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ON PROPERTIES OF SEMIPOSITIVE CONES AND SIMPLICIAL CONES∗

ARITRA NARAYAN HISABIA† AND MANIDEEPA SAHA†

Abstract. For a given nonsingular n × n matrix A, the cone SA = {x : Ax ≥ 0} , and its subcone KA lying on the

positive orthant, called as semipositive cone, are considered. If the interior of the semipositive cone KA is not empty, then

A is named as semipositive matrix. It is known that KA is a proper polyhedral cone. In this paper, it is proved that SA

is a simplicial cone and properties of its extremals are analyzed. An one-one relation between simplicial cones and invertible

matrices is established. For a proper cone K in Rn, π(K) denotes the collection of n× n matrices that leave K invariant. For

a given minimally semipositive matrix (no column-deleted submatrix is semipositive) A, it is shown that the invariant cone

π(KA) is a simplicial cone.
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1. Introduction. An m×n real matrix A is called a semipositive (SP) matrix if there exists a positive

vector x such that Ax is also a positive vector, that is, there exists a positive vector which is mapped to

a positive vector under A. Non-negative matrices, M -matrices, P -matrices, and positive definite matrices

are some important classes of semipositive matrices. SP matrices first appeared in literature as S-matrices

named after Stiemke, due to Fiedler and Pták [5]. Motivated by the role of SP matrices in a variety of

theoretical and practical problems, mainly in linear complementarity problems, an extensive research is

carried in two directions. One is the algebraic properties and the other is cone theoretic properties of SP

matrices, which can be reviewed in [3, 4, 7, 8, 11, 13, 15, 17].

Let Rm×n denote the all m × n real matrices. For simplicity, we write Rn for Rn×1, and Rn+ stands

for all non-negative vectors in Rn. The sign ‘≥ (>)’ represents the entry wise inequality of matrices or

vectors. For A ∈ Rm×n, the aim of this paper is to study various geometric properties of its semipositive

cone KA = {x ∈ Rn+ : Ax ∈ Rm+}. If the interior of KA is non-empty, then A is a semipositive matrix.

The geometric properties of KA generate an interest to review the class of semipositive matrices and their

applications.

For an n× n real matrix A, in [15] author proved that KA is a closed, pointed and solid cone in Rn. In

paricular, author provides a precise structure of the cone KA and shows that KA is a proper polyhedral cone

in Rn. Further the result has been proved for non-square matrix A in [13]. They also studied the possible

inclusion of semipositive cone KA into other KB , for any two semipositive matrices A and B. In this paper,

for any m× n real matrix A the cone SA = {x ∈ Rn : Ax ∈ Rm+} containing KA, is considered and various

properties of the cone parallel to that ofKA are studied. Furthermore, given a coneK with specific properties,

an attempt is made to classify the matrices A for which either K = SA, or KA. Again it is known that any

two proper cones K1 ⊆ Rm and K2 ⊆ Rn, generate a proper cone π(K1,K2) = {A ∈ Rm×n : AK1 ⊆ K2}
in Rm×n. If the cones K1 = K2 = K, then the cone π(K,K) = π(K) is the collection of matrices that leave
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K invariant. In [12], authors proved that π(K1,K2) is a proper polyhedral cone, if K1 and K2 both are

polyhedral cones.

We now describe the paper as follows: Section 2 narrates the definitions and some preliminary results.

Section 3 collects cone theoretical results of SA, for some given non-singular matrices. In case A is either SP

or MSP matrix, then properties of the semipositive cone KA and its extremals are discussed. Furthermore,

the relation between KA and KA−1 is established in terms of the number of extremals. For a given polyhedral

or simplicial cone K, Section 4 is devoted to examine matrices A for which either SA = K or the semipositive

cone KA = K, and the uniqueness of such matrices. Section 5 contains the properties of the cone π(KA) for

given minimally semipositive matrix A. Finally, the results are summarized in Section 6.

2. Notations and preliminaries. Throughout this paper, we consider real matrices. We refer a

matrix A ∈ Rm×n as non-negative (positive) if all its entries are non-negative (positive) and in that case,

we write A ≥ (>)0. Similarly, we denote a non-negative (positive) vector as x ≥ (>)0, if all its entries are

non-negative (positive). The i-th column vector of the identity matrix is denoted by ei with size determined

by the context.

An m× n matrix A is called a semipositive (SP) matrix if there exists a vector x ≥ 0 such that Ax > 0.

As x→ Ax is a continuous mapping, it is equivalent to say that A is SP if there exists a vector x > 0 such

that Ax > 0. The vector x is referred to as a semipositivity vector of A. The set of all SP matrices has

two disjoint subclasses, namely minimally semipositive (MSP) matrices and redundantly semipositive (RSP)

matrices. For a semipositive matrix A if none of the column deleted submatrix of A is semipositive, then it

is known as MSP matrix, otherwise it is called as RSP matrix. We refer to [7, 17, 8, 4, 3] for some basic

properties of SP, MSP and RSP matrices.

Some preliminary facts about SP matrices are listed below:

Theorem 2.1. [7, 8, 17] If A ∈ Rm×n is an SP matrix, following results hold:

(i) If n ≥ 2 and A has a positive (negative) column, then A is RSP.

(ii) If A is of full column rank, then the pseudo-inverse A† of A is SP.

(iii) If A is MSP, then rank(A) = n.

(iv) Square MSP matrices are inverse non-negative matrices and non-square matrices are those matrices

having a non-negative left inverse.

Theorem 2.2. [17] Let A ∈ Rn×n. Then A is MSP if and only if

Ax ≥ 0 ⇒ x ≥ 0.

We now discuss some geometric properties, which will be required in the succeeding sections.

Definition 2.3. [1, 2] For any subset S of Rn, the set generated by S consists of all finite non-negative

linear combinations of elements of S, and we denote the set by SG. A set K ∈ Rn is said to be a cone if

K = SG for some subset S. A subcone of a cone K is any cone contained in K.

A cone K ∈ Rn is called polyhedral cone if there exists a finite set S such that K = SG. Equivalently,

polyhedral cones are the image of the nonnegative orthant under a linear mapping. A set is called convex,

if it contains the line segment joining any two of its points.
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A convex cone K in Rn is called

(i) pointed if K ∩ (−K) = {0},
(ii) solid if K has non-empty interior,

(iii) reproducing if K −K = Rn.

A closed, pointed and solid convex cone is called a proper cone. The dual of a cone K ∈ Rn is denoted

by K∗ and is defined as

K∗ =
{
x ∈ Rn : xT y ≥ 0 for all y ∈ K

}
.

A proper cone K always generates a partial order in Rn via y
K
≤ x if and only if x − y ∈ K. A vector

x in Rn is an extremal of K in Rn if 0
K
≤ y

K
≤ x implies that y = αx, for some α ≥ 0. If x is an extremal

vector of cone K, then {x}G is called an extremal ray of K, and in that case it can be verified that x ∈ ∂K,

the boundary of K. If a cone K has exactly n extremals, then the cone K is called a simplicial cone.

Equivalently, K is a simplicial cone if K = BRn+, for some non-singular matrix B of size n.

Let K1 ∈ Rn and K2 ∈ Rm be two proper cones. Then the set π(K1,K2) in Rm×n is defined as

π(K1,K2) = {A ∈ Rm×n : A(K1) ⊆ K2}.

It is well known that π(K1,K2) is a proper cone in Rm×n (see [1]). In case, m = n and K1 = K2 = K, for

simplicity we write π(K) for π(K,K).

For a non-zero vector a ∈ Rn and b ∈ R, we define

(a) a hyperplane as the set {x ∈ Rn : aTx = b},
(b) a (closed) halfspace as the set {x ∈ Rn : aTx ≤ b}.

Note that a hyperplane divides the Euclidean space Rn into two halfspaces.

We now state a few basic results related to cones, which are used in the following sections.

Theorem 2.4. [1] Let K be a non-empty set in Rn. Then following results hold.

(i) K is a polyhedral cone if and only if it is the intersection of finitely many closed half spaces, each

containing the origin on its boundary.

(ii) If K is a polyhedral cone, then K is a closed convex cone.

(iii) A nonempty subset K of Rn is a polyhedral cone if and only if its dual K∗ is a polyhedral cone.

Theorem 2.5. [1, 16] A proper cone is generated by its extremals.

Theorem 2.6. [1] Let K1 and K2 be proper cones, in Rn and Rm, respectively. Then

π(K1,K2) =
{
A ∈ Rm×n : A(K1 \ {0}) ⊆ intK2

}
.

Definition 2.7. [13, 15] For any A ∈ Rm×n, the semipositive cone of A is denoted by KA, and is

defined as

KA =
{
x ∈ Rn+ : Ax ∈ Rm+

}
.

Note that KA is a cone and if int(KA) 6= ∅, then A is a SP matrix and any vector in int(KA) is a semipositivity

vector of A.
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A few properties of semipositive cones, mainly due to [13], are given below:

Theorem 2.8. [13, 15] If A ∈ Rm×n, then KA is proper polyhedral cone.

Theorem 2.9. [13] If A ∈ Rn×n is invertible, then KA = Rn+ ∩A−1(Rn+) and A(KA) = KA−1 .

Definition 2.10. For any A ∈ Rm×n, define

SA =
{
x ∈ Rn : Ax ∈ Rm+

}
.

Note that SA is also a cone in Rn, which is not necessarily a proper cone and KA = SA ∩ Rn+.

3. Properties of SA and semipositive cone KA . In [13], it is proved that KA is a polyhedral cone,

for a given matrix A. In this section, we study various properties of the cones SA and KA in Rn, for a given

non-singular matrix A ∈ Rn×n, and analyze their relation if A is either SP or MSP matrix. We also discuss

the extremals of these cones in relevance to the inverse of A.

Theorem 3.1. For an invertible matrix A ∈ Rn×n, SA is a proper polyhedral cone.

Proof. As any z ∈ Rn+ can be written as z = A(A−1z) ≥ 0, so A(SA) = Rn+, that is, SA = A−1(Rn+),

and hence, SA is a polyhebdral cone, being image of nonnegative orthant under the linear map A−1.

Again A is invertible implies SA is pointed. The interior of SA is

int(SA) = {x ∈ Rn : Ax > 0} .

As A−1y ∈ int(SA) for any positive vector y, so SA is a solid cone. Thus SA is a proper polyhedral cone.

Theorem 3.2. For an invertible matrix A ∈ Rn×n, the extremals of the simplicial cone SA have the

form αiA
−1ei for some αi > 0, i = 1, 2, . . . , n.

Proof. From the proof of Theorem 3.1, we have that A(SA) = Rn+. Since A is an n×n invertible matrix,

SA is a simplicial cone.

Choose n-distinct vectors x1, x2, . . . , xn in SA, whose image under A lies in different axes of Rn+. Theo-

rem 3.1 assures the existence of such vectors. Without loss of generality, we assume that for each i, Axi lies

in the ith-axis, that is, Axi = αiei, for some positive scalar αi.

Let 0
SA

≤ y
SA

≤ xi, so that y ∈ SA and xi − y ∈ SA. As A(SA) = Rn+, 0 ≤ Ay ≤ Axi = αiei. Hence,

Ay = βei = γiAxi and γi = β
αi
≥ 0. Since A is invertible, y = γixi. Therefore, xi is an extremal of SA.

We now prove that x1, x2, . . . , xn are the only extremals of SA. Let x ∈ SA for which Ax has at least

two positive entries. Write Ax = bn1
en1

+ · · ·+ bnk
enk

, where k ≥ 2 and each bnj
(1 ≤ j ≤ k) is a positive

scalar with 1 ≤ nj ≤ n. Choose y such that Ay = biei. Then 0
SA

≤ y
SA

≤ x but y is not expressible as a

positive scalar multiple of x. Thus, x is not an extremal of SA. Thus, the result follows.

The following example illustrates the fact that the semipositive cone KA may not be simplicial, for an

invertible matrix A.

Example 3.3. Consider the invertible matrix

A =

0 0 1
1
2

1
5 −1

0 1 0

 .
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It can be verified that [1, 0, 12 ]T , [1, 0, 0]T , [0, 1, 0]T and [0, 1, 15 ]T are extremals of KA, and so KA is not a

simplicial cone.

Theorem 3.4. For an invertible SP matrix A ∈ Rn×n, if x is an extremal of KA, then Ax is an extremal

of KA−1 . Moreover, if p is an extremal of KA−1 , then A−1p is an extremal of KA.

Proof. From Theorem 2.9, we have A(KA) = KA−1 = K (say), and hence, Ax ∈ K. Let 0
K
≤ y

K
≤ Ax.

Then y ∈ K, and so we can choose z ∈ KA with y = Az. Again Ax − y ∈ K implies that A(x − z) ∈ K,

that is, x − z ∈ KA. Thus, 0
KA

≤ z
KA

≤ x , and therefore, z = cx for some c > 0, or equivalently, y = cAx.

Hence Ax is an extremal of K = KA−1 .

Let 0
KA

≤ q
KA

≤ A−1p. Then A−1p − q ∈ KA, that is, p − Aq ∈ K, so that 0
K
≤ Aq

K
≤ p. Therefore,

p = αAq for some α > 0, or equivalently, q = 1
αA
−1p. Hence A−1p is an extremal of KA.

Corollary 3.5. For an invertible SP matrix A, the number of extremals of KA and KA−1 are same.

In Example 3.3, we observe that KA may not be a simplicial cone for an invertible matrix A. We consider

the question as to whether there is a subclass of invertible matrices, for which KA is a simplicial cone. This

question is answered in the next theorem.

Theorem 3.6. Any matrix A ∈ Rn×n is minimally semipositive if and only if KA = SA and KA is a

simplicial cone.

Proof. Let A be a minimally semipositive matrix. Then A−1 ≥ 0, and hence, for y ∈ SA, y = A−1(Ay) ≥
0, that is, SA = KA. So KA is a simplicial cone by Theorem 3.2.

Conversely, assume that KA = SA is a simplicial cone and so KA is a solid cone. Hence A is a semipositive

matrix. Let x ∈ Rn and Ax ≥ 0. Then x ∈ SA = KA, and thus, x ≥ 0, which shows that A is minimally

semipositive by Theorem 2.2.

Theorem 3.6 leads to the following conclusion.

Corollary 3.7. Let A ∈ Rn×n. Then

(i) A is an SP matrix if and only if intSA intersects Rn+, and

(ii) A is an MSP matrix if and only if SA lies entirely in Rn+.

Corollary 3.8. For a square RSP matrix A, there exists a vector x with at least one negative entry

such that Ax > 0.

Remark 3.9. In Theorem 3.6, the condition KA = SA cannot be dropped. Take

A =

0 3 −1

0 1 −1

0 2 −1

 .
Note that KA 6= SA as [1, 1,−1]T ∈ SA. It can be checked that KA is simplicial with extremals [1, 0, 0]T ,

[0, 1, 0]T and [0, 1, 1]T , but A is not a minimally semipositive matrix being a singular matrix.

In Theorem 3.6, we notice that KA is a simplicial cone if A is an MSP matrix, and we now find out the

extremals KA.

Theorem 3.10. For a square minimally semipositive matrix A, extremals of KA are the columns of

A−1.
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Proof. As A is MSP, so A−1 ≥ 0 by Theorem 2.1, and hence, KA−1 = Rn+, which implies that

{e1, e2, . . . , en} is the set of the extremals of KA−1 . Since A(KA) = KA−1 , so by Theorem 3.4, {A−1e1, A−1e2,
. . . , A−1en} is the set of extremals of KA, and thus, the result follows.

4. Simplicial cones and related matrices. In Section 3, we studied the geometric structure of SA
and KA for a given matrix A with specific property. In this section, we explore the possibilities if the converse

is also true. More precisely, given a simplicial or polyhedral cone K, our aim is to find out the classes of

matrices A for which either K = SA or K = KA. We also discuss the uniqueness of such matrices.

In Theorem 3.2, we have seen that SA is a simplicial cone, for invertible matrix A. Following theorem

gives an affirmative answer if the converse of Theorem 3.2 is true.

Theorem 4.1. Let K be a simplicial cone in Rn. We then have:

(a) There exists an invertible matrix A such that SA = K.

(b) If K contains a positive vector, then there exists an invertible SP matrix A such that K = SA.

(c) If K ⊆ Rn+, then there exists a MSP matrix A such that K = KA.

Proof. (a) As K is simplicial, so by definition we can write K = BRn+, where B is invertible and the

columns of B are extremals of K. Taking B = A−1, we get SA = K.

(b) Let p be a positive vector in K. By Part (a), there exists an invertible matrix A such that SA = K.

It suffices to show that A is SP.

Since p is positive, we can always choose an open ball B(p, ε) contains only positive vectors. As SA is a

closed, so there exists q such that q ∈ B(p, ε) ∩ intSA. So q > 0 and Aq > 0.

(c) Choose an invertible SP matrix A such that SA = K, which is possible by (b). As K lies in the

positive orthant, so K = SA = KA. We only need to show that A is an MSP matrix.

Let y ∈ Rn and Ay ≥ 0. Then y ∈ SA = K, and hence, by our assumption, y ≥ 0. So, A is an MSP

matrix by Theorem 2.2.

In Theorem 4.1, we have seen that any simplicial cone K must have the form K = SA, for some invertible

matrix A. Following theorem provides the uniqueness of such matrix A up to post-multiplying by a positive

diagonal matrix.

Theorem 4.2. Let K be a simplicial cone in Rn, and let A and B are two invertible matrices such that

K = SA = SB. Then there exists a positive diagonal matrix D such that A = BD.

Proof. Let {x1, x2, . . . , xn} be the extremals of K. As K = SA = SB , from Theorem 3.2, we have

positive scalar zi and wj such that

xi = ziA
−1ei = wjB

−1ej , i, j = 1, 2, . . . , n,

or

ziBei = wjAej , i, j = 1, 2, . . . , n.(4.1)

Choose D1 = diag(z1, z2, . . . , zn) and D2 = diag(w1, w2, . . . , wn). The equation (4.1), can be written

BD1P = AD2, for some permutation matrix P . As D1 and D2 are positive diagonal matrices, so con-

clusion follows by considering the positive diagonal matrix D = D1PD
−1
2 .
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Theorem 4.3. For every SP matrix A, there exists a MSP matrix B such that KB ⊆ KA.

Proof. Let A be any SP matrix and p > 0 be such that Ap > 0. Note that p ∈ intKA and so we

can find ε > 0 such that B(p, ε) ⊆ intKA. Choose n linearly independent vectors y1, y2, . . . , yn (say) in

B(p, ε). Set Ã−1 = [y1, y2, . . . , yn] so that by Theorem 3.2, SÃ is a simplicial cone with α1y1, α2y2, . . . , αnyn
as its extremals with αi > 0, for all i. Hence by Theorem 4.1(c) there exists a MSP matrix B such that

KB = SÃ = {α1y1, α2y2, . . . , αnyn}G. As B(p, ε) ⊆ intKA, so KB ⊆ KA.

The above theorem together with Theorem 3.6 reveals that every solid semipositive cone contains a

simplicial cone.

Theorem 4.4. Let K be any proper polyhedral cone in Rn such that one of its extremals lie in the

positive orthant. Then there exists a minimally semipositive matrix A such that KA is a subcone of K.

Proof. Let x ∈ intRn+ be an extremal of K. Choose an open ball B(x, ε) ⊆ intRn+. As x ∈ ∂K,

B(x, ε) ∩ intK 6= φ. Hence,

intRn+ ∩ intK 6= φ.

Now let V = K ∩Rn+. Since K and Rn+ both are proper polyhedral cone and intV = intRn+∩ intK 6= φ, V is

also a proper polyhedral cone. Hence V = {x1, . . . , xk}G. Since V −V = Rn, so Rn = span{x1, . . . , xk}. So,

k ≥ n and we choose n-linearly independent extremals, say {x1, . . . , xn}. Consider the simplicial subcone

K̃ = {x1, . . . , xn}G of V and hence of K. Hence by Theorem 4.1 there exists a minimally semipositive matrix

A such that KA = K̃.

From the above theorem, we can conclude that every polyhedral cone contains a simplicial cone.

5. Matrices leaving a cone invariant: π(K). In [12], authors proved that for any two proper cones

K1 and K2 in Rn and Rm, respectively, π(K1,K2) is a proper cone. Also π(K1,K2) is a proper polyhedral

cone if so are K1 and K2. In this section, we discuss the geometric structure of π(KA), for a given MSP

matrix A.

Theorem 5.1. If A is square MSP matrix, then π(KA) is a simplicial cone.

Proof. Since A is a MSP matrix, KA is a simplicial cone with A−1e1, . . . , A
−1en as extremals of KA.

For i = 1, 2, . . . , n, set ãi = A−1ei ≥ 0, as A is MSP. If bTi denotes the ith row of A, then

bTi ãj = δij .

For p, q ∈ {1, 2, . . . , n}, we define Bpq (as in Lemma 5 of [12]) by,

Bpq = ãpb
T
q .

Note that B = {Bpq : 1 ≤ p, q ≤ n} forms a basis of Rn×n. Let x ∈ KA so that x ≥ 0 and Ax ≥ 0. Now

(5.2) ABpqx = Aãpb
T
q x = (bTq x)ep ≥ 0.

Hence Bpq ∈ π(SA) = π(KA), by Theorem 3.6. We now prove that π(KA) is simplicial by showing that the

extremals of π(KA) are the elements of B.

Let Y ∈ π(KA). Choose scalars drl such that

(5.3) Y =

n∑
r,l=1

drlBrl.
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Now for any x ∈ KA, we have Y x ∈ KA so that Y x ≥ 0 and A(Y x) ≥ 0. Then

(5.4) bTi Y x ≥ 0 for i = 1, 2, . . . , n.

Note that ãj ∈ KA. Taking x = ãj in equation (5.4) we obtain bTi Y ãj ≥ 0, for i, j = 1, 2, . . . , n. Hence

equation (5.3) implies that

n∑
r,l=1

drlb
T
i Brlãj ≥ 0,

or
n∑

r,l=1

drlb
T
i ãrb

T
l ãj ≥ 0,

or

dij ≥ 0.

So, from (5.3) we conclude that any Y ∈ π(KA), can be written as non-negative linear combination of

elements of B.

For simplicity, write K = π(KA). Let 0
K
≤ Y

K
≤ Bpq. Then

Y =

n∑
r,l=1

drlBrl and Bpq − Y =

n∑
r,l=1

frlBrl

for some drl, frl ≥ 0 and r, l ∈ {1, 2, . . . , n}. Now Bpq =
n∑

r,l=1

(drl + frl)Brl implies that drl = frl = 0, for

r 6= p and l 6= q. So Y = dpqBpq and dpq ≥ 0, or equivalently, we say that elements of Bpq are extremals of

π(KA). As each element in π(KA) is a non-negative linear combination of the extremals vectors in B, so B
is the set all extremals of π(KA). Therefore π(KA) is simplicial.

Theorem 5.2. If A is an SP matrix, then any matrix B ∈ intπ(KA) is also SP and KA ⊆ KB.

Proof. Let u be a semipositivity vector of A. Note u ∈ KA \ {0}. As B ∈ intπ(KA), from Theorem 2.6,

we have Bu ∈ int(KA), and hence, Bu > 0. This shows that B is SP and u ∈ KB . Hence KA ⊆ KB .

6. Conclusion. In this paper, we have proved that the cone SA is a simplicial cone, for a given non-

singular matrix A. We have also shown that SA is a semipositive cone if A is a minimally semipositive

matrix and the extremals of KA are nothing but the columns of A−1. Next, for a given simplicial cone K,

we proved the existence of a nonsingular matrix A for which SA = K and the uniqueness of such a matrix is

also discussed. Lastly, for a given matrix A, we have considered the cone π(KA) of all matrices that leave the

semipositive cone KA invariant. In particular, we have proved that if the matrix A is minimally semipositive

matrix, then cone π(KA) must be a simplicial cone.
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