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ON A NEW CLASS OF STRUCTURED MATRICES RELATED TO
THE DISCRETE SKEW-SELF-ADJOINT DIRAC SYSTEMS*

B. FRITZSCHET, B. KIRSTEINT, AND A.L. SAKHNOVICH?

Abstract. A new class of the structured matrices related to the discrete skew-self-adjoint Dirac
systems is introduced. The corresponding matrix identities and inversion procedure are treated.
Analogs of the Schur coefficients and of the Christoffel-Darboux formula are studied. It is shown
that the structured matrices from this class are always positive-definite, and applications for an
inverse problem for the discrete skew-self-adjoint Dirac system are obtained.
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1. Introduction. It is well-known that Toeplitz and block Toeplitz matrices are
closely related to a discrete system of equations, namely to Szego recurrence. This
connection have been actively studied during the last decades. See, for instance, [1]-
[5], [12, 25] and numerous references therein. The connections between block Toeplitz
matrices and Weyl theory for the self-adjoint discrete Dirac system were treated in
[11]. (See [26] for the Weyl theory of the discrete analog of the Schrédinger equation.)
The Weyl theory for the skew-self-adjoint discrete Dirac system

i
(L1) - Wiga(N) = Wi(N) = = CWik(N), G = Cf = ol k=0,1,...

was developed in [14, 18]. Here Cy are 2p x 2p matrix functions. When p = 1,
system (1.1) is an auxiliary linear system for the isotropic Heisenberg magnet model.
Explicit solutions of the inverse problem were constructed in [14]. A general procedure
to construct the solutions of the inverse problem for system (1.1) was given in [18],
using a new class of structured matrices S, which satisfy the matrix identity

(1.2) AS — SA* = iIIII*.
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Here, S and A are (n+ 1)p x (n+ 1)p matrices and II is an (n+ 1)p x 2p matrix. The
block matrix A has the form

0 for r>0

n

)
o, Ay = —1I, for r=0 ,
k,j=0 2

i1, for r<0

(13)  A=Am) = {a)

where I, is the p x p identity matrix. The matrix II = [®; 5] consists of two block
columns of the form

Ip (7))

I, oo + a1
(1.4) d, = . , P =

1, o+ 4+ ay

DEFINITION 1.1. The class of the block matrices S determined by the matrix
identity (1.2) and formulas (1.3) and (1.4) is denoted by §,,.

Notice that the blocks «y in [18] are Taylor coefficients of the Weyl functions and
that the matrices C,, (0 < n <) in (1.1) are easily recovered from the expressions
(n)*S(n)~I(n) (0 < n <) (see Theorem 3.4 of [18]). In this way, the structure of
the matrices S determined by the matrix identity (1.2) and formulas (1.3) and (1.4),
their inversion and conditions of invertibility prove essential. Recall that the self-
adjoint block Toeplitz matrices satisfy [15]-[17] the identity AS —SA* = I1LJII* (J =
[ ;) Ié’ ]), which is close to (1.2)—(1.4). We refer also to [20]-[24] and references
thefein for the general method of the operator identities. The analogs of various
results on the Toeplitz matrices and j-theory from [6]-[11] can be obtained for the
class 2, too.

2. Structure of the matrices from €),. Consider first the block matrix S =
n
{sk j} with the p x p entries sy, which satisfies the identity
k.j=0

(2.1) AS - SA* =iQ, Q= {qkj}z,jzo :

One can easily see that the equality

k—1 j—1
(2.2) Qkj = Skj + Z Spj + Z Skr
r=0 r=0

follows from (2.1). Sometimes we add comma between the indices and write sy ;.
Putting s_1 ; = sx,—1 = ¢—1,; = qx,—1 = 0, from (2.2) we have

(2.3)  Skt1j+1 = Skj = Qkj + Qht1541 — Q1 — Gkl —L1 <k, j<n-—1
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Now, putting @ = ¢IIIT* and taking into account (2.3), we get the structure of S.

PROPOSITION 2.1. Let S € Q,,. Then we have

(2.4) Skt1,j+1 — Skj = k10541 (-1 <k, j <n-—1),
excluding the case when k = —1 and j = —1 simultaneously. For that case, we have
(2.5) so0 = I, + 0&00&8.

Notice that for the block Toeplitz matrix, the equalities Sgt1,j+1 — sk; = 0 (0 <
k,7 < n —1) hold. Therefore, Toeplitz and block Toeplitz matrices can be used
to study certain homogeneous processes and appear as a result of discretization of
homogeneous equations. From this point of view, the matrix S € €2, is perturbed by
the simplest inhomogeneity.

The authors are grateful to the referee for the next interesting remark.

REMARK 2.2. From (1.2)—(1.4) we get another useful identity, namely,

(2.6) S — NSN* = IIiT*,
where
0 0 Ip (67}
" D 0 —~ 0 (6751
(2.7) N = {5k*jfllp}k,j=0 = . . , = .
I, 0 0 an

Indeed, it is easy to see that (I(n41), — N)A = %(I(n-i-l)p + N). Hence, the identity
i(S — NSN*) =i(lnq1)p — N)II* (I 41)p — N7)

follows from (1.2). By (2.7), we have (I(n11y, — N)II = II, and so (2.6) is valid.
Relations (2.4) and (2.5) are immediate from (2.6).

n

PROPOSITION 2.3. Let S = {Skj}k € Q,. Then S is positive and, moreover,
,j=0
S > Iiny1yp- We have S > I(i1y, if and only if det ag # 0.

Proof. From (2.5) it follows that S(0) = soo > I, and that S(0) > I, when
det ag # 0. The necessity of det g # 0, for the inequality S > I, 1), to be true,
follows from (2.5), too. We shall prove that S > I(,, 41y, and that S > I, 41),, when
det ag # 0, by induction.

r—1

Suppose that S(r — 1) = {Skj}k -
=

> Irp (r > 1). According to (2.6), we can
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T

present S(r) = {skj} in the form S(r) = Sy + Sa,

k,j=0
e7))
o . . . I 0
(2.8) S = [ap af -+ af ], 52::[6’ S(r—l)]
Qe

By the assumption of induction, it is immediate that S(r) > Sy > I(;41),. Hence, we
get S =5(n) > Ity

Suppose that det ag # 0 and S(r — 1) > I 41y, Let S(r)f = f (f € BC(r+1p),
ie., let f* (S(r) - I(Hl)p)f = 0. By (2.8), we have S; > 0, and by the assumption of
induction, we have Sz — I(,41), > 0. So, it follows from f* (S(r) — I(T_H)p)f = 0 that
f*S1f =0 and f* (52 — I(T_H)p)f = 0. Hence, as apaf > 0 and S(r — 1) > I, we
derive f = 0. In other words, S(r)f = f implies f = 0, that is, det(S(r)—I(H_l)p) #0.
From det(S(r) — I(rﬂ)p) # 0 and S(r) > I 41)p, we get S(r) > 0. So, the condition
det ag # 0 implies S(n) > I(n41), by induction. O

REMARK 2.4. Using formula (2.5) and representations S(r) = Si(r) + Sa(r)
(0 < r <n), where S1(r) and Sa(r) are given by (2.8), one easily gets

%
aq
(29) S=Imnt1p+ : [af af -+ of ]
Qp
0 0
)] :
+ [0 o ap oy J++ |0 0 af |
0
Ap—1 Qo
Q) 0 0 0
. a1 Qo 0 0
= I(nJrl)p + VO’V(y7 V(X = .
Qp  Op—1 Op—2 -+ Qo

Here, V,, is a triangular block Toeplitz matriz, and formula (2.9) is another way to
prove Proposition 2.3. Further, we will be interested in a block triangular factorization
of the matrix S itself, namely, S = V:l(V_*)_l, where V_ is a lower triangular
matriz.

Similar to the block Toeplitz case (see [13] and references therein) the matrices
S € Q, admit the matrix identity of the form A;S — SA; = @1, where Q7 is of low
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rank, A; = {5k7j+11p}z,j:o = N* and N is given in (2.7). The next proposition
follows easily from (2.4).

PROPOSITION 2.5. Let S € Q,,. Then we have

(2.10) A1 S — SAL = y1y5 + ysys + ysys, ATS — SAT = —(yoyi + vays + veys),

where

510 0 aq 0

520 0 %} a1
(211) Y1 = y  Ys = — y Y5 = y Y6 = a2 )

Sn0 0 Qo :

0 1, 0 Qo
(212) ws=[1, 0 0 -~ 0], ¥i=[0 S5m0 Su1 - Sun-1 |-

Differently than the block Toeplitz matrix case, the rank of A;.S — SA; is in general
situation larger than the rank of AS — SA*, where A is given by (1.3). (To see this
compare (1.2)-(1.4) and (2.10)—(2.12).)

3. Transfer matrix function and Weyl functions. Introduce the (r+ 1)p x
(n + 1)p matrix

(3.1) P, = {I(,,H)p o}, r<n.

It follows from (1.3) that P, A(n) = A(r)P,. Hence, using (1.2) we derive
(3.2) A(r)S(r) = S(r)A(r)* = dI(r)II(r)*, I(r) = PIL

As § > 0, it admits a block triangular factorization

(3.3) S=v_Hve

where VE! are block lower triangular matrices. It is immediate from (3.3) that
(3.4) S(r) =V (r) ' (Vo)) ", V_(r):= BV_P".

Recall that S-node [21, 23, 24] is the triple (A(r), S(r), H(r)) that satisfies the

matrix identity (3.2) (see also [21, 23, 24] for a more general definition of the S-
node). Following [21, 23, 24], introduce the transfer matrix function corresponding to
the S-node:

(3.5) wa(r,\) = I, — il(r)*S(r) "  (A(r) — )\I(Hl)p)flﬂ(r).
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In particular, taking into account (3.4) and (3.5), we get

2i

(36) wA(O, )\) = IQP — m

8(0)°8(0),  B(0) = V_(0)IL(0).

By the factorization theorem 4 from [21] (see also [23, p. 188]), we have

(3.7) wa(r,\) = (12,, —iTI(r)* S(r) "L P (PA(r)P* — ML) (PS(r) ' P*)

xPS(r)_ll'I(r))wA(r —1,)), P=[0 -0 I,]
According to (1.3), we obtain
(3.8) (PA(r)P* = AIL,) ' = (% — N7
Using (3.4), we derive
(3.9) PS(r)"'P* = (Vo(1);(V=(r))rr,  PS(r)"'TI(r) = (V_(r));, PV_(r)IL(r),

where (V_(r))yr is the block entry of V_(r) (the entry from the r-th block row and
the r-th block column). In view of (3.8) and (3.9), we rewrite (3.7) in the form

(3.10) walr ) = (Tp = o B0YB() Juwar = 1, ),
(3.11) B(r) = PV_(r)II(r) = (V_II),, 0<r <n.

Here, (V_II), is the r-th p x 2p block of the block column vector V_II. Moreover,
according to (3.9) and definitions (3.6), (3.11) of 3, we have

(3.12) (PSG)7'P) " PS(r) M) = u(r)5(r),

1
2

u(r) = (PS@)PT) (Ve ulr) ulr) = 1.

N

As u is unitary, the properties of (PS(?")’lP*)_ PS(r)~I(r) proved in [18, p.
2098] imply the next proposition.

PROPOSITION 3.1. Let S € Q,, and let (k) (0 < k <n) be given by (3.3), (3.4),
(3.6) and (3.11). Then we have

{ B(k)B(k)* =1, (0<Fk<n),
(3.13) det Bk —1)B(K)* £0 (0 <k <n),

det 31 (0) # 0,

where (1 (k), B2(k) are p x p blocks of B(k).
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REMARK 3.2. Notice that the lower triangular factor V_ is not defined by S
uniquely. Hence, the matrices B(k) are not defined uniquely, too. Nevertheless, in
view of (3.12), the matrices B(k)* (k) are uniquely defined, which suffices for our
considerations.

When p = 1 and Cy # £, the matrices C}, = C}; = C’k_1 (i.e., the potential
of the system (1.1)) can be presented in the form Cj, = I, — 208(k)*((k), where
B(k)B(k)* = 1. Therefore, it is assumed in [18] for the system (1.1) on the interval
0 < k <n, that

(3.14) Cy = Iy — 283(k)"B(k),

where (k) are p x 2p matrices and (3.13) holds. Relation (3.14) implies Cy, = UjU},
~I, 0

0 I
Cy = Oy "' follow. Consider the fundamental solution W,(\) of the system (1.1)
normalized by Wy(X\) = I3,. Using (3.6) and (3.10), one easily derives

where j = { } and Uy are unitary 2p x 2p matrices. The equalities C =

-\ A
. = — <r<n.
(3.15) Wii1(A) < 3 ) wA<r,2), 0<r<n

Similar to the continuous case, the Weyl functions of the system (1.1) are defined via
Mbobius (linear-fractional) transformation

(3.16) ©(2) = (Wi (MR + Wia()QM)) War RO + War (MQ())
where W;; are p x p blocks of W and
(3.17) W) = (Wi (V2 oy 1= Wsa (V)"

Here, R and @) are any p X p matrix functions analytic in the neighborhood of A =1
and such that

(3.18) det (W21(i)R(i) n sz(i)@(i)) £0.

One can easily verify that such pairs always exist (see [18, p. 2090]). A matrix
function p(\) of order p, analytic at A = i, generates a matrix S € €, via the Taylor
coefficients

1
(3.19) ga(il i— z> = —(w+az+-+a,z")+ 0" (2 —0)

and identity (1.2). By Theorem 3.7 in [18], such ¢ is a Weyl function of some system
(1.1) if and only if S is invertible. Now, from Proposition 2.3 it follows that S > 0,
and the next proposition is immediate.
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PROPOSITION 3.3. Any p X p matrix function @, which is analytic at X =i, is a
Weyl function of some system (1.1) on the interval 0 < k <mn, such that (3.13) and
(3.14) hold.

Moreover, from the proof of the statement (ii) of Theorem 3.7 in [18], the Corollary
3.6 in [18] and our Proposition 3.3, we get:

PROPOSITION 3.4. Let the p X p matriz function ¢ be analytic at A\ = i and admit
expansion (3.19). Then ¢ is a Weyl function of the system (1.1) (0 < k < n), where
Cy are defined by the formulas (1.2)-(1.4), Il = [®1 @], (3.83), (3.11) and (3.14).
Moreover, any Weyl function of this system admits expansion (3.19).

4. Schur coefficients and Christoffel-Darboux formula. The sequence
{ar}}_, uniquely determines via formulas (1.2)-(1.4) or (1.3), (1.4), (2.4) and (2.5)
the S-node (A, S, H). Then, using (3.3), (3.11) and (3.14), we uniquely recover the
system (1.1) (0 < k < n), or equivalently, we recover the sequence {3} 3 }7_,, such
that (3.13) holds. By Proposition 3.4, one can use Weyl functions of this system to
obtain the sequence {a}7_,.

REMARK 4.1. Thus, there are one to one correspondences between the sequences
{ow}i_y, the S-nodes (A, S, I1) satisfying (1.2), the systems (1.1) (0 < k < n) with
Cy of the form (38.14) and the sequences {3} Br}i_y, such that (3.18) holds.

Next, we consider a correspondence between {355k }7_, and some p x p matrices
{pr}i_y (lpxll < 1). Notice that 0 < F1(k)5i(k)* < Ip, and suppose that these
inequalities are strict:

(4.1) 0< Bi(k)Bu(k) < I, (0<k<n)

In view of the first relation in (3.13) and inequalities (4.1), we have det 31 (k) # 0 and
det B2(k) # 0. So, we can put

1
2

(4.2) pr 1= (Ba(k) Ba(k))  Ba(k)* B (k).
It follows from (4.2) that

[N

1
2

prpi = (5K B2k)) " Balk)” (I — Ba(k) B (k)" Ba (k) (k)" Ba k) )

(4.3) = I, — Ba(k)* Ba(k).

By (4.2) and (4.3), we obtain

(4.4) lon (I — prpi)?) = ukBk),  llonll < 1,
where

1
2

(4.5) wp = () Ba(k)) " Balk)”, wpui =1,
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i.e., ug is unitary.

REMARK 4.2. Under condition (4.1), according to (4.4) and (4.5), the sequence
{BiBr}T—_y is uniquely recovered from the sequence {pi}i_, (|lpxl] < 1):

N

(4.6) B = [ 0 —[fkpz) ] lor (I = prpi)¥):

By Remark 4.1 this means that the S-node can be recovered from the sequence {py.}}_ -

Therefore, similar to the Toeplitz case, we call py the Schur coefficients of the S-node
(A, S, 1T0).

Besides Schur coefficients, we obtain an analog of the Christoffel-Darboux for-
mula.

PROPOSITION 4.3. Let S € Q,,, let wa(r,\) be introduced by (3.5) for r >0 and
put wa(—1,\) = Io,. Then we have

n—1
S™ walk 1) Bk +1)* Bk + Dwa(k, )
k=—1
@A) ) *
(47) = Zu(ﬂ—_/\)CwA(n,u) ’U)A(TL, )\) —Igp).

Proof. From (3.10) it follows that

wa(k + 1, p) walk +1,A) —wa(k, p) walk,\) =

walh” ( (12 = g6+ 11780+ 1))
(4.8) x (12p + %/3(1@ F1)* Bk + 1)) - Igp) wa(k, \).

Using f(k)B(k)* = I, we rewrite (4.8) in the form

wa(k+1, 1) walk +1,X) —wa(k, p) wa(k, A)
_ 4i(ﬁ_ >‘) * *
(4.9) = mw(’a 1) Bk +1)"B(k + Dwa(k, A).

Equality (4.7) follows from (4.9). O
5. Inversion of S € Q,. To recover the system (1.1) from {ax}}_,, it is con-

venient to use formula (3.11). The matrices V_(r) (r > 0) in this formula can be
constructed recursively.
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PROPOSITION 5.1. Let S =V (V)1 € Q,. Then V_(r +1) (0 <r < n) can
be constructed by the formula

_ V_(r) 0
(5:1) ““+”‘[%m&mwuwwv>wmy
where S21(r) = [Sr41,0 Sr+1,1 -+ Sr+1r)s
(5.2) tr) = (smﬁ1 — Sor (1) V_(r) "V (r)sgl(r)*)ﬁ.

Proof. To prove the proposition it suffices to assume that V_(r) satisfies (3.4) and
prove S(r+1) = V_(r + 1)"Y(V_(r + 1)*)~%. In view of Proposition 2.3 and (3.4),
we have $y41 041 — So1(r)V_(r)*V_(r)Sa1(r)* > 0, i.e., formula (5.2) is well defined.
Now, it is easily checked that S(r+1)"! = V_(r+1)*V_(r + 1) (see formula (2.7) in
[17]). O

Put T' = {tu;}j; ;=0 = 571,
(5.3) Q= {Gj}i oo = THII'T, X =T, Y =Ty,

where t; and gi; are p x p blocks of T and @, respectively. Similar to [15, 16, 20, 22]
and references therein, we get the next proposition.

PROPOSITION 5.2. Let S € Q,,. Then T = S~ is recovered from X and Y by
the formula

(5.4) thj = Qrj + Qot1,541 — Qhot1,j — Thj+1 T tht1,j+1s

or, equivalently, by the formula

n—Fk n—k n—k+1
(5.5) thj = Qij +2 D Grtrgir — O Qotrgtr—1— 3 Grtr—1itr
r=1 r=1 r=1

where we fix ty; =0 and qu; =0 for k >n or j > n, and
(5.6) Q=XX*+YY*

The block vectors X and Y are connected by the relations

n

n—k n—k
Z(Xr - X:) = 07 Z Xn—r = Z Z]\k+r,7“ (k > O)a
r=0 r=0

n—k n—k
(5.7) DXi =D G (k>0
r=0 r=0
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Proof. From the identity (1.2) and formula (5.3), it follows that
(5.8) TA— A*T =iQ,

where @ satisfies (5.6). The identity TA — A*T = z@ yields (5.4), which, in its turn,
implies (5.5).

To derive (5.7), we rewrite (5.8) in the form

(5.9) (A = Muyayp) "' T = T(A = Muyryp)
= i(A" = Mny1yp) " QA= Mnsnyy)

and multiply both sides of (5.9) by ®; from the right and by ®7 from the left. Taking
into account (5.3), we get

* * -1 * -1
O (A" = Mpgryp) X = X* (A= Mipyry) @
- &k * -1 -1
(5.10) = Z‘I)l (A - )\I(nJrl)p) Q(A - /\I(nJrl)p) (I)l.
It is easily checked (see formula (1.10) in [17]) that
-1 { -1 _ _
(A= Muiny) 01 = (5-A) collly ¢TIy oo ¢ 1),
* * -1 i -1 n
(5.11) QLA = Miny) = =(5+2) (& ¢y - L),

where col means column,

A—2L iC i i
5.12 = 2 A= —— = A= )
(5:12) “Taxvy 2 Toor 2T
Notice that we have
(5.13) OITD, = BT X = X Py,

which implies the first equality in (5.7) . Multiply both sides of (5.10) by A? + 1 and
use (5.11), (5.12) and the first equality in (5.7) to rewrite the result in the form

i

(€05 @ -np @ -n]x
+X*col[0 ¢H¢ -1, --- C‘”(C”—l)fp])
(5.14) =ill, ¢Ip - CnIp]@C01[Ip C_lfp e O

The equalities for the coefficients corresponding to the same degrees of ( on the left-
hand side and on the right-hand side of (5.14) imply the second and the third relations
in (5.7).0
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6. Factorization and similarity conditions. The block matrix

Ky

K;
(6.1) K=| .|,

K,
where K; are p x (n + 1)p matrices of the form
62) K —iBG)AO)" BAY - BG—1) BG)/2 0 - 0,

plays an essential role in [18]. From the proof of Theorem 3.4 in [18] the following
result is immediate.

PROPOSITION 6.1. Let a (n+1)p x (n+ 1)p matriz K be given by formulas (6.1)
and (6.2), and let conditions (3.13) hold. Then K is similar to A:

(6.3) K=V_AV_!
where VL are block lower triangular matrices.

Proposition 6.1 is a discrete analog of the theorem on similarity to the integration
operator [19].

REMARK 6.2. Note that V! can be chosen so that

$1(0)
(6.4) vt : =®;.

Bi(n)

Moreover, V=1 is a factor of S, i.e., S = V:l(Vj)_l € Q. Any matriz S € Q,, can
be obtained in this way.

An analogue of Proposition 6.1 for the self-adjoint discrete Dirac system and block
Toeplitz matrices S follows from the proof of Theorem 5.2 in [11].

PROPOSITION 6.3. Let a (n+ 1)p x (n+ 1)p matriz K be given by formulas (6.1)
and

(65) K = iBGIIB0) 86~ 1" 8G)/2 0 0 T=| ) ],

P
where (k) are p x 2p matrices. Let conditions B(k)JB(k)* = I, 0 < k < n)
hold. Then K is similar to A: K = V_AV_L, where V1 are block lower triangular
matrices. Moreover, V_ can be chosen so that S = V__l(V_*)f1 is a block Toeplitz
matrix.
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