AN ELEMENTARY PROOF OF MIRSKY'S LOW RANK APPROXIMATION THEOREM*

CHI-KWONG LI ${ }^{\dagger}$ AND GILBERT STRANG ${ }^{\ddagger}$

Abstract

An elementary proof is given for Mirsky's result on best low rank approximations of a given matrix with respect to all unitarily invariant norms.

Key words. Unitarily invariant norm, Singular value, Best approximation.

AMS subject classifications. 15A60.

1. Introduction. Let $M_{m, n}$ be the set of $m \times n$ matrices over \mathbb{F}, where \mathbb{F} is the real field or the complex field. Denote by \boldsymbol{x}^{*} and A^{*} the conjugate transpose of a vector $\boldsymbol{x} \in \mathbb{F}^{n}$ and a matrix $A \in M_{m, n}$. They reduce to the transposes of \boldsymbol{x} and A if their entries are real. It is well-known that every $A \in M_{m, n}$ admits a singular value decomposition

$$
A=\sum_{j=1}^{r} \sigma_{j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{*}=\left[\boldsymbol{u}_{1} \cdots \boldsymbol{u}_{r}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right]\left[\boldsymbol{v}_{1} \cdots \boldsymbol{v}_{r}\right]^{*}
$$

where r is the rank of $A,\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}\right\} \in \mathbb{C}^{m}$ and $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}\right\} \in \mathbb{C}^{n}$ are orthonormal families, and $\sigma_{1} \geq \cdots \geq$ $\sigma_{r}>0$ are the nonzero singular values of A; e.g., see $[5,7]$. By this result, one may use r positive numbers $\sigma_{1}, \ldots, \sigma_{r}$, and $\left[\boldsymbol{u}_{1} \cdots \boldsymbol{u}_{r}\right] \in M_{m, r}$ and $\left[\boldsymbol{v}_{1} \cdots \boldsymbol{v}_{r}\right] \in M_{n, r}$ to represent the $m \times n$ matrix A. If m, n are large and r is small, the singular value decomposition provides efficient means to store or transmit data encoded in the matrix A. In case the matrix A has a high rank, one may find a suitable low rank approximation of A within an acceptable error bound condition that can be stored or transmitted efficiently. The singular value decomposition allows us to construct the best low rank approximation for A by the following result of Mirsky [5, Theorem 3], which is an extension of the result of Schmidt [6, §18, Das Approximations Theorem]; see also [1].

THEOREM 1.1. Let $\|\cdot\|$ be a unitarily invariant norm on $M_{m, n}$. Suppose $A \in M_{m, n}$ has singular value decomposition $A=\sum_{j=1}^{r} \sigma_{j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{*}$. If $k \leq r$, then the matrix $A_{k}=\sum_{j=1}^{k} \sigma_{j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{*}$ satisfies

$$
\left\|A-A_{k}\right\| \leq\|A-B\| \quad \text { for any } B \in M_{m, n} \text { with rank at most } k .
$$

Recall that a norm on $M_{m, n}$ is unitarily invariant if $\|U A V\|=\|A\|$ for any $A \in M_{m, n}, U \in \mathcal{U}_{m}$ and $V \in \mathcal{U}_{n}$, where $\mathcal{U}_{N}=\left\{A \in M_{N}: A^{*} A=I_{N}\right\}$ is the group of unitary matrices in the complex case and the group of orthogonal matrices in the real case. Note that the nonzero singular values of A are just the positive square roots of the nonzero eigenvalues of $A^{*} A$ so that the singular values of A and $U A V$ are always

[^0]the same for any $U \in \mathcal{U}_{m}$ and $V \in \mathcal{U}_{n}$. Thus, $\|A\|$ only depends on the singular values of A. Examples of unitarily invariant norms include the spectral norm and the Frobenius norm defined by
$$
\|A\|_{2}=\max \left\{|A x|: \boldsymbol{x} \in \mathbb{F}^{n},|\boldsymbol{x}|=1\right\} \quad \text { and } \quad\|A\|_{F}=\left(\operatorname{tr} A^{*} A\right)^{1 / 2}, \quad \text { respectively }
$$
where $|\boldsymbol{u}|=\left(\sum_{j=1}^{n}\left|u_{j}\right|^{2}\right)^{1 / 2}$ for $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)^{t} \in \mathbb{F}^{n}$. If A has nonzero singular values $\sigma_{1} \geq \cdots \geq \sigma_{r}$, then $\|A\|_{2}=\sigma_{1}$ and $\|A\|_{F}=\left(\sum_{j=1}^{r} \sigma_{j}^{2}\right)^{1 / 2}$.

One may see $[1,2,3,4,5,7]$ and their references for the wide applications of Theorem 1.1. The original and subsequent proofs of Theorem 1.1 used symmetric gauge functions, Weyl inequalities, and the Ky Fan dominance theorem [2, 4, 5]. In [7], simple proofs of Theorem 1.1 for the special cases of the spectral norm and the Frobenius norm were given. In the next section, we will give a self-contained elementary proof of Mirsky's result that only uses the condition for a homogeneous system of linear equations $B \boldsymbol{z}=0$ to have a nonzero solution and the fact that matrices $X, Y \in M_{m, n}$ with the same singular values satisfy $\|X\|=\|Y\|$ for any unitarily invariant norm $\|\cdot\|$.
2. An elementary proof of Theorem 1.1. Suppose $\|\cdot\|$ is a unitarily invariant norm on $M_{m, n}$, and $A \in M_{m, n}$ has singular value decomposition $A=\sum_{j=1}^{r} \sigma_{j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{*}$. Suppose $B \in M_{m, n}$ with rank at most $k \leq r$, and $C=A-B$ has singular value decomposition

$$
C=\sum_{j=1}^{\ell} \xi_{j} \boldsymbol{x}_{j} \boldsymbol{y}_{j}^{*}
$$

with $\xi_{1} \geq \cdots \geq \xi_{\ell} \geq 0$ and orthonormal sets $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\ell}\right\} \subseteq \mathbb{F}^{m},\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{\ell}\right\} \subseteq \mathbb{F}^{n}$. Let $\sigma_{j}=0$ for $j>r$. First, we show that

$$
\begin{equation*}
\xi_{j} \geq \sigma_{k+j} \quad \text { for } j=1, \ldots, \ell \tag{2.1}
\end{equation*}
$$

Extend $\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{\ell}\right\}$ to an orthonormal basis $\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}\right\}$ for \mathbb{F}^{n}. Then every unit vector $\boldsymbol{y} \in \mathbb{F}^{n}$ can be written as $\boldsymbol{y}=\sum_{j=1}^{n} a_{j} \boldsymbol{y}_{j}$ for a unit vector $\left(a_{1}, \ldots, a_{n}\right)^{t} \in \mathbb{F}^{n}$ so that

$$
|C \boldsymbol{y}|=\left|C\left(\sum_{j=1}^{n} a_{j} \boldsymbol{y}_{j}\right)\right|=\left|\sum_{j=1}^{\ell} a_{j} \xi_{j} \boldsymbol{x}_{j}\right|=\left(\sum_{j=1}^{\ell}\left|a_{j} \xi_{j}\right|^{2}\right)^{1 / 2}
$$

Thus, $\xi_{1}=\left|C \boldsymbol{y}_{1}\right|=\max \left\{|C \boldsymbol{v}|: \boldsymbol{v} \in \mathbb{F}^{n},|\boldsymbol{v}|=1\right\}$; for $j=2, \ldots, \ell$,

$$
\begin{equation*}
\xi_{j}=\left|C \boldsymbol{y}_{j}\right|=\max \left\{|C \boldsymbol{v}|: \boldsymbol{v} \in \mathbb{F}^{n}, \boldsymbol{y}_{1}^{*} \boldsymbol{v}=\cdots=\boldsymbol{y}_{j-1}^{*} \boldsymbol{v}=0,|\boldsymbol{v}|=1\right\} . \tag{2.2}
\end{equation*}
$$

Now, B has rank at most k and so does the matrix $B\left[\boldsymbol{v}_{1}|\cdots| \boldsymbol{v}_{k+1}\right] \in M_{n, k+1}$. Hence, there is a unit vector $\boldsymbol{z}_{1}=\left(a_{1}, \ldots, a_{k+1}\right)^{t} \in \mathbb{F}^{m}$ satisfying $B\left[\boldsymbol{v}_{1}|\cdots| \boldsymbol{v}_{k+1}\right] \boldsymbol{z}_{1}=0$. Consider the unit vector $\widetilde{\boldsymbol{z}}=a_{1} \boldsymbol{v}_{1}+\cdots+$ $a_{k+1} \boldsymbol{v}_{k+1} \in \mathbb{F}^{n}$. We have

$$
\begin{aligned}
\xi_{1} & =\|A-B\|_{2} \geq|(A-B) \widetilde{\boldsymbol{z}}|=|A \widetilde{\boldsymbol{z}}|=\left|A\left(a_{1} \boldsymbol{v}_{1}+\cdots+a_{k+1} \boldsymbol{v}_{k+1}\right)\right| \\
& =\left|\sum_{j=1}^{k+1} a_{j} \sigma_{j} \boldsymbol{u}_{j}\right|=\left\{\sum_{j=1}^{k+1}\left|a_{j} \sigma_{j}\right|^{2}\right\}^{1 / 2} \geq \sigma_{k+1}\left\{\sum_{j=1}^{k+1}\left|a_{j}\right|^{2}\right\}^{1 / 2}=\sigma_{k+1} .
\end{aligned}
$$

For $j>1$, append row $\boldsymbol{y}_{1}^{*}, \boldsymbol{y}_{2}^{*}, \ldots, \boldsymbol{y}_{j-1}^{*}$ to the matrix B to get $B_{j} \in M_{m+j-1, n}$. Then B_{j} has rank at most $k+j-1$ and so does the matrix $B_{j}\left[\boldsymbol{v}_{1}|\cdots| \boldsymbol{v}_{k+j}\right] \in M_{m+j-1, k+j}$. Hence, there is a unit vector
$\boldsymbol{z}_{j}=\left(b_{1}, \ldots, b_{k+j}\right)^{t} \in \mathbb{F}^{k+j}$ satisfying $B_{j}\left[\boldsymbol{v}_{1}|\cdots| \boldsymbol{v}_{k+j}\right] \boldsymbol{z}_{j}=0$. As a result, the unit vector $\widetilde{\boldsymbol{z}}_{j}=b_{1} \boldsymbol{v}_{1}+\cdots+$ $b_{k+j} \boldsymbol{v}_{k+j} \in \mathbb{F}^{n}$ satisfies $B \widetilde{\boldsymbol{z}}_{j}=0 \in \mathbb{F}^{m}$ and $\boldsymbol{y}_{i}^{*} \widetilde{\boldsymbol{z}}_{j}=0$ for $i=1, \ldots, j-1$. By (2.2),

$$
\begin{aligned}
\xi_{j} & \geq\left|(A-B) \widetilde{\boldsymbol{z}}_{j}\right|=\left|A \widetilde{\boldsymbol{z}}_{j}\right|=\left|A\left(b_{1} \boldsymbol{v}_{1}+\cdots+b_{k+j} \boldsymbol{v}_{k+j}\right)\right| \\
& =\left|\sum_{j=1}^{k+j} b_{j} \sigma_{j} \boldsymbol{u}_{j}\right|=\left\{\sum_{j=1}^{k+j}\left|b_{j} \sigma_{j}\right|^{2}\right\}^{1 / 2} \geq \sigma_{k+j}\left\{\sum_{j=1}^{k+j}\left|b_{j}\right|^{2}\right\}^{1 / 2}=\sigma_{k+j}
\end{aligned}
$$

The proof of (2.1) is complete.
To prove Theorem 1.1, we construct matrices C_{1}, \ldots, C_{ℓ} in $M_{m, n}$ such that

$$
\begin{equation*}
\left\|A-A_{k}\right\| \leq\left\|C_{1}\right\| \leq \cdots \leq\left\|C_{\ell}\right\|=\|A-B\| \tag{2.3}
\end{equation*}
$$

Let $\left\{E_{11}, E_{12}, \ldots, E_{m n}\right\}$ be the standard basis for $M_{m, n}$. We continue to assume $\sigma_{j}=0$ if $j>r$, and set $D=\sum_{j=1}^{\ell} \sigma_{k+j} E_{j j}$ so that $\|D\|=\left\|A-A_{k}\right\|$. By (2.1), for every $j=1, \ldots, \ell$, there is $t_{j} \in[0,1]$ such that $t_{j} \xi_{j}=\sigma_{k+j}$. Let $C_{1}=\xi_{1} E_{11}+\sum_{j=2}^{\ell} \sigma_{k+j} E_{j j}$ and $\widetilde{C}_{1}=-\xi_{1} E_{11}+\sum_{j=2}^{\ell} \sigma_{k+j} E_{j j}$. Then both C_{1} and \widetilde{C}_{1} have singular values $\xi_{1}, \sigma_{k+2}, \ldots, \sigma_{\ell}$, and $D=\frac{1+t_{1}}{2} C_{1}+\frac{1-t_{1}}{2} \widetilde{C}_{1}$:

$$
\|D\|=\left\|\frac{1+t_{1}}{2} C_{1}+\frac{1-t_{1}}{2} \widetilde{C}_{1}\right\| \leq \frac{1+t_{1}}{2}\left\|C_{1}\right\|+\frac{1-t_{1}}{2}\left\|\widetilde{C}_{1}\right\|=\left\|C_{1}\right\|
$$

Now, let $C_{2}=\xi_{1} E_{11}+\xi_{2} E_{22}+\sum_{j=3}^{\ell} \sigma_{k+j} E_{j j}$ and $\widetilde{C}_{2}=\xi_{1} E_{11}-\xi_{2} E_{22}+\sum_{j=3}^{\ell} \sigma_{k+j} E_{j j}$. Then both C_{2} and \widetilde{C}_{2} have singular values $\xi_{1}, \xi_{2}, \sigma_{k+3}, \ldots, \sigma_{\ell}$, and

$$
\left\|C_{1}\right\|=\left\|\frac{1+t_{2}}{2} C_{2}+\frac{1-t_{2}}{2} \widetilde{C}_{2}\right\| \leq \frac{1+t_{2}}{2}\left\|C_{2}\right\|+\frac{1-t_{2}}{2}\left\|\widetilde{C}_{2}\right\|=\left\|C_{2}\right\|
$$

Repeating this argument ℓ times, we get C_{1}, \ldots, C_{ℓ}, where C_{ℓ} has singular values $\xi_{1}, \ldots, \xi_{\ell}$ and

$$
\left\|A-A_{k}\right\|=\|D\| \leq\left\|C_{1}\right\| \leq \cdots \leq\left\|C_{\ell}\right\|=\|C\|=\|A-B\|
$$

Thus, (2.3) holds.

Notes added in proof. As observed by the referee, inequalities in (2.1) are just special cases of Weyl inequalities asserting that for any $X, Y \in M_{m, n}$ and $i+j<\min \{m, n\}$, we have $\sigma_{i}(X)+\sigma_{j}(Y) \geq$ $\sigma_{i+j-1}(X+Y)$, where $\sigma_{1}(Z) \geq \sigma_{2}(Z) \geq \cdots$ are the singular values of $Z \in M_{m, n}$. Applying this result to our matrices B with rank at most k and $C=A-B$, one gets

$$
\sigma_{k+j}(A)=\sigma_{k+j}(C+B) \leq \sigma_{j}(C)+\sigma_{k+1}(B)=\sigma_{j}(C)
$$

which yields (2.1). The Weyl inequalities can be proved using subspace intersection properties; e.g., see [2, Theorem 3.3.16(a)]. As mentioned in the introduction, one may prove Theorem 1.1 using singular value inequalities and the Ky Fan dominance theorem, e.g., see [2, p. 215].

Acknowledgments. We thank the referee for alerting us that the special case of Theorem 1.1 for the Frobenius norm was published in [6], and rediscovered in [1]. We also thank the referee for some helpful suggestions.

REFERENCES

[1] C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1:211-218, 1936.
[2] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.
[3] C.K. Li and N.K. Tsing. On unitarily invariant norms and related results. Linear and Multilinear Algebra, 20:107-119, 1987.
[4] A.W. Marshall, I. Olkin, and B.C. Arnold. Inequalities: Theory of Majorization and Its Applications, second edition. Springer, New York, 2011.
[5] L. Mirsky. Symmetric gauge functions and unitarily invariant norms. Quarterly Journal of Mathematics, 11:50-59, 1960.
[6] E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen. Mathematische Annalen, 63:433-476, 1907.
[7] G. Strang. Linear Algebra and Learning from Data. Wellesley-Cambridge Press, 2019.

[^0]: *Received by the editors on July 28, 2020. Accepted for publication on August 9, 2020. Handling Editor: Michael Tsatsomeros. Corresponding Author: Chi-Kwong Li.
 ${ }^{\dagger}$ Department of Mathematics, College of William and Mary, Williamsburg, VA 23187-8795, USA (ckli@math.wm.edu). Supported by the Simons Foundation Grant 351047.
 \ddagger Department of Mathematics, MIT, Cambridge, MA 02139, USA (gilstrang@gmail.com).

