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AN ELEMENTARY PROOF OF MIRSKY’S LOW RANK APPROXIMATION THEOREM∗

CHI-KWONG LI† AND GILBERT STRANG‡

Abstract. An elementary proof is given for Mirsky’s result on best low rank approximations of a given matrix with respect

to all unitarily invariant norms.
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1. Introduction. Let Mm,n be the set of m×n matrices over F, where F is the real field or the complex

field. Denote by x∗ and A∗ the conjugate transpose of a vector x ∈ Fn and a matrix A ∈ Mm,n. They

reduce to the transposes of x and A if their entries are real. It is well-known that every A ∈Mm,n admits a

singular value decomposition

A =

r∑
j=1

σjujv
∗
j = [u1 · · ·ur]

σ1 . . .

σr

 [v1 · · ·vr]∗,

where r is the rank of A, {u1, . . . ,ur} ∈ Cm and {v1, . . . ,vr} ∈ Cn are orthonormal families, and σ1 ≥ · · · ≥
σr > 0 are the nonzero singular values of A; e.g., see [5, 7]. By this result, one may use r positive numbers

σ1, . . . , σr, and [u1 · · ·ur] ∈Mm,r and [v1 · · ·vr] ∈Mn,r to represent the m× n matrix A. If m,n are large

and r is small, the singular value decomposition provides efficient means to store or transmit data encoded

in the matrix A. In case the matrix A has a high rank, one may find a suitable low rank approximation

of A within an acceptable error bound condition that can be stored or transmitted efficiently. The singular

value decomposition allows us to construct the best low rank approximation for A by the following result of

Mirsky [5, Theorem 3], which is an extension of the result of Schmidt [6, §18, Das Approximations Theorem];

see also [1].

Theorem 1.1. Let ‖ · ‖ be a unitarily invariant norm on Mm,n. Suppose A ∈Mm,n has singular value

decomposition A =
∑r

j=1 σjujv
∗
j . If k ≤ r, then the matrix Ak =

∑k
j=1 σjujv

∗
j satisfies

‖A−Ak‖ ≤ ‖A−B‖ for any B ∈Mm,n with rank at most k.

Recall that a norm on Mm,n is unitarily invariant if ‖UAV ‖ = ‖A‖ for any A ∈ Mm,n, U ∈ Um and

V ∈ Un, where UN = {A ∈ MN : A∗A = IN} is the group of unitary matrices in the complex case and

the group of orthogonal matrices in the real case. Note that the nonzero singular values of A are just the

positive square roots of the nonzero eigenvalues of A∗A so that the singular values of A and UAV are always
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the same for any U ∈ Um and V ∈ Un. Thus, ‖A‖ only depends on the singular values of A. Examples of

unitarily invariant norms include the spectral norm and the Frobenius norm defined by

‖A‖2 = max{|Ax| : x ∈ Fn, |x| = 1} and ‖A‖F = (tr A∗A)1/2, respectively,

where |u| = (
∑n

j=1 |uj |2)1/2 for u = (u1, . . . , un)t ∈ Fn. If A has nonzero singular values σ1 ≥ · · · ≥ σr, then

‖A‖2 = σ1 and ‖A‖F = (
∑r

j=1 σ
2
j )1/2.

One may see [1, 2, 3, 4, 5, 7] and their references for the wide applications of Theorem 1.1. The original

and subsequent proofs of Theorem 1.1 used symmetric gauge functions, Weyl inequalities, and the Ky Fan

dominance theorem [2, 4, 5]. In [7], simple proofs of Theorem 1.1 for the special cases of the spectral norm

and the Frobenius norm were given. In the next section, we will give a self-contained elementary proof of

Mirsky’s result that only uses the condition for a homogeneous system of linear equations Bz = 0 to have a

nonzero solution and the fact that matrices X,Y ∈Mm,n with the same singular values satisfy ‖X‖ = ‖Y ‖
for any unitarily invariant norm ‖ · ‖.

2. An elementary proof of Theorem 1.1. Suppose ‖ · ‖ is a unitarily invariant norm on Mm,n, and

A ∈ Mm,n has singular value decomposition A =
∑r

j=1 σjujv
∗
j . Suppose B ∈ Mm,n with rank at most

k ≤ r, and C = A−B has singular value decomposition

C =
∑̀
j=1

ξjxjy
∗
j

with ξ1 ≥ · · · ≥ ξ` ≥ 0 and orthonormal sets {x1, . . . ,x`} ⊆ Fm, {y1, . . . ,y`} ⊆ Fn. Let σj = 0 for j > r.

First, we show that

(2.1) ξj ≥ σk+j for j = 1, . . . , `.

Extend {y1, . . . ,y`} to an orthonormal basis {y1, . . . ,yn} for Fn. Then every unit vector y ∈ Fn can be

written as y =
∑n

j=1 ajyj for a unit vector (a1, . . . , an)t ∈ Fn so that

|Cy| =
∣∣∣C( n∑

j=1

ajyj

)∣∣∣ =
∣∣∣ ∑̀
j=1

ajξjxj

∣∣∣ =
(∑̀

j=1

|ajξj |2
)1/2

.

Thus, ξ1 = |Cy1| = max{|Cv| : v ∈ Fn, |v| = 1}; for j = 2, . . . , `,

(2.2) ξj = |Cyj | = max
{
|Cv| : v ∈ Fn, y∗

1v = · · · = y∗
j−1v = 0, |v| = 1

}
.

Now, B has rank at most k and so does the matrix B[v1| · · · |vk+1] ∈Mn,k+1. Hence, there is a unit vector

z1 = (a1, . . . , ak+1)t ∈ Fm satisfying B[v1| · · · |vk+1]z1 = 0. Consider the unit vector z̃ = a1v1 + · · · +
ak+1vk+1 ∈ Fn. We have

ξ1 = ‖A−B‖2 ≥ |(A−B)z̃| = |Az̃| = |A(a1v1 + · · ·+ ak+1vk+1)|

=
∣∣∣ k+1∑
j=1

ajσjuj

∣∣∣ =
{ k+1∑

j=1

|ajσj |2
}1/2

≥ σk+1

{ k+1∑
j=1

|aj |2
}1/2

= σk+1.

For j > 1, append row y∗
1,y

∗
2, . . . ,y

∗
j−1 to the matrix B to get Bj ∈ Mm+j−1,n. Then Bj has rank at

most k + j − 1 and so does the matrix Bj [v1| · · · |vk+j ] ∈ Mm+j−1,k+j . Hence, there is a unit vector
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zj = (b1, . . . , bk+j)
t ∈ Fk+j satisfying Bj [v1| · · · |vk+j ]zj = 0. As a result, the unit vector z̃j = b1v1 + · · ·+

bk+jvk+j ∈ Fn satisfies Bz̃j = 0 ∈ Fm and y∗
i z̃j = 0 for i = 1, . . . , j − 1. By (2.2),

ξj ≥ |(A−B)z̃j | = |Az̃j | = |A(b1v1 + · · ·+ bk+jvk+j)|

=
∣∣∣ k+j∑
j=1

bjσjuj

∣∣∣ =
{ k+j∑

j=1

|bjσj |2
}1/2

≥ σk+j

{ k+j∑
j=1

|bj |2
}1/2

= σk+j .

The proof of (2.1) is complete.

To prove Theorem 1.1, we construct matrices C1, . . . , C` in Mm,n such that

(2.3) ‖A−Ak‖ ≤ ‖C1‖ ≤ · · · ≤ ‖C`‖ = ‖A−B‖.

Let {E11, E12, . . . , Emn} be the standard basis for Mm,n. We continue to assume σj = 0 if j > r, and set

D =
∑`

j=1 σk+jEjj so that ‖D‖ = ‖A − Ak‖. By (2.1), for every j = 1, . . . , `, there is tj ∈ [0, 1] such that

tjξj = σk+j . Let C1 = ξ1E11 +
∑`

j=2 σk+jEjj and C̃1 = −ξ1E11 +
∑`

j=2 σk+jEjj . Then both C1 and C̃1

have singular values ξ1, σk+2, . . . , σ`, and D = 1+t1
2 C1 + 1−t1

2 C̃1:

‖D‖ =
∥∥∥1 + t1

2
C1 +

1− t1
2

C̃1

∥∥∥ ≤ 1 + t1
2
‖C1‖+

1− t1
2
‖C̃1‖ = ‖C1‖.

Now, let C2 = ξ1E11 + ξ2E22 +
∑`

j=3 σk+jEjj and C̃2 = ξ1E11 − ξ2E22 +
∑`

j=3 σk+jEjj . Then both C2 and

C̃2 have singular values ξ1, ξ2, σk+3, . . . , σ` , and

‖C1‖ =
∥∥∥1 + t2

2
C2 +

1− t2
2

C̃2

∥∥∥ ≤ 1 + t2
2
‖C2‖+

1− t2
2
‖C̃2‖ = ‖C2‖.

Repeating this argument ` times, we get C1, . . . , C`, where C` has singular values ξ1, . . . , ξ` and

‖A−Ak‖ = ‖D‖ ≤ ‖C1‖ ≤ · · · ≤ ‖C`‖ = ‖C‖ = ‖A−B‖.

Thus, (2.3) holds.

Notes added in proof. As observed by the referee, inequalities in (2.1) are just special cases of

Weyl inequalities asserting that for any X,Y ∈ Mm,n and i + j < min{m,n}, we have σi(X) + σj(Y ) ≥
σi+j−1(X + Y ), where σ1(Z) ≥ σ2(Z) ≥ · · · are the singular values of Z ∈ Mm,n. Applying this result to

our matrices B with rank at most k and C = A−B, one gets

σk+j(A) = σk+j(C +B) ≤ σj(C) + σk+1(B) = σj(C),

which yields (2.1). The Weyl inequalities can be proved using subspace intersection properties; e.g., see [2,

Theorem 3.3.16 (a)]. As mentioned in the introduction, one may prove Theorem 1.1 using singular value

inequalities and the Ky Fan dominance theorem, e.g., see [2, p. 215].
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