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SIGN PATTERNS ASSOCIATED WITH SOME GRAPHS THAT ALLOW OR REQUIRE
DIAGONALIZABILITY*

SUNIL DAST

Abstract. The problems of characterizing sign pattern matrices that allow or require diagonalizability are mostly open. In
this paper, we introduce the concept of essential index for a tree sign pattern matrix and use it to investigate the allow problem
on diagonalizability for sign pattern matrices having their graphs as trees. We characterize sign pattern matrices allowing
diagonalizability, whose graphs are star or path. We also give a sufficient condition for sign pattern matrices whose graphs are
trees to allow diagonalizability. Further, we give a necessary condition for a sign pattern matrix to require diagonalizability
and characterize all star sign pattern matrices that require diagonalizability.
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1. Introduction. A sign pattern matrix is a matrix with entries from {+, —,0}. The qualitative class
of a matrix A is denoted by Q(A) and is defined by the set of all real matrices with the same sign pattern
as A. A sign pattern matrix A allows a property P if at least one matrix in Q(A) has the property P and
requires a property P if all matrices in Q(A) have the property P. A square sign pattern matrix A = [a;;] is
said to be combinatorially symmetric if for each 1, j, either both a;;, a;; are zero or both a;;, a;; are nonzero.

Let us recall from [11] that the graph of a matrix A of order n, denoted by G(A), is defined to be a
simple undirected graph with vertices 1,2,...,n and for ¢ # j it has the edge [¢, j] if and only if a;; # 0 or
aj; # 0. If this graph is a tree, then the matrix A is irreducible if and only if a;; # 0 whenever a;; # 0. An
irreducible sign pattern matrix whose graph is a tree is called a tree sign pattern matrix. Alternatively, a
sign pattern matrix A is a tree sign pattern matrix if A is combinatorially symmetric and G(A) is a tree.
In particular, if G(A) is a star or a path, then A is called a star sign pattern matrix or a path sign pattern
matrix, respectively.

Let A = [a;;] be a matrix of order n. The directed graph of A, denoted by D(A), is defined as the
directed graph with vertices 1,2,...,n such that D(A) has the arc (i,j) from vertex i to vertex j if and
only if a;; # 0 (see [1, p. 29]). A nonzero product of the form v = a;,4,aiyi, - - - @i,4, in which the index set
{41,142, ..., } consists of distinct indices is called a simple cycle of length & (or simple k-cycle). A composite
k-cycle is a product of simple cycles whose total length is & and whose index sets are mutually disjoint. The
maximum cycle length in A is denoted by c(A) (see [14]).

We recall from [10, Section 42.6] that the maximum rank of a sign pattern matrix A is denoted by
MR(A) and is defined by MR(A) = max{rank(B) : B € Q(A)}.

LEMMA 1.1 ([10]). MR(A) is the mazimum number of nonzero entries of A no two of which are on the
same Tow or the same column.

*Received by the editors on July 28, 2020. Accepted for publication on February 6, 2022. Handling Editor: Michael
Tsatsomeros.
TDepartment of Mathematics, Indian Institute of Technology Guwahati, Assam-781039, India (sunil.das@iitg.ac.in).


mailto:sunil.das@iitg.ac.in

Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 38, pp. 131-159, February 2022.

Sunil Das 132

Throughout this paper, M,, denotes the set of all n x n real matrices. If A € M,,, then o(A) denotes the
set of all eigenvalues of A, 0*(A) denotes the set of all nonzero eigenvalues of A, z(A) denotes the algebraic
multiplicity of zero as an eigenvalue of A, and Pa(z) denotes the characteristic polynomial of A in z. If «
and (3 are subsets of {1,2,...,n}, then Ala, f] is the submatrix of A having rows and columns corresponding
to the indices in « and 3, respectively, and A(a, ) is the submatrix obtained from A by deleting rows and
columns corresponding to the indices in « and 3, respectively. Further, A[a] = Alo, a] and A(a) = A(a, «).

In this paper, we attempt to address the problem of characterizing sign pattern matrices that allow or
require diagonalizability when the associated graph is a special type of tree. In Section 2, we introduce the
concept of essential index for a tree sign pattern matrix and find some results concerning the row spaces
and column spaces of the matrices in its qualitative class. We use it in Section 3 to investigate the problem
of allowing diagonalizability for sign pattern matrices A (not necessarily combinatorially symmetric) when
G(A) is a tree and give a sufficient condition for A to allow diagonalizability. When G(A) is either a star
or a path, we characterize sign pattern matrices A allowing diagonalizability. Finally in Section 4, we give
a necessary condition for a sign pattern matrix to require diagonalizability and characterize all star sign
pattern matrices that require diagonalizability.

2. Essential index. Let us recall that the standard determinant expansion of a square matrix A = [a;;]
is

(2.1) det A = Z sgn(o)aqi, a2y + -+ Ang,, s

where the summation extends over all permutations o = (i1, i2,...,i,) of {1,2,...,n} and sgn(o) denotes
the sign of the permutation 0. We have the following characterization of sign pattern matrices that require
singularity.

LEmMMA 2.1 ([3, 10]). If A is a sign pattern matriz of order n, then the following statements are
equivalent.

1. A requires singularity.
2. Every term in the standard determinant expansion of A is zero.
3. A has no composite n-cycle.

Feng et al. [8] showed that a sign pattern matrix A allows diagonalizability if and only if there exists
a matrix B € Q(A) such that rank(B) = rank(B?). Thus, if a sign pattern matrix A does not allow
diagonalizability, then z(B) > 2 for all B € Q(A). Further, Shao and Gao [14] proved that if A is a
combinatorially symmetric sign pattern matrix, then A allows diagonalizability. Therefore, when G(A) is
a tree and A is not combinatorially symmetric, the problem of A to allow diagonalizability is worth to
investigate if at least two irreducible components of A require singularity. If G(A) is a tree, then each
irreducible component of A is a tree sign pattern matrix. Moreover, for a tree sign pattern matrix A, the
determinant of every B € Q(A) is a sum of products of entries of the forms b;; and —b;;b;;. So every
term in the standard expansion of B is 0 if some b;;s are 0. The indices ¢ with a;; = 0 essential for A to
require singularity will be called essential indices. In Section 3, we will see that the problem of allowing
diagonalizability has a relation with the connectivity of essential indices. Now we will give a formal definition
of essential index.

A matching in an undirected graph is a set of edges in which no pair of edges shares a vertex. If M
is a matching in a graph G, then the vertices belonging to the edges of M are said to be saturated by M



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 38, pp. 131-159, February 2022.

133 Sign patterns associated with some graphs that allow or require diagonalizability

(or M-saturated). Let V(M) denotes the set of all M-saturated vertices in G. A maximum matching in a
graph is a matching that has the largest possible cardinality. Throughout this section, (n) denotes the set
{1,2,...,n}.

DEFINITION 2.2. Let A be a tree sign pattern matriz of order n. An index i is said to be an essential
index of A if there is a mazimum matching M in G(A) such that i ¢ V(M) and every principal submatriz
of A whose index set contains V(M) U {i} requires singularity.

An index 17 is said to be nonessential if it is not an essential index. The following result clearly follows
from Definition 2.2.

THEOREM 2.3. Ifi is an essential index of a tree sign pattern matriz A, then a; = 0.

The following example illustrates the essential and nonessential indices of a tree sign pattern matrix and
establishes that the converse of Theorem 2.3 is not true.

EXAMPLE 2.4. Let us consider a tree sign pattern matrix A with its graph G(A) as follows.

(0 0 — 0 0 0] 2
0 0 4+ 0 0 O
+ — + + 0 0
A:
o 0 — — + 0
o 0 0 + + +
10 0 0 0 + 0] 1 3 4 5 6

Since a3, @44, ass5 # 0, by Theorem 2.3, the indices 3, 4, and 5 are nonessential.

Let us consider a maximum matching M; = {[2,3],[4,5]} such that 1 ¢ V(M;). The subsets of (6)
which contain V(M7) U {1} are (5) and (6). Since both the principal submatrices A[(5)] and A[(6)] of A
require singularity, 1 is an essential index of A. Similarly, 2 is an essential index of A.

The maximum matchings that do not cover the vertex 6 are Mg = {[1, 3], [4, 5]} and M{ = {[2, 3], [4, 5]}.
Let 8" = V(M{)U{6} ={1,3,4,5,6} and S” = V(M{)U{6} = {2,3,4,5,6}. Both the principal submatrices
A[S'] and A[S”] allow nonsingularity. So 6 is a nonessential index of A.

Therefore, the essential indices of A are 1 and 2, and the nonessential indices of A are 3, 4, 5, and 6.

The main result of this section is given by the following theorem.

THEOREM 2.5. If a tree sign pattern matriz A of order n requires singularity, then we have the following.

1. For each B € Q(A), ey, ¢ columnspace(B) if k is an essential index of A.
2. For each B € Q(A) with rank(B) = MR(A), ey € columnspace(B) if k is a nonessential index of A.

We prove Theorem 2.5 by using the following lemmas. Let us recall that if G is a simple undirected
graph, then V(G) and E(G) denote the vertex set of G and the edge set of G, respectively. If S C V(G),
then G — S is the subgraph of G obtained from G by deleting the vertices in .S and the edges incident to
them. A path of length k& between two vertices v and v of G is a sequence {vg, vy, ..., v} of distinct vertices
such that vg = u, v = v, and [v;—1,v;] € E(G) for alli € {1,2,...,k}. A longest path is a path of maximum
possible length. The degree of a vertex u, denoted by deg(u), is the number of distinct vertices of G adjacent
to u. If deg(u) = 1, then u is called pendant.
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LEMMA 2.6. Let A be a tree sign pattern matriz and suppose that G(A) has vertices 1 and 2, and let 2
be adjacent to 1 and deg(1) = 1. Then every maximum matching in G(A) covers the vertex 2, and thus 2 is
a nonessential index of A.

Proof. Suppose that there exists a maximum matching M in G(A) such that 2 ¢ V(M). Since deg(1) =1
and 1 is adjacent to 2, 1 ¢ V(M). Then, M U {[1,2]} is a matching in G(A). This contradicts the
assumption that M is a maximum matching in G(A). Therefore, every maximum matching in G(A) covers the
vertex 2. a

LEMMA 2.7. Let A be a tree sign pattern matriz. If a; = 0 for at most one pendant vertex i in G(A),
then A allows nonsingularity.

Proof. Let A be of order n and ¢ be the number of vertices of degree > 3 in G(A). We prove the result
by induction on ¢. For ¢t = 0, A is a path sign pattern matrix having a pendant vertex ¢ with a;; # 0. So A
has a composite n-cycle and thus by Lemma 2.1, A allows nonsingularity. So the result is true for ¢ = 0.

Suppose that k£ > 1 and the result is true for all ¢ < k. Let t = k and A be a tree sign pattern matrix
having k vertices of degree > 3. Let r be the pendant vertex such that a,, = 0, if it exists. Otherwise,
consider any pendant vertex r. Let P be a longest path in G(A) with an end vertex r. Then the other end
vertex, say s, of P is also pendant in G(A) so that ass # 0. Therefore, A[V (P)] allows nonsingularity. Since
G(A) has at least one vertex of degree > 3, P covers at least one vertex of degree > 3. Therefore, each
component of G(A) — V(P) is a tree such that it has at most one pendant vertex ¢ with a;; = 0 and at most
k — 1 vertices of degree > 3. So by induction hypothesis, the principal submatrices corresponding to those
components allow nonsingularity. Since A(V(P)) is a direct sum of these principal submatrices, A(V(P))
allows nonsingularity.

Since both A[V(P)] and A(V (P)) allow nonsingularity, by Lemma 2.1, A[V(P)] has a composite |V (P)]|-
cycle and A(V(P)) has a composite (n — [V (P)|)-cycle. Since the index sets of those two cycles are disjoint,
the product of those two cycles is a composite n-cycle of A. Therefore, by Lemma 2.1, A does not require
singularity, that is, A allows nonsingularity. ]

Therefore, if a tree sign pattern matrix A requires singularity, then a; = 0 for at least two pendant
vertices 7 in G(A).

LEMMA 2.8. Suppose that A is a tree sign pattern matriz of order n with an, = 0, and G(A) has vertices
n —1,n such that n — 1 is adjacent to n and deg(n) = 1,deg(n — 1) > 2. Leti € {1,2,...,n—2}. Ifi is
an essential index of A, then there exists a mazimum matching M in G(A) such that i ¢ V (M), n € V(M)
and every principal submatriz of A whose index set contains V(M) U {i} requires singularity.

Proof. Since i is an essential index of A, there exists a maximum matching M in G(A) such that
i ¢ V(M) and every principal submatrix of A whose index set contains V(M) U {i} requires singularity. If
n ¢ V(M), then by Lemma 2.6, n — 1 € V(M). After a relabeling of the vertices 1,2,...,n — 2, if required,
we can assume that [n —2,n — 1] € M. Therefore, i < n — 2. Since M is a maximum matching in G(A),
M = (M\{[n—-2,n—-1]})U{[n —1,n]} is a maximum matching in G(A).

Let T be such that V(M) U {i} CT' C (n). If n—2 € T', then V(M) U {i} C T'. So A[T’] requires
singularity. If n —2 ¢ T/, let T = (7" \ {n}) U {n — 2}. Then, V(M) U {i} C T and thus A[T] requires
singularity. Now T\ {n—-2,n—1} =T'\{n—-1,n} C{L,2,...,n =3}, n—2¢T' . n¢Tand i <n—2. If
Z=T\{n—-2,n—1} =T\ {n—1,n}, then we have
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0
AlZ] :
e :
AlT'] = 0 ;
yT An—1n—1 An—1,n
0 0| ann- 0
and
A[Z} ‘ X1 X9
A[T] = Y? An—2n—2 An—2n—1

T
Y2 Gp—1,n—2 An—1,n—1

S0 —an—2.n-10n—1n—2 - det A[Z] is a sum of some terms in the standard expansion of det A[T]. Since
A[T] requires singularity, by Lemma 2.1, each term in the standard expansion of det A[T] is zero. Since
Gn—2,n—1;0n-1n—2 7 0, each term in the standard expansion of det A[Z] is zero.

Now each term in the standard expansion of det A[T"] is a product of —a,_1 5y n—1 and a term in the
standard expansion of det A[Z]. Therefore, each term in the standard expansion of det A[T”] is zero, and
thus by Lemma 2.1, A[T"] requires singularity.

Hence, there exists a maximum matching M’ in G(A) such that i ¢ V(M'), n € V(M') and every
principal submatrix of A whose index set contains V(M) U {i} requires singularity. |

LEMMA 2.9. Suppose that A is a tree sign pattern matriz of order n, and G(A) has verticesn—2,n—1,n
such that n — 1 is adjacent to both n — 2,n and deg(n) = 1,deg(n — 1) = 2. Let an, =0, A = A[(n — 2)],
and G(A) = G(A) — {n — 1,n}. Then, we have the following.

1. n is an essential index of A if and only if n — 2 is an essential index of A.
2. For each i€ {1,2,...,n—2}, i is an essential index of A if and only if i is an essential index of A.

Proof. According to the given conditions, we can represent G(A) as follows.

1. Let n — 2 be an essential index of A. Then, there exists a maximum matching M in G(A) such
that n —2 ¢ V(M) and every principal submatrix of A whose index set contains V(M) U {n — 2}
requires singularity. Since M is a maximum matching in G(A), therefore [n — 1,n] € M and thus
M = (M\{[n—-1,n]})U{[n—2n—1]} is a maximum matching in G(A). Since V(M) U {n} =
V(M) U {n — 2}, A[T] requires singularity for all T satisfying V(M) U {n} C T C (n). Further,
n ¢ V(M). Therefore, n is an essential index of A.

Similarly, if n is an essential index of A, then n — 2 is an essential index of A.

2. Here, a,, = 0. Let T C (n) be such that n —1,n € T, and T = T'\ {n — 1,n}. Then, we can express

A[T) as:
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_ 0 0 -
AT | .
(2.2) AlT] = 0 0 ,
c 0
0 0 d An—1,n—1 An—1,n
L 0 0 0 a'n,n—l 0 h

where a,, p—1,an—1,n, 7# 0, and either both ¢, d are zero or both are nonzero. Thus, we have
(2.3) det A[T] = —an—1n0nn-1 - det fl[f’]

Suppose that ¢ is an essential index of A for some i < n — 1. Then, there exists a maximum matching
M in G(A) such that i ¢ V(M) and A[T] requires singularity for all T satisfying V(M)U{i} C T C (n—2).
Since M is a maximum matching in G(A), M = M U{[n —1,n]} is a maximum matching in G(A). Let T be
such that V(M) U {i} CT C (n). Then by (2.3), A[T] requires singularity. Further, ¢ ¢ V' (M). Therefore, i
is an essential index of A.

Conversely, suppose that 4 is an essential index of A for some i < n — 1. Then there exists a maximum
matching M in G(A) such that i ¢ V(M) and A[T] requires singularity for all T satisfying V(M) U {i} C
T C (n). By Lemma 2.8, we may assume without loss of generality that n € V(M). Then [n — 1,n] € M.
Since M is a maximum matching in G(A), M = M\ {[n — 1,7n]} is a maximum matching in G(A). Let T be
such that V(M)U{i} C T C (n—2). Since a,_1.n,ann_1 # 0, by (2.3), we can conclude that A[T] requires
singularity. Further, ¢ ¢ V(M ). Therefore, 4 is an essential index of A. |

LEMMA 2.10. Suppose that A is a tree sign pattern matriz of order n with a,, = 0, and G(A) has vertices
n—1,n such that n — 1 is adjacent to n and deg(n) = 1,deg(n — 1) > 3. Let the principal submatrices of A
corresponding to the components of G(A) — {n — 1,n} be Ay, As,..., A,.

1. If for somet € {1,2,...,r}, the vertices of G(As) be 1,2, ...,k such that k is adjacent to n—1, then
we have the following.
(a) For each i < k, i is an essential index of A; if and only if i is an essential index of A.
(b) If k is an essential index of A, then both k and n are essential indices of A.
(c) If k is an essential index of A, then k is an essential index of A;.
2. If n is an essential index of A, then there exists | € {1,2,...,1} such that p is an essential index of
Ay, where p is the vertex in G(A;) adjacent to n — 1.

Proof. According to the given conditions, we can represent G(A) as follows.

G(Ar)
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Let the vertices of G(A;) be 1,2,...,k such that k is adjacent to n — 1. Let T' C (n) be such that
n—1neT . UT,=Tn{k)and T={i €T :k+1<1i<n-—2} then we can write A[T] as:

[ 00 -~ 0 0 0 ]
ATy :
0 0 0 0
0 0 0 0
(2.4) = | ° 00 ,
: : A[T] u 0
0 0 0
0 0 0
0 0 d vl p—1,n—1 Qn—-1,n
| 0 0 0 o” -1 0 |

where either both ¢ and d are zero or both are nonzero. Therefore,
(2.5) det A[T] = —an_1.nGnn_1 - det A;[T3] - det A[T].

If T = V(M') for some matching M’, then

(2.6) det A[T] = —an—1,n0n n-1 - det A;[T}] H (—a;ja;;) + some more terms
li,5]€M’

1(a). Suppose that i is an essential index of A; for some i < k. Then there exists a maximum matching M;
in G(A;) such that i ¢ V(M;) and A;[T] requires singularity for all T; satisfying V(M) U {i} C T C (k).
Let M = (M, U---UM,)U{[n—1,n]}, where M; is a maximum matching in G(A4;) for j # ¢t and M, is the
maximum matching mentioned above. Then, M is a maximum matching in G(A) and i ¢ V(M). Let T be
such that V(M)U{i} CT C (n). If T, = T N (k), then A;[T;] requires singularity. Therefore, by (2.5), A[T]
requires singularity. Hence, 7 is an essential index of A.

Conversely, suppose that ¢ is an essential index of A for some ¢ < k. Then, there exists a maximum
matching M in G(A) such that i ¢ V(M) and A[T] requires singularity for all T satisfying V(M) U {i} C
T C (n). By Lemma 2.8, we can assume without loss of generality that n € V(M). Then, [n —1,n] € M.
Let M; = M N E(G(A;)) for j =1,2,...,r. Then, M, is a maximum matching in G(A;) and i ¢ V(M,).

Let T; be such that V(M) U{i} CT: C(k). U T =T, U(V(M)U---UV(M,))U{n—1,n}, then A[T)
requires singularity. Then each term in the standard expression of A[T] is zero. Therefore, by (2.6), A:[T}]
requires singularity. Hence, 7 is an essential index of A;.

1(b). Suppose that k is an essential index of A;. Then there exists a maximum matching M; in G(4;)
such that k ¢ V(M;) and A:[Ti] requires singularity for all T; satisfying V(M;) U {k} C T3 C (k). Let
M= (MyU---UM,)U{[n— 1,n]}, where M; is a maximum matching in G(4;) for j # ¢ and M, is
the above-mentioned matching. Then, M is a maximum matching in G(A) and k ¢ V(M). Therefore,
M = (M\ {[n—1,n]}) U{[k,n — 1]} is also a maximum matching in G(A) and n ¢ V(M). Let T be such
that V(M) U {k} = V(M) U {n} CT C (n). If T, = T N (k), then A,[T}] requires singularity. Therefore by
(2.5), A[T] requires singularity. Hence, both k and n are essential indices of A.
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1(c) . Suppose that k is an essential index of A. Then by similar arguments as in the converse part of 1(a),
k is an essential index of A;.

2. Suppose that there exist no ¢t € {1,2,...,r} such that k; is an essential index of A;, where k; is a vertex of
G(A;) adjacent to n —1. Let M be a maximum matching in G(A) such that n ¢ V(M). Since n—1 € V(M)
(Lemma 2.6), there exists an [ € {1,2,...,r}, where G(A4;) (after a relabeling of vertices, if required) has
vertices 1,2, ...,p with p being adjacent to n — 1 such that [p,n — 1] € M.

Since M is a maximum matching in G(A4), M = (M \ {[p,n —1]}) U{[n —1,n]} is a maximum matching
in G(A). Therefore, M; = MNE(G(4;)) is a maximum matching in G(A;). Since p is a nonessential index of
Ay and p ¢ V(M,), there exists T} satisfying V (M;) U {p} C T; C (p) such that A;[T;] allows nonsingularity.

Let M; = M N E(G(Ay)) for j = 1,2,...,r. Then, V(M;) = V(M) U{p}. U T =T, U (V(M;)U---U
V(M) U{n —1,n}, then V(M)U {n} C T C (n). Therefore by (2.6), A[T] allows nonsingularity, which is
a contradiction to the fact that n is an essential index of A. a0

The following result confirms the existence of an essential index of a tree sign pattern matrix that requires
singularity.

THEOREM 2.11. If a tree sign pattern matriz A of order n requires singularity, then A has an essential
indez.

Proof. Suppose A requires singularity. We prove the result by induction on n. For n = 1, the result is
obvious. If n = 2, then A allows nonsingularity. If n = 3, then A is given by:

0 a2 0
A= lax ax axsl|,
asg 0

where a2, a21,a23,a32 € {+,—}. The maximum matching M = {[2,3]} in G(A) is such that 1 ¢ V(M).
The principal submatrix of A whose index set contains V(M) U {1} is A itself, which requires singularity.
Therefore, 1 is an essential index of A, and the result is true for n = 3. Suppose the result is true for any
k < n. Let A be a tree sign pattern matrix of order n requiring singularity. Then by Lemma 2.7, we can
assume without loss of generality that a,, = 0 and deg(n) =1 in G(A). Let n be adjacent to n —1 in G(A).

Case I: deg(n—1) =2. Let A= A[(n —2)] and G(A) = G(A) — {n — 1,n}. Then, A is a tree sign
pattern matrix of order n — 2 that requires singularity. By induction hypothesis, A has an essential index,
say i. Since i < n — 2, by Lemma 2.9, we can conclude that ¢ is an essential index of A.

Case II: deg(n — 1) > 3. Let the principal submatrices of A corresponding to the components of
G(A) —{n—1,n} be Ay, As,..., A.. Then there exists t € {1,2,...,r} such that A; requires singularity.
Let the vertices of G(A4;) be 1,2, ...,k such that k is adjacent to n —1 in G(A). By induction hypothesis, A;
has an essential index, say i. Therefore, by using Lemma 2.10, we can conclude that ¢ is an essential index
of A. |

Throughout the following discussion, e; denotes the column vector whose i-th component is 1 and all
other components are zero, 0 denotes the zero column vector, O denotes the zero matrix, and their sizes will
be clear from the context.

has vertices n — 2,

LEMMA 2.12. Suppose that A is a tree sign pattern matriz of order n, and G(A)
= 2. Let apn, = 0 and

n — 1,n such that n — 1 is adjacent to both n — 2,n and deg(n) = 1,deg(n — 1)
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A = A[(n — 2)]. If e; € columnspace(B) for some B € Q(A), then e; € columnspace(B) for all B € Q(A)
with B[{(n — 2)] = B. Further, e,_o € columnspace(B) implies e, € columnspace(B).

Proof. We can rewrite A as:

A ‘ Gp—2,n—1€n—2 0
_ T
A= Up—1,n—-2€,_9 An—1,n—1 Gn—1,n y
T
0 An n—1 0

where Un—-1,n-2,An—2n—1,0nn—-1,0n—-1,n 7é 0.
Let e; € columnspace(B) for some B € Q(A). Then there exists p; € R"~2 such that Bp; = e;.

Let B € Q(A) be such that B[(n — 2)] = B. Then there exist by_1.n,bpn_1 # 0 such that

B ‘ bn_Q,n_l €,n_2 0
B = bn—l,n—Q 9572 bn—l,n—l bn—l,n
o7 brn—1 0
Therefore,
e; Pi
Bm,; = 0 |, where m; = 0
0 *b};;ii’:f eg—z Pi

So e; € columnspace(B).

Let e,,_o € columnspace(é). Then there exists p,_s € R®2 such that Bpn_g = e,_s. Therefore,

0 _bn—2,n—lpn—2
Bm,,_5 = 0 , where m,,_o = 1
bn,nfl bn—ll,n (bn72,n71bn71,n72 671;72 Pn—2 — bnfl,nfl)
So e, € columnspace(B). 0

LEMMA 2.13. Suppose that A is a tree sign pattern matric of order n with an, = 0, and G(A) has
vertices n — 1,n such that n — 1 is adjacent to n and deg(n) = 1,deg(n —1) > 3. Let the principal submatriz
corresponding to one component of G(A) — {n — 1,n} be A such that G(A) has the vertices 1,2, ...,k with
k being adjacent to n — 1. If e; € columnspace(B) for some B € Q(A), then for each B € Q(A) with
Bl[(k)] = B, e; € columnspace(B).

Proof. According to the given conditions, we can express A as:

A O Afn—1 €k 0
0 Ala] u 0
A= T T
Gp—1,k € \4 n—1n—1 Qan—1,n
o7 07 apai 0

where a = {k+1,k+2,...,n—2}, u,v # 0 and ap—1,k, Gk n—1,Cn—1,n,tnn-1 7 0.
Let B € Q(A) be such that e; € columnspace(B). Then there exists a vector p; € R such that Bp; = e;.

Let B € Q(A) be such that B[(k)] = B. Then there exist b, 1, # 0 such that
B

O bgn-1€x 0

B_ (0] ; BT X 0
bnfl,k: €. Yy bnfl,nfl bnfl,n

o7 07 bua1 0



A publication of the International Linear Algebra Society

Electronic Journal of Linear Algebra, ISSN 1081-3810
Volume 38, pp. 131-159, February 2022. I L

Sunil Das 140
Therefore,
€; Pi
Bm; = 0 h = 0
m; = E where m; = 0
0 g el b
Therefore, for every B € Q(A) with B[(k)] = B, e; € columnspace(B). O

Next, we prove both parts of Theorem 2.5 separately.
Proof of Theorem 2.5.1. We prove the result by induction on n.

Induction base case. For n = 1, the result is obvious. If n = 2, then A allows nonsingularity. For n = 3,
since A requires singularity, A is given by:

0 ai2 0
A= lan az axs|,
0 as2 0

where a13, a21, a3, aza € {4+, —}. The set of all essential indices of A is {1,3}. Clearly, for every B € Q(A),
e1, e ¢ columnspace(B). Thus, the result is also true for n = 3.

Induction hypothesis. Suppose that the result is true for any tree sign pattern matrix of order less than n.

Induction final step. Let A be a tree sign pattern matrix of order n such that A requires singularity.
Then by Lemma 2.7, there exist vertices in G(A), say n — 1,n, such that n is adjacent to n — 1, a,, = 0,
and deg(n) = 1.

Case I: deg(n—1)=2. Let n— 2 be adjacent to n — 1. Then, we can rewrite A as:

A Up—2n—1€n—2 0
— T
(27) A= Up—1,n—2€,_9 Gp—1,n—1 Gn—1,n| »
OT Qn,n—1 0

where A = Al(n —2)] and an—1,n,Cnn-1,0n-1,n-2,Gn—2n—1 7 0.

Let n be an essential index of A. Then by Lemma 2.9, n — 2 is an essential index of A and hence
by induction hypothesis, for every B € Q(A), e,_2 ¢ columnspace(B). If e, € columnspace(B) for some
B € Q(A), then there exist ¢, _1,¢, € R and p € R"~2 such that

0 B bn—2,n—1 €n—2 0
0 = bn—l,n—? eg_z P+ cCn-1 bn—l,n—l +cn bn—l,n ;
1 o7 brn—1 0
where B = B[(n — 2)] € Q(A).
Since ¢;,—1,brp—2,n—1 # 0 and Bp = —Cp—1bp—2n—1€n—2, €2 € columnspace(B), which is a contradic-

tion.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society

Volume 38, pp. 131-159, February 2022. I L

AS

141 Sign patterns associated with some graphs that allow or require diagonalizability

Let i(# n) be an essential index of A. Then by Lemma 2.6, i # n — 1, and by Lemma 2.9, ¢ is an
essential index of A. If e; € columnspace(B) for some B € Q(A), then from (2.7) we can conclude that e;
is a linear combination of all but the (n — 1)-th column of B. Then for some a; € R, e; +a; e,_1 is a linear
combination of the first n — 2 columns of B and thus e; € columnspace(B), where B = B[(n — 2)] € Q(A).
This is a contradiction to the induction hypothesis.

Case II: deg(n —1) > 3. Suppose that G(A) — {n — 1,n} has r components. Then, A[(n — 2)] is a
direct sum of r irreducible components, say A, As, ..., A,.

Let n be an essential index of A. Then by Lemma 2.10, there exists t € {1,2,...,7} such that k is
an essential index of A;, where k is the vertex of G(A;) adjacent to n — 1. By induction hypothesis, for
every By € Q(A:), e, ¢ columnspace(B;). Without loss of generality, let us assume that G(A;) has vertices
1,2,...,k. So we can write A as:

A 0 Ak,n—1 €k 0
o” Ala] u 0
2.8 A=
( ) An—1,k eg VT Gn—1n—1 Aan—-1,n
OT OT Ann—1 0
where o = {k+1,...,n — 2}, an—14,Gkn—1,0n—1n,0nn-1 # 0 and u,v # 0. If e, € columnspace(B)

for some B € Q(A), then by similar arguments as provided in Case I, e; € columnspace(B;), where
B, = B[(k)] € Q(A;). This is a contradiction to the induction hypothesis.

Let i(# n) be an essential index of A. Then by Lemma 2.6, ¢ # n— 1. Without loss of generality, we may
assume that 4 is a vertex of G(A;) and the vertices of G(A;) are 1,2,..., k. Then by Lemma 2.10, i is an
essential index of A;. If e; € columnspace(B) for some B € Q(A), then from (2.8) we can conclude that e; is
a linear combination of the first £ columns and the n-th column of B. Then for some a; € R, e; +a; e,_1 is a
linear combination of the first k& columns of B and thus e; € columnspace(B;), where By = B[(k)] € Q(A:).
This is a contradiction to the induction hypothesis. ]

Proof of Theorem 2.5.2. We prove the result by induction on n.

Induction base case. For n =1, the result is obvious. If n = 2, then A allows nonsingularity. For n = 3,
since A requires singularity, A is given by:

0 ai2 0
A= lax ax axsl|,
0 as9 0

where a12, a1, ass, as2 € {+,—}. The only nonessential index of A is 2. Clearly, es € columnspace(B) and
rank(B) = 2 = MR(A) for all B € Q(A). Thus, the result is also true for n = 3.

Induction hypothesis. Suppose that the result is true for any tree sign pattern matrix of order less than n.

Induction final step. Let A be a tree sign pattern matrix of order n such that A requires singularity.
Then by Lemma 2.7, there exist vertices in G(A), say n — 1, n, such that n is adjacent to n — 1, a,, = 0 and
deg(n) = 1.
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Case I: deg(n—1)=2. Let n— 2 be adjacent to n — 1. Then, we can rewrite A as:

A Up—2n—1€n—2 0
— T
(29) A= Up—1,n—2€,_9 p—1,n—1 Gn—1,n| »
OT Qn,n—1 0

where A = Al{n —2)] and ap—1,n,nn-1,0n-1,n-2,n—2n—1 7 0. By Lemma 1.1, MR(A) = MR(/I) + 2.

Let N be the set of all nonessential indices of A. Then from Lemma 2.9, we can conclude that the set
of all nonessential indices of A is given by either N U {n —1,n} or N U {n — 1} accordingly as n —2 € N or
n—2¢N.

Let B € Q(A) be such that rank(B) = MR(A). Then

B ‘ bn—Q,n—l €n_2 0
— T
B = bnfl,n72 €,_2 bnfl,nfl bnfl,n )
OT bn,n—l 0

where by, 1., bpno1 # 0, and B = B[(n — 2)] € Q(A). Tt can be easily verified that rank(B) = rank(B) —
2 = MR(A) — 2 = MR(A). Therefore, by induction hypothesis, e; € columnspace(B) for all i € N.
Hence, by Lemma 2.12, e; € columnspace(B) for all ¢ € N. Since Be,, = by,_1,,€,_1, therefore e,_; €
columnspace(B).

Suppose that n — 2 € N. Then, e,_2 € columnspace(B). Therefore, by Lemma 2.12, e, €
columnspace(B).

Therefore, for each B € Q(A) with rank(B) = MR(A), e; € columnspace(B) for all nonessential indices
i of A.

Case II: deg(n — 1) > 3. Suppose that G(A) — {n — 1,n} has r components. Then, A[(n — 2)] is a
direct sum of r irreducible components, say A, As, ..., A,.

Let the vertices of G(Ay),...,G(A,) adjacent to n — 1 be ky,...,k,, respectively. Then, A can be
expressed as:

A O - O
O A u 0
(2.10) A= + . .0 ’
0O .. 0 4
vl Gn—-1n—-1 An—1n
L OT An on—1 0 |

where u = Akyn—1€k, -+ Ak, .n—1€k,., V=0 -1k €, T+ An_1k, €k, for some Qkyn—1y Gn—1,kys -+ »
Aky =1, Gn—1k, 7 0,and ap_1 pn,ann—1 # 0. Therefore, by Lemma 1.1, MR(A) = MR(A;)+- - -+MR(4,)+2.
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Let B € Q(A) be such that rank(B) = MR(A). Then there exist b,_1 1, bnn—1 7 0 such that

i B, O --- O
0 B X 0 B ‘ X 0
B = e ' 0 = yT bn—l,n—l bn—l,n )
o --- O B, o” [ 0
y! bp—1n-1 bn-1n
L OT bn,n—l 0 |

where B = B[(n — 2)] and B, € Q(A,) for t = 1,2,...,7. It can be easily verified that
rank(B) = rank(B) — 2 = MR(A) — 2 = MR(4,) + --- + MR(4,),
and thus rank(B;) = MR(A;) for t =1,2,...,r.

If N = {i : i is a nonessential index of A; for some ¢ € {1,2,...,r}}, then the set of all nonessential
indices of A is either NU{n — 1} or NU{n — 1,n}.

If A; allows nonsingularity, then B; is invertible, and thus e; € columnspace(B;) for all indices i of
A;. Further, by Definition 2.2, each index of A; is nonessential. If A; requires singularity, then by in-
duction hypothesis e; € columnspace(B;) for all nonessential indices 7 of A;. Now by Lemma 2.10, all
nonessential indices of A; are also nonessential for A. Therefore, using Lemma 2.13, we can conclude that
e; € columnspace(B) for all nonessential indices i(< n — 1) of A. Further, Be, = b,_1,€,—1 implies
e,—1 € columnspace(B).

If n is a nonessential index of A, then by Lemma 2.10.1(b), ki,...,k,. are nonessential indices of
A1, ..., A, respectively. So by Lemma 2.13, e; € columnspace(B) for i = k1, ko, ..., k.. Since x € Q(u),
there exist nonzero by, n—1,- .., bk, n—1 such that x = by, n_1 €k, +---+bk,. n_1€k.. S0 x € columnspace(B).

Therefore, there exists p € R"~2 such that Bp = x. Therefore,

0 —-Pp
Bm = 0 , where m= 1
Tp—bn_1,n—
bn,n—l 4 pbn_lﬂl,,’ =1
So e,, € columnspace(B). Hence, for each B € Q(A) with rank(B) = MR(A), e; € columnspace(B) for all
nonessential indices i of A. d

The following example illustrates the necessity of maximum rank in the above theorem.

EXAMPLE 2.14. Let us consider a tree sign pattern matrix A with its graph G(A) as follows.

3
0+ 4+ + 0
~ 0 0 0 0
A=+ 0 0 0 0
+ 0 0 — —
00 0 — — 2 1 4 5

Now M, = {[1,3],[4,5]} and Ms = {[1,2],[4,5]} are maximum matchings such that 2 ¢ V(Ms) and
3 ¢ V(Ms). Since V(Ms) U {2} = V(M;3) U {3} = (5) and A requires singularity, both 2,3 are essential
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indices of A. The nonessential indices of A are 1,4, 5, since every maximum matching saturates the vertices
1,4,5. Let

0 21 3 0
300 0 0
B=|1 00 0 0]|€cQA).
5 00 -2 —2
0 00 -2 —2

Then rank(B) = 3 < 4 = MR(A). Further, ey, e5 ¢ columnspace(B).

Since A is combinatorially symmetric, we have the following corollary.

COROLLARY 2.15. If a tree sign pattern matriz A of order m requires singularity, then we have the
following.

1. For each B € Q(A), ey ¢ rowspace(B) if k is an essential index of A.
2. For each B € Q(A) with rank(B) = MR(A), ey, € rowspace(B) if k is a nonessential index of A.

3. Sign patterns that allow diagonalizability. The problem of characterizing sign patterns allowing
diagonalizability first came up in the study of sign patterns requiring repeated eigenvalues by Eschenbach
and Johnson [6]. Some sufficient conditions for sign patterns to allow diagonalizability were given in [6, 7, 14].
Two characterizations of sign patterns allowing diagonalizability were given in [8] in terms of allowing some
more easily checked properties.

If a sign pattern is combinatorially symmetric, then by [14, Theorem 2.6}, it allows diagonalizability. In
this section, we consider sign patterns whose graphs are trees, but not necessarily combinatorially symmetric.
We give some combinatorial structures based on their graphs which are necessary and sufficient for some
specific graphs, for example, the star and path to allow diagonalizability. We also give a sufficient condition
for a more general class of sign patterns A for which G(A) is a tree to allow diagonalizability.

Let us recall the following definitions from [1, p. 39]. Let A be a square matrix of order n. For
1 <1i,j <n, we say that ¢ has access to j if i = j or there is a path in D(A) from vertex i to vertex j, and
that 4, j communicate if ¢ has access to j and j has access to ¢. This communication relation between the
vertices of D(A) is an equivalence relation, which partitions {1,2,...,n} into equivalence classes, and each
equivalence class will be called a strong component of D(A). We say a strong component « has access to
another strong component § if ¢ has access to j for all i € a and for all j € 8. If G(A) is a tree, then each
principal submatrix of A corresponding to a strong component of D(A) is a tree sign pattern matrix.

Throughout this section, I denotes the identity matrix and |S| denotes the cardinality of a finite set S.
LEMMA 3.1. Let R and S be two square matrices such that o*(R) N o*(S) = 0. Then for any X of
appropriate size, the matrix:
R X
2[5 5
is diagonalizable if and only if rank(B) = rank(R) 4 rank(S) and both R and S are diagonalizable.
Proof. Clearly, Pg(x) = Pg(x)Ps(z). Since o*(R) N c*(S) =0, for every A € ¢*(R) and p € o*(9),

z2(B—= M) =z(R— ), 2(B—pul) = 2(S — pl),
and nullity(B — AI) = nullity(R — AI), nullity(B — pl) = nullity (S — pI).
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Further, rank(B) > rank(R) + rank(S) and z(B) = z(R) + z(5). Hence, B is diagonalizable if and only if
rank(B) = rank(R) + rank(S) and both R, S are diagonalizable. 0

From the proof of [14, Theorem 2.6], we have the following result.

LEMMA 3.2. If a sign pattern matriz A is combinatorially symmetric, then c(A) = MR(A).

The following result was conjectured in [9] and proved in [4].

THEOREM 3.3 ([4]). Let A be an n x n invertible matriz. Then there exists an n X n invertible diagonal
matriz D such that AD has n distinct eigenvalues.

With a minor modification to the proof of Theorem 1.1 in [4], the following result was obtained.

THEOREM 3.4 ([8]). Let A be an n x n invertible matriz. Then there exists an n X n invertible diagonal
matriz D with positive diagonal entries such that AD has n distinct eigenvalues.

Since the eigenvalues of a matrix depend continuously on its entries, we have the following lemma.

LEMMA 3.5. If A € M,, has an invertible principal submatriz of order k such that all principal subma-
trices of higher orders are singular, then there are invertible diagonal matrices Dy, Dy € M, with positive
diagonal entries such that both D1 A and ADy have exactly k distinct nonzero eigenvalues.

Proof. Without loss of generality, we may assume that the leading principal minor of A of order k is
invertible. Then, we can write A as:

ol
Az Ay

where A; is the leading principal minor of order k. So by Lemma 3.4, there exists a diagonal matrix D
with positive diagonal entries such that DA; has distinct nonzero eigenvalues. Let D. = D & el,,_j. Since
all principal submatrices of A of order > k are singular, all principal submatrices of D A of order > k are
singular for all € > 0. Again since the eigenvalues of a matrix depend continuously on its entries, we can
choose € > 0 such that D.A has exactly k distinct nonzero eigenvalues. Thus, there is an invertible diagonal
matrix D; € M,, with positive diagonal entries such that D; A has exactly k distinct nonzero eigenvalues.

Similarly, there exists an invertible diagonal matrix Dy € M, with positive diagonal entries such that
ADs has exactly k distinct nonzero eigenvalues. a0

The following result is from [7, Theorem 2.3].

LEMMA 3.6 ([7]). If a sign pattern matriz A is combinatorially symmetric, then there exists a diago-
nalizable matriz B € Q(A) with rank(B) = MR(A).

Let A be a sign pattern matrix such that G(A) is a tree. Since D(A) has finitely many strong components,
there are strong components aq,...,q; of D(A) such that each «; is accessible only from itself and there
are strong components 1, ..., B, of D(A) such that each f3; has access only to itself. Accordingly, we can
represent D(A) as follows.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 38, pp. 131-159, February 2022.

Sunil Das 146

(651 ﬂl

Strong components

which have access to some
other strong components and

are also accessible from some
' ' other strong components K i

Let SC(v) be the strong component of D(A) containing v. Let Ep be a set of essential indices such that
v € Ep if and only if there is an arc in D(A) from v to some vertex u of another strong component of D(A)
distinct from SC(v), and let E; be a set of essential indices such that v € E} if and only if there is an arc in
D(A) to v from some vertex u of another strong component of D(A) distinct from SC(v). Similarly, let No
be a set of nonessential indices such that v € Np if and only if there is an arc in D(A) from v to some vertex
u of another strong component of D(A) distinct from SC(v), and let Ny be a set of nonessential indices such
that v € Ny if and only if there is an arc in D(A) to v from some vertex u of another strong component of
D(A) distinct from SC(v). Let V() denotes the set of all vertices in a directed path 7.

LEMMA 3.7. Let A be a sign pattern matrixz such that G(A) is a tree. If all possible directed paths between
the essential indices of the principal submatrices corresponding to two distinct strong components of D(A)
contain nonessential indices from at least one of those strong components, then either there exists i such that
EoNa; =0 or there exists j such that Er N B; = 0.

Proof. Suppose that Eo Na; # 0 for all i € {1,2,...,1}, and Ey N 3; #0 for all j € {1,2,...,m}.

Note that for every r € {1,2,...,1}, there exists s € {1,2,...,m} such that «, has access to S, and for
every s € {1,2,...,m}, there exists r € {1,2,...,1} such that s has access from «,..

Fix i1 € Eop N a;. Since all possible directed paths between the essential indices of the principal
submatrices corresponding to two distinct strong components of D(A) contain nonessential indices from at
least one of those strong components, there exists a natural number k£ and vertices 41, ¢o, . .., %45+2 such that
the followings hold, after a possible relabeling of as and Ss.

1. For every t € {1,2,...,k + 1}, there is a directed path ﬁ from ig;_3 € Eo Nay to 1442 € Ny N fy
such that ﬁ does not contain any vertex from SC(iqr—3) and SC(igr—2) except i4s—3 and igz_o,
respectively.

2. For every t € {1,2,...,k}, there is a directed path ¢ from iy € No N Q41 10 igp—1 € Er N By such
that 3 does not contain any vertex from SC(i4;) and SC(iqr—1) except ig4; and iqe—1, respectively.

3. aq,q9,...,ap and f1, Ba, ..., Bk are distinct strong components of D(A).

4. Either agi1 € {1, a9,..., a5} or Br+1 € {P1, B2, .-, Br}-



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society

Volume 38, pp. 131-159, February 2022. I L

AS

147 Sign patterns associated with some graphs that allow or require diagonalizability

If either V(q;) NV (pi) # 0 or V(pir1) NV (q7) # 0 for some t € {1,2,...,k}, then there exists a cycle
in G(A) of length at least 3.

IEV(g)NV(pi) =0 and V(pi) NV () = 0 for all t € {1,2,...,k}, then there exists a cycle in G(A)
of length at least 4, since either ap11 € {a1,0,...,ar} or Bry1 € {B1, B2, .., Bi}-

In each case, we have a contradiction to the fact that G(A) is a tree. d

We know that if a sign pattern matrix A allows nonsingularity or A is combinatorially symmetric, then
A allows diagonalizability. The following theorem gives a sufficient condition for a class of sign pattern
matrices (not necessarily combinatorially symmetric) that require singularity to allow diagonalizability.

THEOREM 3.8. Let A be a sign pattern matriz such that G(A) is a tree and A requires singularity. If
there are mo directed paths between the essential indices of the principal submatrices corresponding to two
distinct strong components of D(A), or if all possible directed paths between the essential indices of the
principal submatrices corresponding to two distinct strong components of D(A) contain nonessential indices
from at least one of those strong components, then there exists a diagonalizable matrix B € Q(A) with
rank(B) = MR(A).

Proof. We prove this by induction on r, the number of distinct strong components of D(A). If r = 1,
then A is combinatorially symmetric and thus by Lemma 3.6, there exists a diagonalizable matrix B € Q(A)
with rank(B) = MR(A). Suppose that the theorem is true for any matrix A with the number of distinct
strong components of D(A) equal to r — 1.

Let A be a sign pattern matrix satisfying the given conditions such that the number of distinct strong
components of D(A) is r.

If there are no directed paths between the essential indices of the principal submatrices corresponding
to two distinct strong components of D(A), then either there exists i such that Eo Na; = @ or there exists j
such that ErNG; = 0. If all possible directed paths between the essential indices of the principal submatrices
corresponding to two distinct strong components of D(A) contain nonessential indices from at least one of
those strong components, then by Lemma 3.7, either there exists i such that Eo Na; = () or there exists j
such that Er N 3; = 0.

Without loss of generality assume that Eo Ny = . Since the number of strong components of D(A)
is at least 2, No Ny # 0. Let Ay = Aloy] and oy = {1,2,...,k}. Let No Ny = {k1,ka,...,kt}. Then,

ki,ko, ..., ks are nonessential. Moreover, A can be written as:
A A
A- | 20
0O As
where the nonzero rows of Ay are ki-th row, ko-th row, and so on up to ks;-th row. Since ki, ko,..., ks
are nonessential for Aj, by Theorem 2.5, e,,€,,...,er, € columnspace(B’) for all B € Q(A4;) with

rank(B’) = MR(A;), which implies MR(A) = MR(A;) + MR(A3). Using induction hypothesis, we can
choose B3 € Q(As) such that B is diagonalizable and rank(B3) = MR(Aj3). By Lemma 3.6, we can choose
a diagonalizable matrix By € Q(A;) with rank(B;) = MR(A4;) such that o*(B1) N o*(Bs) = 0. Since
€k, €hys - - -, €, € columnspace(By),

_[B1 B,
B—[O BJéQ(A)v
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implies rank(B) = rank(B;) 4 rank(Bs). Therefore, rank(B) = MR(A), and by Lemma 3.1, B is diagonal-
izable. O

In the following example, we show that a sign pattern matrix allows diagonalizability using Theorem 3.8.

EXAMPLE 3.9. Let

[0 0 — 0 0 00 0 0l0 0 0]
00+ 0 0 0[O0 0 0[]0 0 0
+ — 4 + 0 0[]0 0 0|0 0 0
00— — 4+ 0/0 0 0[]0 0 0
000 0 + 4+ +/0 0 0[]0 0 0
4|0 00 0+ 0J0 0 0]0 00
00 000 0|0 + 0[]0 0 0
000 0 0 0 0|+ 0 —|0 0 0
000 00 —|0 — 0[]0 0 0
00 000 0[O0 0 0[]0 + 0
00 0 0 0 0|0 0 0]— 4+ —
L0 0 0 0 0 +/0 0 0|0 — 0|

The digraph D(A) of A is given as follows.

2

In this example, G(A) is a tree and strong components of D(A) are o = {1,2,3,4,5,6},5 = {7,8,9}
and v = {10,11,12}. Using Example 2.4, we can conclude that the essential indices are 1,2,7,9,10,12. We
see that all directed paths from the essential indices in both 8 and 7 to the essential indices in « contain
nonessential indices from a. Therefore, there exists B € Q(A) with rank(B) = MR(A).

The following example establishes that the converse of Theorem 3.8 is not true.

ExaMPLE 3.10. Let us consider the sign pattern:

ol+ |+ ©
olo|lo +
o|lojlo ©
olo|lo 4+




Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 38, pp. 131-159, February 2022.

149 Sign patterns associated with some graphs that allow or require diagonalizability

The digraph D(A) of A is given as follows.

Here, G(A) is a tree and the strong components of D(A) are o = {1,2},8 = {3} and v = {4}. The
essential indices are 3 and 4. So there is a directed path in D(A) between essential indices of § and 7, namely
3 — 1 — 4, containing no other vertex from § and . So A does not satisfy the conditions of Theorem 3.8.

Let

€ Q(A).

Ol O
o|lo|lo o
o|lo|o =

OO =

Then, Pg(z) = 2%(2* — 1). So o(B) = {0, 1, —1}, where 2(0) = 2. Further, nullity(B) = 2. Therefore, B is
diagonalizable.

If we restrict G(A) in Theorem 3.8 to be a path, then the converse is also true.

A matrix of order n, whose graph is a path, is permutationally similar to a matrix of the form:

a1 b 0 e 0
2 az  bs :
(3.11) 0 . . .o
Cn—1 Gp—1 by
0 0 Cn, an

where |b;| 4 |¢;| # 0.

A path sign pattern matrix requiring singularity is of the form:

ai bl 0 . . 0
C1 ag bg

0 Co as b3

(3.12) ,
0
Con—1 A2n ban
_0 “en “en 0 Con a2n+1_
where a1 = ag = -+ = aspy1 = 0 and bc; # 0 for ¢ = 1,2,...,2n. In this case, the essential indices are

1,3,5,...,2n + 1.
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THEOREM 3.11. Let A be a sign pattern matric such that G(A) is a path. Then A allows diagonalizability
if and only if A allows nonsingularity, or A requires singularity and there are no directed paths between the
essential indices of the principal submatrices corresponding to any two distinct strong components of D(A).

Proof. The ‘if’ part is established by Theorem 3.4 and 3.8. For the ‘only if’ part, suppose that A requires
singularity, and there is a directed path in D(A) between essential indices of two distinct strong components
in D(A). Suppose that A has the form (3.11). If K € Q(A), then we can write

=

I
QO Q0 Qw
QO WX
QQ®»n OO
8OO0
N oOQO

where X and Y may be vacuous, R and T are matrices of the form (3.12), S is a tridiagonal matrix such that
s;+1,i 7 0 for all 7, exactly one of F, G is a zero matrix, and exactly one of D and F is a zero matrix. Let R, S,
and T have the orders ny, no, and ns, respectively. Since A is of the form (3.11), b1y, , ¢in, # 0 and b;;,¢;; =0
for all other ¢,j. Characteristic polynomial of K is Pk (x) = Px(x)Pg(x)Ps(z)Pr(z)Py (). Since both R
and T are singular, z(K) > z(X) + 2(Y) + 2. Further, rank(K) > rank(X) + rank(Y) + ny + na +n3 — 1.
Therefore, nullity (K) < nullity(X) + nullity(Y) + 1 < 2(X) + 2(Y) + 2 < 2(K). So K is not diagonalizable.
Thus, A does not allow diagonalizability, a contradiction. ]

If G(A) is a star, then the converse of Theorem 3.8 is not valid, as it is shown in Example 3.10. However,
the following result characterizes all sign pattern matrices whose graph is a star to allow diagonalizability.
From [2, p. 294], we note that the Hadamard product of two m x n matrices A = [a;;] and B = [b;;], denoted
by Ao B, is defined by Ao B = [a;;b;;].

A matrix of order n, whose graph is a star, is permutationally similar to a matrix of the form:

aq bQ bg s bn
Co Q2 0 s 0
(3.13) s 0 a3z .,
. . 0
| Cn o --- 0 an |

where |b;] + |¢;| # 0.

THEOREM 3.12. Let A be a sign pattern matriz of the form (3.13) with n > 2 and P = {2,3,...,n}.
Let S={i€P:a; =0} and T = {i € P : bjc; # 0}. Then A allows diagonalizability if and only if one of
the following conditions hold.

1. S=0.
2. S#0,T=0,a1 #0 and either b; =0 for alli € S orc; =0 foralli € S.

3. ST #0,SNT =0 and either b; =0 for alli € S or¢; =0 for alli € S.
4. SNT # 0.

Proof. We first show that if one of the conditions 1, 2, 3, and 4 holds, then A allows diagonalizability.
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1. If S = (), then A allows nonsingularity and thus by Theorem 3.4, A allows diagonalizability.

2. Suppose that S # 0, T = 0,a; # 0 and either b; = 0 for all ¢ € S or ¢; = 0 for all : € S. We
can choose B € Q(A) such that all nonzero diagonal entries of B are distinct. Since T' = 0, the
eigenvalues of B are its diagonal entries. Since ay # 0, z(B) = |S| = nullity(B). Therefore, B is
diagonalizable, and thus A allows diagonalizability.

3. Suppose that S, T # 0, SNT = () and either b; =0 for all i € S or ¢; =0 for all i € S. Then A or
AT is permutationally similar to

o O

which is of the form (3.13). Since T # 0, A(S) allows nonsingularity. So by Theorem 3.4, we can
choose B € Q(A) such that all eigenvalues of B(S) are nonzero and distinct. Further, z(B) = |S| =
nullity (B). Therefore B is diagonalizable, and thus A allows diagonalizability.

4. Suppose that S NT # (). Then, A is permutationally similar to:

g

{A(S) c] |

which is of the form (3.13) such that EoC? = O and D is a diagonal sign pattern matrix. By Lemma
3.5, there exists F' € Q(A[T]) such that all nonzero eigenvalues of F are distinct. Further, there exists
G € Q(D) such that all nonzero diagonal entries of G are distinct and o*(F) No*(G) = 0. Let us
choose B € Q(A) such that B[T] = F and B(T) = G. Since EoC" = O, Pg(x) = Pgr)(x)-Pg(r)(x)
and thus z(B) = 2(B[T]) + 2(B(T)). Since SNT # 0, for some ¢ > 1, the i-th column of each
one of B[T], B[T]* is a nonzero scalar multiple of [1 0 --- 0]Z. Therefore, rank(B) = rank(B[T]) +
rank(B(T)). Further, nullity(B[T]) = |SNT| — 1 = z(B[T]). So z(B) = nullity(B). Therefore B is
diagonalizable, and thus A allows diagonalizability.

Now we prove the converse part by contradiction. Suppose none of the conditions 1, 2, 3, and 4 are satisfied.
Then, we have one of the following.

Case I: S# 0, T =0 and a; = 0.

Case II: SNT = () and there exist 4, j € S such that b; # 0 and ¢; # 0. In this case, A is permutationally

similar to
A(S) D
C o’

which is of the form (3.13) such that D o CT = O and both C and D are nonzero.

In Case I, for every B € Q(A), z(B) = |S| + 1, and rank(B) > n — |S|. So nullity(B) < |S] < 2(B).
Therefore B is not diagonalizable and hence A does not allow diagonalizability.

In Case II, for every B € Q(A), Pp(z) = 215 Pp(g)(z) and thus 2(B) = |S|+z(B(S)). Since rank(B) =
n—|S|+ 1, nullity(B) = |S| = 1 < 2(B(S)) + |S| — 1 < 2(B) and thus B is not diagonalizable. Hence, A
does not allow diagonalizability. |

4. Sign patterns that require diagonalizability. If a sign pattern matrix requires all distinct eigen-
values, then it requires diagonalizability. Some necessary and/or sufficient conditions for sign patterns to
require distinct eigenvalues can be found in [5, 12, 13]. Lists of sign patterns upto order 4 requiring distinct
eigenvalues are given in [12, 13].

LEMMA 4.1 ([14]). If A is a sign pattern matriz, then ¢(A) < MR(A).
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In the following result, we give a necessary condition in terms of the maximum cycle length and the
maximum rank for a sign pattern matrix to require diagonalizability.

THEOREM 4.2. If a sign pattern matriz A requires diagonalizability, then ¢(A) = MR(A).

Proof. Let A be a sign pattern matrix of order n. By Lemma 4.1, ¢(A) < MR(A). Let ¢(A) < MR(A).
Let B € Q(A) be such that rank(B) = MR(A). Now E;(B) = 0 for all i > ¢(A) + 1, where E;(B) is
the sum of all i x ¢ principal minors of B for i = 1,2,...,n. Then z" <4 is a factor of Pg(z). So
nullity(B) = n — MR(A) < n — ¢(A) < z(B). Therefore, B is not diagonalizable. Hence, ¢(4) = MR(A4). 0O

The following example shows that the converse of Theorem 4.2 is not true.
EXAMPLE 4.3. Let us consider the sign pattern matrix:

A:F— ﬂ.

Here ¢(A) = MR(A) = 2. But A does not require diagonalizability, since

B= [_11 _11} € Q(4),

and B is not diagonalizable.

In the above example, all terms in the standard determinant expansion of A have different signs. When
¢(A) = MR(A), then even the condition “all terms in the standard determinant expansion of A have the
same sign” does not necessarily imply that A requires diagonalizability. The following example illustrates
this for both reducible and irreducible sign pattern matrices.

EXAMPLE 4.4. Let us consider the sign pattern matrices:

A1:[+ +

+ +
0 _J and A2:|: }

-+
Here, ¢(A1) = MR(A1) = 2 and ¢(A43) = MR(Az) = 2. But neither A; nor A, require diagonalizability, since

1 1
0 1

4 1

Bl:[ ~1 2

] € QA1) and By = [ ] € Q(A4z),

and both By and By are non-diagonalizable.

The next few results enable us to reduce the problem of determining star sign pattern matrices, which
require diagonalizability for any arbitrary order m to the same problem for the matrices of orders less
than or equal to 4. A signature sign pattern matrix is a diagonal sign pattern matrix whose all di-
agonal entries are nonzero. A sign pattern matrix B is signature similar to a sign pattern matrix A
if there exists a signature sign pattern matrix S such that B = SAS. Two sign pattern matrices are
said to be equivalent if one is obtained from the other by negation and/or permutation and/or signature
similarity.
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Any star sign pattern matrix of order n is permutation and signature similar to a matrix of the form:

a + o+ o+
bg ag 0 R 0
(414) S=1bs 0 a3 . s
S )
_bn o --- 0 an |

where aq,...,a, € {+,—,0} and by, ..., b, € {+,—}.

LEMMA 4.5. If a star sign pattern matrixz of the form (4.14) requires diagonalizability, then there are no
1,7 with i # j and 1,5 > 2 such that b; # b; and a; = a;.

Proof. Let a star sign pattern matrix S of the form (4.14) be such that b; # b; and a; = a; for
some ¢ # j with 4,5 > 2. Suppose that the symbol a; appears multiple times for some ¢ > 2, and let

{t >2:a; =a;} ={i1,ia,...,9k} such that all the symbols b;,,...,b;, are not the same. Therefore, we can

ik
choose
o 1 1 - 1
By as 0O -+ 0
B=|f 0 a0 Q)
Bn 0 0 - o
such that 3;, +---+ 8;, =0and o, = --- = o, = v, say.

The characteristic polynomial of B is

(4.15) Pp(z) = H(x_ap)_25p H(m—aq).
- =

Since 8;, +- -+ Bi, =0, (x—a;)¥ is a factor of Pg(x). So o is an eigenvalue of B with algebraic multiplicity
> k. Further, rank(B — a;]) = n — k + 1 and thus nullity(B — o;I) = k — 1. So B is not diagonalizable.
Hence, the result follows. 0

LEMMA 4.6. Let By, By be the matrices given by:

a1 e e e 1
By g 0 e oo oo 0 [ oy U b
o9 e el : Ba a0
By = | B S : and By = 0 ,
Br1 - oa nﬁk e 0
A S B 0 - 0 a
: : - Lizkt1 i
 Bn 0 e e oo 0

where a # o for all i € {2,3,...,k} and > pB; # 0. Then By is diagonalizable if and only if B is
i=k+1
diagonalizable.
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Proof. Note that Pp, (z) = (z — a)" ¥~ Pg,(x). If A # a, then
(4.16) rank(By — AI) =rank(By — AI)+n —k — 1.
Further, rank(B; — al) = rank(Bs — al) = k + 1. Moreover, a ¢ o(B>).

Suppose that By is diagonalizable. If A € o(Bs), then by (4.16), nullity (B, — AI) = nullity(By — AI).
Further, the algebraic multiplicity of A for B is same as the algebraic multiplicity of A\ for Bs. Hence, By
is diagonalizable.

Suppose that By is diagonalizable. Let A € o(By). Note that nullity(By —al) = z2(By —al) =n—k—1.
If A # a, then by (4.16), nullity(B; — AI) = nullity(Bs — AI). Further, the algebraic multiplicity of A\ for B;
is same as the algebraic multiplicity of A for By. Hence, B; is diagonalizable. ]

REMARK 4.7. We use Lemma 4.6 to identify star sign pattern matrices of any order n which does not
require diagonalizability by identifying the same for n = 2,3, 4.

We know that if a matrix A belongs to the qualitative class of a symmetric tree sign pattern matrix,
then A is similar to a symmetric matrix. If A belongs to the qualitative class of a skew-symmetric tree sign
pattern matrix with zero diagonal entries, then A is similar to a skew-symmetric matrix. To identify the star
sign pattern matrices that do not require diagonalizability, we need to consider skew-symmetric star sign
patterns with some nonzero diagonal entries and the star sign pattern matrices those are neither symmetric
nor skew-symmetric.

LEMMA 4.8. No 2 x 2 skew-symmetric star sign pattern matriz with some nonzero diagonal entries
requires diagonalizability.

Proof. Nonequivalent skew-symmetric star sign pattern matrices of order 2 with some nonzero diagonal

S

None of the above sign pattern matrices requires diagonalizability, and examples of non-diagonalizable ma-
trices in their qualitative classes are respectively

I N A N

These are non-diagonalizable because their characteristic polynomials are respectively

entries are

(I—" 1)27 (l‘+2)2, $27

whereas all the eigenvalues have geometric multiplicity 1. 0

LEMMA 4.9. No 3 x 3 skew-symmetric star sign pattern matriz with some nonzero diagonal entries
requires diagonalizability.

Proof. Non-equivalent skew-symmetric star sign pattern matrices of order 3 with some nonzero diagonal
entries are
0o + + - + + + + + - + +
0 0 0l,{— 0 0],
- 0 - - 0 - - 0 - - 0 O
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0 + + - + + + + + - + + 0o + +
- = 0|l,|- = Of,|—- = Of,|— = Of,|— = 0
- 0 0 - 0 0 - 0 0 - 0 + - 0 +

None of the first four sign pattern matrices from the above list requires diagonalizability because we can find
non-diagonalizable matrices in their qualitative classes using Lemmas 4.6 and 4.8. None of the next five sign
pattern matrices from the above list requires diagonalizability, and examples of non-diagonalizable matrices
in their qualitative classes are respectively

0 6 3 -2 1 1 2 9 1 -1 1 1 0 1 1
-4 -9 0|,|-2 -4 0|,|-3 -8 O|,(-2 -3 Of,|-2 -2 O
-1 0 O -2 0 0 -1 0 0 -2 0 1 -2 0 2

These are non-diagonalizable because their characteristic polynomials are respectively
(x+3)3 (z+2)3 (z+2)3 (z+1)3 a3,

whereas all the eigenvalues have geometric multiplicity 1. 0

LEMMA 4.10. No 3x3 star sign pattern matriz, which is neither symmetric nor skew-symmetric, requires
diagonalizability.

Proof. Each matrix in the qualitative class of such a sign pattern matrix is equivalent to a matrix of the
form:

a1 1 1
(4.17) —P2 az 0],
Bz 0 a3

where (2,03 > 0 and ag,as, 3 € R. If the qualitative class of a sign pattern matrix contains a matrix
of this form such that sgn(as) = sgn(as), then by Lemma 4.5, that sign pattern matrix does not require
diagonalizability. Now the remaining nonequivalent sign pattern matrices of the form (4.17) are

0 + +] [+ + +] [- + 41 [0 + +] [~ + +] [+ + +
- — 0|,|- = o|l, |- = o], |- 0 of,|- 0 of],|- 0 of,
+ 0 o] [+ o0 of [+ 0 of [+ 0 +] [+ 0 +] [+ 0 +
+ + +] [~ + +] [0 + +
- — 0|,|- - of,|]- - 0

+ 0 4] [+ 0 +] [+ 0 +

None of the above sign pattern matrices requires diagonalizability, and examples of non-diagonalizable ma-
trices in their qualitative classes are respectively

0 3 95 1 1 1 -1 1 4 0 7 8 -2 9 8 5 1 1
-8 -1 0|,|-5 -4 Of,|-3 -1 0|,|-9 0 O|,[-5 O Of,|=-5 0 O},
9 0 O 1 0 0 2 0 O 12 0 1 § 0 1 1 0 4
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These are non-diagonalizable because their characteristic polynomials are respectively
(€ +3)%(z—5), (e+2°%-1), (@+2%*(z-2), (@+3)*z-7), (¢+3)*(x-5),
(=2 —=5), (@-2)(=+1)?% (z+3)*z-5), (z+8)*(z—8),
whereas all the eigenvalues have geometric multiplicity 1. ]

LEMMA 4.11. No 4 x 4 skew-symmetric star sign pattern matriz with some nonzero diagonal entries
requires diagonalizability.

Proof. Each matrix in the qualitative class of such a sign pattern matrix is equivalent to a matrix of the

form:
(5] 1 1 1
—fBy az 0 O
4.18
(4.18) B 0 as 0]

B+ 0 0 oy

where (2,083,084 > 0 and a1, a9, a3,a4 € R. If the qualitative class of a sign pattern matrix contains a
matrix of this form such that any two of sgn(as),sgn(as), sgn(ay) are equal, then by Lemma 4.6, 4.8, and
4.9, that sign pattern matrix does not require diagonalizability. Now the remaining nonequivalent sign
pattern matrices of the form (4.18) are

+ 4+ + +] [0 + + +
—~ 0 0 |- — 0 0
—~ 0 0 0|’|- 0 0 0
-0 0 +] - 0 0 +

None of the above sign pattern matrices requires diagonalizability, and examples of non-diagonalizable ma-
trices in their qualitative classes are respectively

5 5 5 5 0 10 4 21
-4 =5/5 0 0 —25 =32 0 0
-2 0 0 O01|’|-3 0 0 0
—4 0 0 5/5] [-18 0 0 32

These are non-diagonalizable because their characteristic polynomials are respectively
(x—5)%(x+10), (z—8)°(z+24),
whereas all the eigenvalues have geometric multiplicity 1. ]

LEMMA 4.12. No 4x4 star sign pattern matrix, which is neither symmetric nor skew-symmetric, requires
diagonalizability.

Proof. Each matrix in the qualitative class of such a sign pattern matrix is equivalent to a matrix of the

form:
o 1 1 1 o 1 1 1
—fB2 az 0 0 B2 az 0 O
Bz 0 a3 O o B3 0 a3 O
Bs 0 0 oy Ba 0 0 oy

where (2, 83, 84 > 0 and a1, as, az, ay € R. If the qualitative class of a sign pattern matrix contains a matrix
of the first form, then we have the following.
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1. If sgn(ag) is equal to one of sgn(ag), sgn(ay), then by Lemma 4.5, that sign pattern matrix does not
require diagonalizability.

2. If sgn(ag) = sgn(ay), then by Lemmas 4.6 and 4.10, that sign pattern matrix does not require
diagonalizability.

Similarly, if the qualitative class of a sign pattern matrix contains a matrix of the second form, then we have
the following.

1. If sgn(ay) is equal to one of sgn(as),sgn(as), then by Lemma 4.5, that sign pattern matrix does not
require diagonalizability.

2. If sgn(ag) = sgn(ag), then by Lemmas 4.6 and 4.10, that sign pattern matrix does not require
diagonalizability.

So the remaining nonequivalent sign pattern matrices of the above forms are

+ + 4+ 4] [0 + + +] [ + + 4] [+ + + 4] [0+ + +]
- - 0 0| |- =00 |- =00 |-0 0 0 |- 0 0 0
+ 0 0 0|+ 0 0 0| [+ 0 0 O] [+ 0 07|+ 0 — 0
+ 0 0 +] + 0 0o +] L+ 0 0 +] [+ 0 0 +] [+ 0 0 +]
+ + + 4] [0 + + +] [- + + 4] [+ + + 4] [0 + + +]
- =0 0| |- -0 o0 |- =00 |- 00 |- -0 0
—~ 0 0 0|'[— 0 0 Of’|-— 0 0 Of'|— 0 4+ O0|'|-— 0 + 0
+ 0 0 +] [+ 0 0 +] I+ 00 +] [+ 0 0 ol [+ 0o 0o o]

None of the above sign pattern matrices requires diagonalizability, and examples of non-diagonalizable ma-
trices in their qualitative classes are respectively

105 84 21 217 [O 10 24 21 -36 21 72 21
-81 -84 0 O -9 —-18 0 O -30 -54 0 O
14 0 0 0f’]32 0 0 0f’| 64 0 0 of’
16 0 0 63] L14 0 0 18 42 0 0 54
12 8 9 21 [0 16 18 2 ) 5 5 5
-16 0 0 O -12 0 0 O —42 =25 0 O
0 0 -2 0o|’[15 0 -2 0|"|-8 0 0 0|’
9 0 0 2 L7 0 0 2 15 0 0 5
0 10 10 9 -6 6 12 9 4 1 1 1 0 2 2 2
-9 =20 0 O -5 —-18 0 O -2 =3 0 0 -9 -8 0 0
-5 0 0 o[’[-8 0 0 0] [-2 0 V3 0'|-9 0 8 0
10 0 0 5 18 0 0 6 3 0 0 0 2 0 0 0

These are non-diagonalizable because their characteristic polynomials are respectively

(x4 21)%(x — 42)(x — 84), (z+24)*(x — 12)(x — 36), (z+72)*(xz — 72)(x — 36),

(x—8)(xz —4)*(xz +4), (z—4)>*@x+12),
(x+10)*(z +5)(z — 10), (z+12)%*(x +6)(z — 12),

(z +10)*(x + 5)(x — 10),
(z=3)%@+1)% (z—4)°%@x+4)7

and all the eigenvalues have geometric multiplicity 1. 0
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The following result gives a complete description of star sign pattern matrices that require diagonaliz-
ability.

THEOREM 4.13. A star sign pattern matriz S requires diagonalizability if and only if S is a symmetric
sign pattern matriz or a skew-symmetric sign pattern matriz with all diagonal entries zero.

Proof. If S is either a symmetric star sign pattern matrix or a skew-symmetric star sign pattern matrix
with all diagonal entries zero, then every matrix in Q(S) is similar to either a symmetric matrix or a
skew-symmetric matrix. So S requires diagonalizability.

For the converse part, suppose that S is neither a symmetric sign pattern matrix nor a skew-symmetric
sign pattern matrix with all diagonal entries zero. Suppose that S is of the form (4.14). If there are i
and j with ¢« # j and i,j > 2 such that b; # b; and a; = a;, then by Lemma 4.5, S does not require
diagonalizability. Otherwise, that is if S satisfies the condition that a; = a; implies b; = b; for all 4,j > 2,
then we can find a non-diagonalizable matrix in @Q(S) using Lemma 4.6 and one of Lemma 4.8, 4.9, 4.10,
4.11, and 4.12. So S does not require diagonalizability. 0

The following example shows that Theorem 4.13 cannot be extended to the path sign pattern matrices.

EXAMPLE 4.14. Let us consider the path sign pattern matrix:

0 + 0 O

- 0 4+ 0

0 + 0 +|’

0 0 + O
which is neither symmetric nor skew-symmetric. Any matrix in its qualitative class is similar to a matrix of
the form:

0 1 00

—a 0 1 0
B =

0 b 0 1|’

0 0 ¢ O

where a,b,c > 0. The characteristic polynomial of B is

Pg(z) =24 (a — b —c)2® — ac

= <x2_6+c—a+\/(b+c—a)2+4ac> <m2_b+c_a—\/(b+0—a)2+4ac>.

2 2

So B has one positive, one negative, and two purely imaginary eigenvalues and thus B is diagonalizable.
Hence, the above sign pattern matrix requires diagonalizability.
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