{t ≥ 2 : at = ai} = {i1, i2, . . . , ik} such that all the symbols bi1 , . . . , bik are not the same. Therefore, we can

choose

B =


α1 1 1 · · · 1

β2 α2 0 · · · 0

β3 0 α3 · · · 0
...

...
...

. . .
...

βn 0 0 · · · αn

 ∈ Q(S),

such that βi1 + · · ·+ βik = 0 and αi1 = · · · = αik = αi, say.

The characteristic polynomial of B is

(4.15) PB(x) =

n∏
p=1

(x− αp)−
n∑
p=2

βp

n∏
q=2
q 6=p

(x− αq).

Since βi1 + · · ·+βik = 0, (x−αi)k is a factor of PB(x). So αi is an eigenvalue of B with algebraic multiplicity

≥ k. Further, rank(B − αiI) = n − k + 1 and thus nullity(B − αiI) = k − 1. So B is not diagonalizable.

Hence, the result follows.

Lemma 4.6. Let B1, B2 be the matrices given by:

B1 =



α1 1 · · · · · · · · · · · · 1

β2 α2 0 · · · · · · · · · 0
... 0

. . .
. . .

...

βk
...

. . . αk
. . .

...

βk+1

...
. . . a

. . .
...

...
...

. . .
. . . 0

βn 0 · · · · · · · · · 0 a


and B2 =



α1 1 · · · · · · 1

β2 α2 0 · · · 0
... 0

. . .
. . .

...

βk
...

. . . αk 0
n∑

i=k+1

βi 0 · · · 0 a


,

where a 6= αi for all i ∈ {2, 3, . . . , k} and
n∑

i=k+1

βi 6= 0. Then B1 is diagonalizable if and only if B2 is

diagonalizable.
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Proof. Note that PB1(x) = (x− a)n−k−1PB2(x). If λ 6= a, then

(4.16) rank(B1 − λI) = rank(B2 − λI) + n− k − 1.

Further, rank(B1 − aI) = rank(B2 − aI) = k + 1. Moreover, a /∈ σ(B2).

Suppose that B1 is diagonalizable. If λ ∈ σ(B2), then by (4.16), nullity(B1 − λI) = nullity(B2 − λI).

Further, the algebraic multiplicity of λ for B1 is same as the algebraic multiplicity of λ for B2. Hence, B2

is diagonalizable.

Suppose that B2 is diagonalizable. Let λ ∈ σ(B1). Note that nullity(B1−aI) = z(B1−aI) = n− k− 1.

If λ 6= a, then by (4.16), nullity(B1 − λI) = nullity(B2 − λI). Further, the algebraic multiplicity of λ for B1

is same as the algebraic multiplicity of λ for B2. Hence, B1 is diagonalizable.

Remark 4.7. We use Lemma 4.6 to identify star sign pattern matrices of any order n which does not

require diagonalizability by identifying the same for n = 2, 3, 4.

We know that if a matrix A belongs to the qualitative class of a symmetric tree sign pattern matrix,

then A is similar to a symmetric matrix. If A belongs to the qualitative class of a skew-symmetric tree sign

pattern matrix with zero diagonal entries, then A is similar to a skew-symmetric matrix. To identify the star

sign pattern matrices that do not require diagonalizability, we need to consider skew-symmetric star sign

patterns with some nonzero diagonal entries and the star sign pattern matrices those are neither symmetric

nor skew-symmetric.

Lemma 4.8. No 2 × 2 skew-symmetric star sign pattern matrix with some nonzero diagonal entries

requires diagonalizability.

Proof. Nonequivalent skew-symmetric star sign pattern matrices of order 2 with some nonzero diagonal

entries are [
0 +

− −

]
,

[
− +

− −

]
,

[
+ +

− −

]
.

None of the above sign pattern matrices requires diagonalizability, and examples of non-diagonalizable ma-

trices in their qualitative classes are respectively[
0 1

−1 −2

]
,

[
−1 1

−1 −3

]
,

[
1 1

−1 −1

]
.

These are non-diagonalizable because their characteristic polynomials are respectively

(x+ 1)2, (x+ 2)2, x2,

whereas all the eigenvalues have geometric multiplicity 1.

Lemma 4.9. No 3 × 3 skew-symmetric star sign pattern matrix with some nonzero diagonal entries

requires diagonalizability.

Proof. Non-equivalent skew-symmetric star sign pattern matrices of order 3 with some nonzero diagonal

entries are 0 + +

− − 0

− 0 −

 ,
− + +

− − 0

− 0 −

 ,
+ + +

− − 0

− 0 −

 ,
− + +

− 0 0

− 0 0

 ,
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0 + +

− − 0

− 0 0

 ,
− + +

− − 0

− 0 0

 ,
+ + +

− − 0

− 0 0

 ,
− + +

− − 0

− 0 +

 ,
0 + +

− − 0

− 0 +

 .
None of the first four sign pattern matrices from the above list requires diagonalizability because we can find

non-diagonalizable matrices in their qualitative classes using Lemmas 4.6 and 4.8. None of the next five sign

pattern matrices from the above list requires diagonalizability, and examples of non-diagonalizable matrices

in their qualitative classes are respectively 0 6 3

−4 −9 0

−1 0 0

 ,
−2 1 1

−2 −4 0

−2 0 0

 ,
 2 9 1

−3 −8 0

−1 0 0

 ,
−1 1 1

−2 −3 0

−2 0 1

 ,
 0 1 1

−2 −2 0

−2 0 2

 .
These are non-diagonalizable because their characteristic polynomials are respectively

(x+ 3)3, (x+ 2)3, (x+ 2)3, (x+ 1)3, x3,

whereas all the eigenvalues have geometric multiplicity 1.

Lemma 4.10. No 3×3 star sign pattern matrix, which is neither symmetric nor skew-symmetric, requires

diagonalizability.

Proof. Each matrix in the qualitative class of such a sign pattern matrix is equivalent to a matrix of the

form:

(4.17)

 α1 1 1

−β2 α2 0

β3 0 α3

 ,
where β2, β3 > 0 and α1, α2, α3 ∈ R. If the qualitative class of a sign pattern matrix contains a matrix

of this form such that sgn(α2) = sgn(α3), then by Lemma 4.5, that sign pattern matrix does not require

diagonalizability. Now the remaining nonequivalent sign pattern matrices of the form (4.17) are0 + +

− − 0

+ 0 0

 ,
+ + +

− − 0

+ 0 0

 ,
− + +

− − 0

+ 0 0

 ,
0 + +

− 0 0

+ 0 +

 ,
− + +

− 0 0

+ 0 +

 ,
+ + +

− 0 0

+ 0 +

 ,
+ + +

− − 0

+ 0 +

 ,
− + +

− − 0

+ 0 +

 ,
0 + +

− − 0

+ 0 +

 .
None of the above sign pattern matrices requires diagonalizability, and examples of non-diagonalizable ma-

trices in their qualitative classes are respectively 0 3 5

−8 −1 0

9 0 0

 ,
 1 1 1

−5 −4 0

1 0 0

 ,
−1 1 4

−3 −1 0

2 0 0

 ,
 0 7 8

−9 0 0

12 0 1

 ,
−2 9 8

−5 0 0

8 0 1

 ,
 5 1 1

−5 0 0

1 0 4

 ,
 2 1 1

−5 −3 0

1 0 1

 ,
−1 4 4

−3 −1 0

8 0 1

 ,
 0 5 6

−4 −12 0

6 0 4

 .
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These are non-diagonalizable because their characteristic polynomials are respectively

(x+ 3)2(x− 5), (x+ 2)2(x− 1), (x+ 2)2(x− 2), (x+ 3)2(x− 7), (x+ 3)2(x− 5),

(x− 2)2(x− 5), (x− 2)(x+ 1)2, (x+ 3)2(x− 5), (x+ 8)2(x− 8),

whereas all the eigenvalues have geometric multiplicity 1.

Lemma 4.11. No 4 × 4 skew-symmetric star sign pattern matrix with some nonzero diagonal entries

requires diagonalizability.

Proof. Each matrix in the qualitative class of such a sign pattern matrix is equivalent to a matrix of the

form:

(4.18)


α1 1 1 1

−β2 α2 0 0

−β3 0 α3 0

−β4 0 0 α4

 ,
where β2, β3, β4 > 0 and α1, α2, α3, α4 ∈ R. If the qualitative class of a sign pattern matrix contains a

matrix of this form such that any two of sgn(α2), sgn(α3), sgn(α4) are equal, then by Lemma 4.6, 4.8, and

4.9, that sign pattern matrix does not require diagonalizability. Now the remaining nonequivalent sign

pattern matrices of the form (4.18) are
+ + + +

− − 0 0

− 0 0 0

− 0 0 +

 ,


0 + + +

− − 0 0

− 0 0 0

− 0 0 +

 .
None of the above sign pattern matrices requires diagonalizability, and examples of non-diagonalizable ma-

trices in their qualitative classes are respectively
5 5 5 5

−4 −5
√

5 0 0

−2 0 0 0

−4 0 0 5
√

5

 ,


0 10 4 21

−25 −32 0 0

−3 0 0 0

−18 0 0 32

 .
These are non-diagonalizable because their characteristic polynomials are respectively

(x− 5)3(x+ 10), (x− 8)3(x+ 24),

whereas all the eigenvalues have geometric multiplicity 1.

Lemma 4.12. No 4×4 star sign pattern matrix, which is neither symmetric nor skew-symmetric, requires

diagonalizability.

Proof. Each matrix in the qualitative class of such a sign pattern matrix is equivalent to a matrix of the

form: 
α1 1 1 1

−β2 α2 0 0

β3 0 α3 0

β4 0 0 α4

 or


α1 1 1 1

−β2 α2 0 0

−β3 0 α3 0

β4 0 0 α4

 ,
where β2, β3, β4 > 0 and α1, α2, α3, α4 ∈ R. If the qualitative class of a sign pattern matrix contains a matrix

of the first form, then we have the following.
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1. If sgn(α2) is equal to one of sgn(α3), sgn(α4), then by Lemma 4.5, that sign pattern matrix does not

require diagonalizability.

2. If sgn(α3) = sgn(α4), then by Lemmas 4.6 and 4.10, that sign pattern matrix does not require

diagonalizability.

Similarly, if the qualitative class of a sign pattern matrix contains a matrix of the second form, then we have

the following.

1. If sgn(α4) is equal to one of sgn(α2), sgn(α3), then by Lemma 4.5, that sign pattern matrix does not

require diagonalizability.

2. If sgn(α2) = sgn(α3), then by Lemmas 4.6 and 4.10, that sign pattern matrix does not require

diagonalizability.

So the remaining nonequivalent sign pattern matrices of the above forms are
+ + + +

− − 0 0

+ 0 0 0

+ 0 0 +

 ,


0 + + +

− − 0 0

+ 0 0 0

+ 0 0 +

 ,

− + + +

− − 0 0

+ 0 0 0

+ 0 0 +

 ,


+ + + +

− 0 0 0

+ 0 − 0

+ 0 0 +

 ,


0 + + +

− 0 0 0

+ 0 − 0

+ 0 0 +

 ,


+ + + +

− − 0 0

− 0 0 0

+ 0 0 +

 ,


0 + + +

− − 0 0

− 0 0 0

+ 0 0 +

 ,

− + + +

− − 0 0

− 0 0 0

+ 0 0 +

 ,


+ + + +

− − 0 0

− 0 + 0

+ 0 0 0

 ,


0 + + +

− − 0 0

− 0 + 0

+ 0 0 0

 .
None of the above sign pattern matrices requires diagonalizability, and examples of non-diagonalizable ma-

trices in their qualitative classes are respectively
105 84 21 21

−81 −84 0 0

14 0 0 0

16 0 0 63

 ,


0 10 24 21

−9 −18 0 0

32 0 0 0

14 0 0 18

 ,

−36 21 72 21

−30 −54 0 0

64 0 0 0

42 0 0 54

 ,


12 8 9 2

−16 0 0 0

10 0 −2 0

9 0 0 2

 ,


0 16 18 2

−12 0 0 0

15 0 −2 0

7 0 0 2

 ,


5 5 5 5

−42 −25 0 0

−8 0 0 0

15 0 0 5

 ,


0 10 10 9

−9 −20 0 0

−5 0 0 0

10 0 0 5

 ,

−6 6 12 9

−5 −18 0 0

−8 0 0 0

18 0 0 6

 ,


4 1 1 1

−2 −
√

3 0 0

−2 0
√

3 0

3 0 0 0

 ,


0 2 2 2

−9 −8 0 0

−9 0 8 0

2 0 0 0

 .
These are non-diagonalizable because their characteristic polynomials are respectively

(x+ 21)2(x− 42)(x− 84), (x+ 24)2(x− 12)(x− 36), (x+ 72)2(x− 72)(x− 36),

(x− 8)(x− 4)2(x+ 4), (x− 4)3(x+ 12), (x+ 10)2(x+ 5)(x− 10),

(x+ 10)2(x+ 5)(x− 10), (x+ 12)2(x+ 6)(x− 12), (x− 3)2(x+ 1)2, (x− 4)2(x+ 4)2,

and all the eigenvalues have geometric multiplicity 1.
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The following result gives a complete description of star sign pattern matrices that require diagonaliz-

ability.

Theorem 4.13. A star sign pattern matrix S requires diagonalizability if and only if S is a symmetric

sign pattern matrix or a skew-symmetric sign pattern matrix with all diagonal entries zero.

Proof. If S is either a symmetric star sign pattern matrix or a skew-symmetric star sign pattern matrix

with all diagonal entries zero, then every matrix in Q(S) is similar to either a symmetric matrix or a

skew-symmetric matrix. So S requires diagonalizability.

For the converse part, suppose that S is neither a symmetric sign pattern matrix nor a skew-symmetric

sign pattern matrix with all diagonal entries zero. Suppose that S is of the form (4.14). If there are i

and j with i 6= j and i, j ≥ 2 such that bi 6= bj and ai = aj , then by Lemma 4.5, S does not require

diagonalizability. Otherwise, that is if S satisfies the condition that ai = aj implies bi = bj for all i, j ≥ 2,

then we can find a non-diagonalizable matrix in Q(S) using Lemma 4.6 and one of Lemma 4.8, 4.9, 4.10,

4.11, and 4.12. So S does not require diagonalizability.

The following example shows that Theorem 4.13 cannot be extended to the path sign pattern matrices.

Example 4.14. Let us consider the path sign pattern matrix:
0 + 0 0

− 0 + 0

0 + 0 +

0 0 + 0

 ,
which is neither symmetric nor skew-symmetric. Any matrix in its qualitative class is similar to a matrix of

the form:

B =


0 1 0 0

−a 0 1 0

0 b 0 1

0 0 c 0

 ,
where a, b, c > 0. The characteristic polynomial of B is

PB(x) = x4 + (a− b− c)x2 − ac

=

(
x2 −

b+ c− a+
√

(b+ c− a)2 + 4ac

2

)(
x2 −

b+ c− a−
√

(b+ c− a)2 + 4ac

2

)
.

So B has one positive, one negative, and two purely imaginary eigenvalues and thus B is diagonalizable.

Hence, the above sign pattern matrix requires diagonalizability.
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