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Abstract. In this paper, the notions of weakly normal and normal matrix polynomials with

nonsingular leading coefficients are introduced. These matrix polynomials are characterized using

orthonormal systems of eigenvectors and normal eigenvalues. The conditioning of the eigenvalue

problem of a normal matrix polynomial is also studied, thereby constructing an appropriate Jordan

canonical form.
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1. Introduction. In pure and applied mathematics, normality of matrices (or
operators) arises in many concrete problems. This is reflected in the fact that there
are numerous ways to describe a normal matrix (or operator). A list of about ninety
conditions on a square matrix equivalent to being normal can be found in [5, 7].

The study of matrix polynomials has also a long history, especially in the context
of spectral analysis, leading to solutions of associated linear systems of higher order;
see [6, 10, 11] and references therein. Surprisingly, it seems that the notion of nor-
mality has been overlooked by people working in this area. Two exceptions are the
work of Adam and Psarrakos [1], as well as Lancaster and Psarrakos [9].

Our present goal is to take a comprehensive look at normality of matrix poly-
nomials. To avoid infinite eigenvalues, we restrict ourselves to matrix polynomials
with nonsingular leading coefficients. The case of singular leading coefficients and
infinite eigenvalues will be considered in future work. The presentation is organized
as follows. In the next section, we provide the necessary theoretical background on
the spectral analysis of matrix polynomials. In Section 3, we introduce the notions of
weakly normal and normal matrix polynomials, and obtain necessary and sufficient
conditions for a matrix polynomial to be weakly normal. In Section 4, we consider
the normal eigenvalues of matrix polynomials and use them to provide sufficient con-
ditions for a matrix polynomial to be normal. Finally, in Section 5, we investigate
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the Jordan structure of a normal matrix polynomial, and study the conditioning of
the associated eigenvalue problem.

2. Spectral analysis of matrix polynomials. Consider an n×n matrix poly-
nomial

P (λ) = Amλ
m +Am−1λ

m−1 + · · · +A1λ+A0,(2.1)

where λ is a complex variable and Aj ∈ Cn×n (j = 0, 1, . . . ,m) with detAm �= 0. If
the leading coefficient Am coincides with the identity matrix I, then P (λ) is called
monic. A scalar λ0 ∈ C is said to be an eigenvalue of P (λ) if P (λ0)x0 = 0 for
some nonzero x0 ∈ Cn. This vector x0 is known as a (right) eigenvector of P (λ)
corresponding to λ0. A nonzero vector y0 ∈ Cn that satisfies y∗0P (λ0) = 0 is called a
left eigenvector of P (λ) corresponding to λ0.

The set of all eigenvalues of P (λ) is the spectrum of P (λ), namely, σ(P ) =
{λ ∈ C : detP (λ) = 0} , and since detAm �= 0, it contains no more than nm distinct
(finite) elements. The algebraic multiplicity of an eigenvalue λ0 ∈ σ(P ) is the multi-
plicity of λ0 as a zero of the (scalar) polynomial detP (λ), and it is always greater than
or equal to the geometric multiplicity of λ0, that is, the dimension of the null space
of matrix P (λ0). A multiple eigenvalue of P (λ) is called semisimple if its algebraic
multiplicity is equal to its geometric multiplicity.

Let λ1, λ2, . . . , λr ∈ σ(P ) be the eigenvalues of P (λ), where each λi appears ki

times if and only if the geometric multiplicity of λi is ki (i = 1, 2, . . . , r). Suppose
also that for a λi ∈ σ(P ), there exist xi,1, xi,2, . . . , xi,si ∈ Cn with xi,1 �= 0, such
that

P (λi)xi,1 = 0
P ′(λi)

1!
xi,1 + P (λi)xi,2 = 0

...
...

...
P (si−1)(λi)

(si − 1)!
xi,1 +

P (si−2)(λi)
(si − 2)!

xi,2 + · · · +
P ′(λi)

1!
xi,si−1 + P (λi)xi,si = 0,

where the indices denote the derivatives of P (λ) and si cannot exceed the algebraic
multiplicity of λi. Then the vector xi,1 is an eigenvector of λi, and the vectors
xi,2, xi,3, . . . , xi,si are known as generalized eigenvectors. The set {xi,1, xi,2, . . . , xi,si}
is called a Jordan chain of length si of P (λ) corresponding to the eigenvalue λi.
Any eigenvalue of P (λ) of geometric multiplicity k has k maximal Jordan chains
associated to k linearly independent eigenvectors, with total number of eigenvectors
and generalized eigenvectors equal to the algebraic multiplicity of this eigenvalue.
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We consider now the n× nm matrix

X = [x1,1 x1,2 · · · x1,s1 x2,1 · · · xr,1 xr,2 · · · xr,sr ]

formed by maximal Jordan chains of P (λ) and the associated nm×nm Jordan matrix
J = J1 ⊕ J2 ⊕ · · · ⊕ Jr, where each Ji is the Jordan block that corresponds to the

Jordan chain {xi,1, xi,2, . . . , xi,si} of λi. Then the nm×nm matrix Q =




X

XJ
...

XJm−1




is invertible, and we can define Y = Q−1




0
...
0
A−1

m


. The set (X, J, Y ) is called a

Jordan triple of P (λ), and satisfies

P (λ)−1 = X(λI − J)−1Y ; λ /∈ σ(P ).(2.2)

The set {x1,1, x1,2, . . . , x1,s1 , x2,1, . . . , xr,1, xr,2, . . . , xr,sr} is known as a complete
system of eigenvectors and generalized eigenvectors of P (λ).

3. Weakly normal and normal matrix polynomials. In [1], the term “nor-
mal matrix polynomial” has been used for the matrix polynomials that can be di-
agonalized by a unitary similarity. For matrix polynomials of degree m ≥ 2, this
definition does not ensure the semisimplicity of the eigenvalues, and hence it is nec-
essary to modify it. Consider, for example, the diagonal matrix polynomials

P (λ) =


 (λ − 2)(λ− 1) 0 0

0 λ(λ − 1) 0
0 0 (λ+ 1)(λ+ 2)


(3.1)

and

R(λ) =


 (λ− 1)2 0 0

0 λ(λ − 2) 0
0 0 (λ + 1)(λ+ 2)


 ,(3.2)

which have exactly the same eigenvalues (counting multiplicities): −2, −1, 0, 1 (dou-
ble) and 2. The eigenvalue λ = 1 is semisimple as an eigenvalue of P (λ) with algebraic
and geometric multiplicities equal to 2. On the other hand, λ = 1 is not semisimple as
an eigenvalue of R(λ) since its algebraic multiplicity is 2 and its geometric multiplicity
is 1.

Definition 3.1. The matrix polynomial P (λ) in (2.1) is called weakly normal if
there is a unitary matrix U ∈ Cn×n such that U∗P (λ)U is diagonal for all λ ∈ C. If,
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in addition, every diagonal entry of U∗P (λ)U is a polynomial with exactly m distinct
zeros, or equivalently, all the eigenvalues of P (λ) are semisimple, then P (λ) is called
normal.

Clearly, the matrix polynomial P (λ) in (3.1) is normal, and the matrix polynomial
R(λ) in (3.2) is weakly normal (but not normal). Note also that the notions of weakly
normal and normal matrix polynomials coincide for matrices and for linear pencils of
the form P (λ) = A1λ+A0.

The next two lemmas are necessary to characterize weakly normal matrix poly-
nomials.

Lemma 3.2. Let A,B ∈ Cn×n be normal matrices such that AB∗ = B∗A. Then
the matrices A+B and AB are also normal.

Lemma 3.3. Suppose that for every µ ∈ C, the matrix P (µ) is normal. Then
for every i, j = 0, 1, . . . ,m, it holds that AiA

∗
j = A∗

jAi. In particular, all coefficient
matrices A0, A1, . . . , Am are normal.

Proof. Let P (µ) be a normal matrix for every µ ∈ C. Then P (0) = A0 is normal,
i.e. A0A

∗
0 = A∗

0A0. From the proof of [14, Lemma 16], we have that A0A
∗
i = A∗

iA0

for every i = 1, 2, . . . ,m. Thus, P (µ)A∗
0 = A∗

0P (µ) for every µ ∈ C. By Lemma 3.2,
it follows that for the matrix polynomials P0(λ) = Amλ

m−1 + · · · + A2λ + A1 and
P (λ) − A0 = λP0(λ), the matrices P0(µ) and P (µ) − A0 = µP0(µ) are normal for
every µ ∈ C.

Similarly, by [14, Lemma 16] and the fact that P0(µ) is normal for every µ ∈ C,
we have that P0(0) = A1 is also normal and A1A

∗
i = A∗

iA1 for every i = 2, 3, . . . ,m.
Hence, as before, P1(µ) = Amµ

m−2 + · · · + A3µ + A2 and P0(µ) − A1 = µP1(µ) are
normal matrices for every µ ∈ C. Repeating the same process, completes the proof.

Theorem 3.4. The matrix polynomial P (λ) in (2.1) is weakly normal if and only
if for every µ ∈ C, the matrix P (µ) is normal.

Proof. If the matrix polynomial P (λ) is weakly normal, then it is apparent that
for every µ ∈ C, the matrix P (µ) is normal.

For the converse, suppose that for every µ ∈ C, the matrix P (µ) is normal. The
next assumption is necessary.

Assumption. Suppose that there is a coefficient matrix Ai with s ≥ 2 distinct eigen-
values. Then, without loss of generality, we may assume that

Ai = λi1Ik1 ⊕ λi2Ik2 ⊕ · · · ⊕ λisIks
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and

Aj = Aj1 ⊕Aj2 ⊕ · · · ⊕Ajs ; j �= i,

where the eigenvalues λi1, λi2, . . . , λis of Ai are distinct and nonzero, with multiplic-
ities k1, k2, . . . , ks, respectively, and Aj1 ∈ Ck1×k1 , Aj2 ∈ Ck2×k2 , . . . , Ajs ∈ Cks×ks .

Justification of the Assumption. Since Ai is normal, there is a unitary matrix U ∈
Cn×n such that

U∗AiU = λi1Ik1 ⊕ λi2Ik2 ⊕ · · · ⊕ λisIks .

We observe that for any µ, a ∈ C, the matrix P (µ) is normal if and only if the matrix
U∗P (µ)U + aIµi is normal. Thus, without loss of generality, we may assume that all
λil’s are nonzero. By Lemma 3.3, it follows that for every j �= i,

AiA
∗
j = A∗

jAi,

or equivalently,

A∗
j = A−1

i A∗
jAi.

By straightforward calculations, the justification of the assumption is complete.

We proceed now with the proof of the converse, which is by induction on the
order n of P (λ). Clearly, for n = 1, there is nothing to prove.

If n = 2, and there is a coefficient matrix with distinct eigenvalues, then by the
Assumption, all A0, A1, . . . , Am are diagonal. If there is no coefficient matrix of P (λ)
with distinct eigenvalues, then each Ai (i = 0, 1, . . . ,m) is normal with a double
eigenvalue, and hence, it is scalar, i.e., Ai = aiI. As a consequence, P (λ) is diagonal.

Assume now that for any n = 3, 4, . . . , k−1, every n×n matrix polynomial P (λ)
such that the matrix P (µ) is normal for any µ ∈ C, is weakly normal.

Let P (λ) = Amλ
m +Am−1λ

m−1 + · · ·+A1λ+A0 be a k× k matrix polynomial,
and suppose that there is a Ai with s ≥ 2 distinct eigenvalues. By the Assumption,

Ai = λi1Ik1 ⊕ λi2Ik2 ⊕ · · · ⊕ λisIks ,

and for every j �= i,

Aj = Aj1 ⊕Aj2 ⊕ · · · ⊕Ajs.

Then

P (λ) = P1(λ) ⊕ P2(λ) ⊕ · · · ⊕ Ps(λ),
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where the matrix polynomials P1(λ), P2(λ), . . . , Ps(λ) are weakly normal. Hence,
there are unitary matrices Ut ∈ Ckt×kt , t = 1, 2, . . . , s, such that U∗

t Pt(λ)Ut, t =
1, 2, . . . , s, are diagonal. Thus, for the k × k unitary matrix U = U1 ⊕ U2 ⊕ · · · ⊕ Us,
the matrix polynomial U∗P (λ)U is diagonal.

Suppose that there is no Ai with at least two distinct eigenvalues. Then each
coefficient matrix Ai is normal with exactly one eigenvalue (of algebraic multiplicity
k), and hence, it is scalar, i.e., Ai = aiI. As a consequence, P (λ) is diagonal.

By the above theorem, it follows that the matrix polynomial P (λ) is weakly
normal if and only if P (λ)[P (λ)]∗ − [P (λ)]∗P (λ) = 0 for every λ ∈ C. We observe
that each entry of the matrix function P (λ)[P (λ)]∗ − [P (λ)]∗P (λ) is of the form
χ(α, β) + iψ(α, β), where α and β are the real and imaginary parts of variable λ,
respectively, and χ(α, β) and ψ(α, β) are real polynomials in α, β ∈ R of total degree
at most 2m. As a consequence, Lemma 3.1 of [12] yields the following corollary.

Corollary 3.5. The matrix polynomial P (λ) in (2.1) is weakly normal if
and only if for any distinct real numbers s1, s2, . . . , s4m2+2m+1, the matrices P (sj +
i s2m+1

j ) (j = 1, 2, . . . , 4m2 + 2m+ 1) are normal.

By Theorem 3.4, Corollary 3.5 and [16] (see also the references therein), the next
corollary follows readily.

Corollary 3.6. Let P (λ) = Amλ
m + · · · + A1λ + A0 be an n × n matrix

polynomial as in (2.1). Then the following are equivalent:

(i) The matrix polynomial P (λ) is weakly normal.
(ii) For every µ ∈ C, the matrix P (µ) is normal.
(iii) For any distinct real numbers s1, s2, . . . , s4m2+2m+1, the matrices P (sj+i s2m+1

j )
(j = 1, 2, . . . , 4m2 + 2m+ 1) are normal.

(iv) The coefficient matrices A0, A1, . . . , Am are normal and mutually commuting,
i.e., AiAj = AjAi for i �= j.

(v) All the linear combinations of the coefficient matrices A0, A1, . . . , Am are normal
matrices.

(vi) The coefficient matrices A0, A1, . . . , Am are normal and satisfy property L,
that is, there exists an ordering of the eigenvalues λ(j)

1 , λ
(j)
2 , . . . , λ

(j)
n of Aj

(j = 0, 1, . . . ,m) such that for all scalars t0, t1, . . . , tm ∈ C, the eigenvalues
of t0A0+t1A1+· · ·+tmAm are t0λ

(0)
i +t1λ

(1)
i +· · ·+tmλ(m)

i (i = 1, 2, . . . , n).
(vii) There exists a unitary matrix U ∈ Cn×n such that U∗AjU is diagonal for every

j = 0, 1, . . . ,m.

4. Normal eigenvalues. In the matrix case, it is well known that normality (or
diagonalizability) is equivalent to the orthogonality (respectively, linear independence)
of eigenvectors. In the matrix polynomial case, it is clear (by definition) that any n×n
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normal matrix polynomial of degree m has an orthogonal system of n eigenvectors
such that each one of these eigenvectors corresponds to exactly m distinct eigenvalues.

Proposition 4.1. Consider a matrix polynomial P (λ) as in (2.1) with all its
eigenvalues semisimple. Suppose also that P (λ) has a complete system of eigenvectors,
where each vector of a basis {g1, g2, . . . , gn} of Cn appears exactly m times. Then there
exists a diagonal matrix polynomial D(λ) such that

P (λ) = AmGD(λ)G−1,

where G = [ g1 g2 · · · gn ] ∈ Cn×n.

Proof. Each vector gi (i = 1, 2, . . . , n) appears exactly m times as an eigenvector
of m distinct eigenvalues of P (λ), say λi1, λi2, . . . , λim. By [8, Theorem 1], we have
that

P (λ) gi =
m∏

j=1

(λ − λij) gi ; i = 1, 2, . . . , n.

Thus,

P (λ) [ g1 g2 · · · gn ] = Am


 m∏

j=1

(λ− λ1j) g1
m∏

j=1

(λ− λ2j) g2 · · ·
m∏

j=1

(λ− λnj) gn




= Am [ g1 g2 · · · gn ] diag




m∏
j=1

(λ− λ1j) g1,
m∏

j=1

(λ− λ2j) g2, . . . ,
m∏

j=1

(λ− λnj) gn


 .

Consequently,

P (λ) = AmG diag




m∏
j=1

(λ − λ1j),
m∏

j=1

(λ− λ2j), . . . ,
m∏

j=1

(λ− λnj)


G−1,

and the proof is complete.

Corollary 4.2. Under the assumptions of Proposition 4.1, the following hold:

(i) If the matrix G−1AmG is diagonal, then the matrix polynomial G−1P (λ)G is
diagonal.

(ii) If G is unitary, then there exists a diagonal matrix polynomial D(λ) such that
P (λ) = AmGD(λ)G∗.

(iii) If G is unitary and the matrix G∗AmG is diagonal, then the matrix polynomial
G∗P (λ)G is diagonal, i.e., P (λ) is normal.
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Note that if P (λ) = Iλ − A, then in Corollary 4.2, G−1AmG = G−1I G = I for
nonsingular G, and G∗AmG = G∗I G = I for unitary G. This means that all the
parts of the corollary are direct generalizations of standard results on matrices.

The following definition was introduced in [9].

Definition 4.3. Let P (λ) be an n × n matrix polynomial as in (2.1). An
eigenvalue λ0 ∈ σ(P ) of algebraic multiplicity k is said to be normal if there exists a
unitary matrix U ∈ Cn×n such that

U∗P (λ)U = [(λ− λ0)D(λ)] ⊕Q(λ),

where the matrix polynomial D(λ) is k × k diagonal and λ0 /∈ σ(D) ∪ σ(Q).

By this definition and Definition 3.1, it is obvious that every normal matrix
polynomial has all its eigenvalues normal. In the sequel, we obtain the converse.

Proposition 4.4. Suppose that all the eigenvalues of P (λ) in (2.1) are semisim-
ple, and that λ1, λ2, . . . , λs are normal eigenvalues of P (λ) with multiplicities m1,m2,

. . . ,ms, respectively, such that m1 +m2 + · · · +ms = n. If P (λ) satisfies

U∗
j P (λ)Uj = [(λ− λj)Dj(λ)] ⊕Qj(λ) ; j = 1, 2, . . . , s,

where for each j, the matrix Uj ∈ Cn×n is unitary, the matrix polynomial Dj(λ) is
mj×mj diagonal and λi ∈ σ(Qj)\σ(Dj) (i = j+1, . . . , s), then the matrix polynomial
P (λ) is normal.

Proof. For the eigenvalue λ1, by hypothesis, we have that

U∗
1P (λ)U1 = [(λ− λ1)D1(λ)] ⊕Q1(λ),

where U1 is unitary and D1(λ) is m1 × m1 diagonal. The first m1 columns of U1

are an orthonormal system of eigenvectors of λ1. From the hypothesis we also have
that detAm �= 0 and all the eigenvalues of P (λ) are semisimple. As a consequence,
each one of the m1 eigenvectors of λ1 is an eigenvector for m exactly eigenvalues of
P (λ) (counting λ1). Moreover, since λi ∈ σ(Q1)\σ(D1), i = 2, 3, . . . , s, these m1

eigenvectors of λ1, are orthogonal to the eigenspaces of the eigenvalues λ2, λ3, . . . , λs.

Similarly, for the eigenvalue λ2, we have

U∗
2P (λ)U2 = [(λ− λ2)D2(λ)] ⊕Q2(λ),

where U2 is unitary andD2(λ) is m2×m2 diagonal. As before, the firstm2 columns of
U2 are an orthonormal system of eigenvectors of λ2. In addition, each one of these m2

eigenvectors of λ2 is an eigenvector for m exactly eigenvalues of P (λ) (counting λ2).
Since λi ∈ σ(Q2)\σ(D2), i = 3, 4, . . . , s, these m2 eigenvectors of λ2 are orthogonal
to the eigenspaces of the eigenvalues λ3, λ4, . . . , λs.
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Repeating this process for the eigenvalues λ3, λ4, . . . , λs, we construct an or-
thonormal basis of Cn,

u1, u2, . . . , um1︸ ︷︷ ︸
of λ1

, um1+1, um1+2, . . . , um1+m2︸ ︷︷ ︸
of λ2

, . . . , un−ms+1, un−ms+2, . . . , un︸ ︷︷ ︸
of λs

,

where each vector is an eigenvector for m distinct eigenvalues of P (λ) and an eigen-
vector of the leading coefficient Am. By Corollary 4.2, P (λ) is a normal matrix
polynomial.

The next lemma is needed in our discussion and follows readily.

Lemma 4.5. If an n × n matrix polynomial P (λ) has a normal eigenvalue of
multiplicity n or n− 1, then it is weakly normal.

Theorem 4.6. Consider a matrix polynomial P (λ) as in (2.1). If all its eigen-
values are normal, then P (λ) is normal.

Proof. Let λ1, λ2, . . . , λs be the distinct eigenvalues of P (λ) with corresponding
multiplicities k1, k2, . . . , ks (k1+k2+· · ·+ks = nm), and suppose that they are normal.
It is easy to see that s ≥ m. If s = m then all the eigenvalues have multiplicity n and
by Lemma 4.5, the theorem follows.

Suppose that s > m and for every j = 0, 1, . . . , s, there is a unitary matrix
Uj = [uj1 uj2 . . . ujn ] such that

U∗
j P (λ)Uj = [(λ− λj)Dj(λ)] ⊕Qj(λ),

where Dj(λ) is kj ×kj diagonal and λj /∈ σ(Dj)∪σ(Qj). Then the first kj columns of
Uj (j = 1, 2, . . . , s) are right and left eigenvectors of P (λ), and also of A0, A1, . . . , Am.
The set of all vectors

u11, u12, . . . , u1k1 , u21, u22, . . . , u2k2 , . . . us1, us2, . . . , usks

form a complete system of eigenvectors of P (λ). So, by [13], there is a basis of C
n

{u1, u2, . . . , un} ⊆ {u11, u12, . . . , u1k1 , u21, u22, . . . , u2k2 , . . . , us1, us2, . . . , usks} .
We also observe that the vectors u1, u2, . . . , un are linearly independent right and left
common eigenvectors of the coefficient matrices A0, A1, . . . , Am. Keeping in mind
that any left and right eigenvectors (of the same matrix) corresponding to distinct
eigenvalues are orthogonal, [7, Condition 13] implies that all Aj ’s are normal. More-
over, any two vectors ui, uj (i �= j) that correspond to distinct eigenvalues of a
coefficient matrix are also orthogonal. Hence, it is straightforward to see that there
exists a unitary matrix U such that all U∗AjU ’s are diagonal. As a consequence, the
matrix polynomial P (λ) is weakly normal, and since all its eigenvalues are semisimple,
P (λ) is normal.
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5. Weighted perturbations and condition numbers. Let P (λ) be a matrix
polynomial as in (2.1). We are interested in perturbations of P (λ) of the form

Q(λ) = P (λ) + ∆(λ) =
m∑

j=0

(Aj + ∆j)λj ,(5.1)

where the matrices ∆0,∆1, . . . ,∆m ∈ Cn×n are arbitrary. For a given parameter
ε > 0 and a given set of nonnegative weights w = {w0, w1, . . . , wm} with w0 > 0, we
define the set of admissible perturbed matrix polynomials

B(P, ε,w) = {Q(λ) as in (5.1) : ‖∆j‖ ≤ εwj , j = 0, 1, . . . ,m} ,

where ‖ · ‖ denotes the spectral matrix norm (i.e., that norm subordinate to the eu-
clidean vector norm). The weights w0, w1, . . . , wm allow freedom in how perturbations
are measured, and the set B(P, ε,w) is convex and compact [3] with respect to the
max norm ‖P (λ)‖∞ = max0≤j≤m‖Aj‖.

In [15], motivated by (2.2) and the work of Chu [4], for a Jordan triple (X, J, Y )
of P (λ), the authors introduced the condition number of the eigenproblem of P (λ),
that is,1

k(P ) = ‖X‖ ‖Y ‖ .

Furthermore, they applied the Bauer-Fike technique [2, 4] and used k(P ), to bound
eigenvalues of perturbations of P (λ). Denoting w(λ) = wmλ

m + · · ·+w1λ+w0, one
of the results of [15] is the following.

Proposition 5.1. Let (X, J, Y ) be a Jordan triple of P (λ), and let Q(λ) ∈
B(P, ε,w) for some ε > 0. If the Jordan matrix J is diagonal, then for any µ ∈
σ(Q)\σ(P ),

min
λ∈σ(P )

|µ− λ| ≤ k(P ) εw(|µ|).

As in the matrix case, we say that a matrix polynomial eigenvalue problem is
well-conditioned (or ill-conditioned) if its condition number is sufficiently small (re-
spectively, sufficiently large).

In the remainder of this section, we confine our discussion to normal matrix
polynomials. Recall that for an n × n normal matrix polynomial P (λ), there is a
unitary matrix U ∈ Cn×n such that U∗P (λ)U is diagonal and all its diagonal entries

1Note that the definition of k(P ) clearly depends on the choice of the triple (X, J, Y ), but to

keep things simple, the Jordan triple will not appear explicitly in the notation.
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are polynomials of degree exactly m, with distinct zeros. Moreover, for any Jordan
triple (X, J, Y ) of P (λ), the Jordan matrix J is diagonal. In the sequel, we derive
some bounds for the condition number k(P ).

The following lemma is a simple exercise.

Lemma 5.2. Let λ1, λ2, . . . , λm be m distinct scalars. Then it holds that

1
m∏

j=1

(λ− λj)
=

m∑
j=1

1
(λ − λj)

∏
i�=j

(λi − λj)
.

Next we compute a Jordan triple of a monic normal matrix polynomial P (λ) and
the associated condition number k(P ).

Proposition 5.3. Let P (λ) be an n × n monic normal matrix polynomial of
degree m, and let U∗P (λ)U = (Iλ− J1) (Iλ− J2) · · · (Iλ− Jm) for some unitary
U ∈ Cn×n and diagonal matrices J1, J2, . . . , Jm. Then a Jordan triple (X, J, Y ) of
P (λ) is given by

X = U

[
I (J2 − J1)−1 · · ·

m−2∏
i=1

(Jm−1 − Ji)−1
m−1∏
i=1

(Jm − Ji)−1

]
,

J = J1 ⊕ J2 ⊕ · · · ⊕ Jm and Y =




m∏
i=2

(J1 − Ji)−1

m∏
i=3

(J2 − Ji)−1

...
(Jm−1 − Jm)−1

I



U∗.

Proof. 2 By Lemma 5.2 and straightforward calculations, we see that

m∏
j=1

(Iλ− Jj)−1 =
m∑

j=1


(Iλ − Jj)

∏
i�=j

(Ji − Jj)


−1

,

or equivalently,

P (λ)−1 = X(Iλ− J)−1Y.

2Our original proof of this proposition is constructive and justifies the choice of matrices X

and Y . It is also inductive on the degree m of P (λ), uses Corollary 3.3 of [6] and requires some

computations. As a consequence, we decided to present this short proof.
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Theorem 2.6 of [6] completes the proof.

Theorem 5.4. Let P (λ) be an n× n monic normal matrix polynomial of degree
m, and let (X, J, Y ) be the Jordan triple given by Proposition 5.3. If we denote

Ji = diag{λ(i)
1 , λ

(i)
2 , . . . , λ(i)

n } ; i = 1, 2, . . . ,m,

then the condition number of the eigenproblem of P (λ) is

k(P ) =

(
1 + max

s=1,2,...,n

{
1

|λ(2)
s − λ

(1)
s |2

+ · · · +
m−1∏
i=1

1

|λ(m)
s − λ

(i)
s |2

})1/2

×
(

1 + max
s=1,2,...,n

{
1

|λ(m)
s − λ

(m−1)
s |2

+ · · · +
m∏

i=2

1

|λ(i)
s − λ

(1)
s |2

})1/2

.

Proof. Since P (λ) is normal, it follows λ(i)
s �= λ

(j)
s , i �= j, s = 1, 2, . . . , n. Recall

that

X = U

[
I (J2 − J1)−1 · · ·

m−2∏
i=1

(Jm−1 − Ji)−1
m−1∏
i=1

(Jm − Ji)−1

]
,

and observe that

XX∗ = U

(
I + (J2 − J1)−1 (J2 − J1)−1 + · · · +

m−1∏
i=1

(Jm − Ji)−1 (Jm − Ji)−1

)
U∗.

If we denote by λmax(·) the largest eigenvalue of a square matrix, then

‖X‖2 = λmax(XX∗) = 1 + max
s=1,2,...,n

{
1

|λ(2)
s − λ

(1)
s |2

+ · · · +
m−1∏
i=1

1

|λ(m)
s − λ

(i)
s |2

}
.

Similarly, we verify that

‖Y ‖2 = λmax(Y ∗Y ) = 1 + max
s=1,2,...,n

{
1

|λ(m)
s − λ

(m−1)
s |2

+ · · · +
m∏

i=2

1

|λ(i)
s − λ

(1)
s |2

}
,

and the proof is complete.

It is worth noting that since a (monic) normal matrix polynomial is “essentially
diagonal”, the condition number of its eigenproblem depends on the eigenvalues and
not on the eigenvectors. Furthermore, by the above theorem, it is apparent that if
m ≥ 2 and the mutual distances of the eigenvalues of the monic matrix polynomial
P (λ) are sufficiently large, then the condition number k(P ) is relatively close to 1,
i.e., the eigenproblem of P (λ) is well-conditioned. On the other hand, if m ≥ 2 and
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the mutual distances of the eigenvalues are sufficiently small, then k(P ) is relatively
large, i.e., the eigenproblem of P (λ) is ill-conditioned.

Theorem 5.4 implies practical lower and upper bounds for the condition number
k(P ). For convenience, we denote

Θ = max
λ, λ̂ ∈ σ(P )

λ �= λ̂

|λ− λ̂| and θ = min
λ, λ̂ ∈ σ(P )

λ �= λ̂

|λ− λ̂| ,

and assume that Θ, θ �= 1.

Corollary 5.5. Let P (λ) be an n×n monic normal matrix polynomial of degree
m, and let (X, J, Y ) be the Jordan triple given by Proposition 5.3. Then the condition
number k(P ) satisfies

Θ2m − 1
Θ2m − Θ2(m−1)

≤ k(P ) ≤ θ2m − 1
θ2m − θ2(m−1)

.

Consider the matrix polynomial P (λ) in (2.1), and recall that its leading coeffi-
cient Am is nonsingular. By [6, 10], (X, J, Y ) is a Jordan triple of the monic matrix
polynomial P̂ (λ) = A−1

m P (λ) = Iλm + A−1
m Am−1λ

m−1 + · · · + A−1
m A1λ + A−1

m A0 if
and only if (X, J, Y A−1

m ) is a Jordan triple of P (λ). This observation and the proof
of Theorem 5.4 yield the next results.

Corollary 5.6. Let P (λ) = A1λ+A0 be an n×n normal linear pencil, and let
U∗P (λ)U be diagonal for some unitary U ∈ Cn×n. Then a Jordan triple of P (λ) is
(X, J, Y ) = (U, J, UA−1

1 ), and k(P ) = ‖A−1
1 ‖.

Theorem 5.7. Let P (λ) in (2.1) be normal, and let (X, J, Y ) be the Jordan triple
of the monic matrix polynomial P̂ (λ) = A−1

m P (λ) given by Proposition 5.3. Then for
the condition number k(P ) = ‖X‖ ∥∥Y A−1

m

∥∥ , we have

‖Am‖−1 Θ2m − 1
Θ2m − Θ2(m−1)

≤ k(P ) ≤ ∥∥A−1
m

∥∥ θ2m − 1
θ2m − θ2(m−1)

.

Proof. As mentioned above, (X, J, Y ) is a Jordan triple of the monic matrix
polynomial P̂ (λ) if and only if (X, J, Y A−1

m ) is a Jordan triple of P (λ). Notice also
that P̂ (λ) is normal, and by the proof of Theorem 5.4,√

Θ2m − 1
Θ2m − Θ2(m−1)

≤ ‖X‖ , ‖Y ‖ ≤
√

θ2m − 1
θ2m − θ2(m−1)

.

Furthermore, there is an n × n unitary matrix U such that D(λ) = U∗P (λ)U and
Dm = U∗AmU are diagonal. As a consequence, ‖Am‖ = ‖Dm‖ and

∥∥A−1
m

∥∥ =
∥∥D−1

m

∥∥.
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Since the matrix Y U ∈ Cnm×n is a block-column of m diagonal matrices of order n,
it is straightforward to see that∥∥Y A−1

m

∥∥ =
∥∥Y UD−1

m U∗∥∥ =
∥∥Y UD−1

m

∥∥ =
∥∥Y D−1

m

∥∥ .
The matrix Y ∗Y is also diagonal, and thus,

∥∥Y D−1
m

∥∥ =
∥∥∥(D−1

m

)∗
Y ∗Y D−1

m

∥∥∥1/2

=
∥∥∥Y ∗Y

(
D−1

m

)∗
D−1

m

∥∥∥1/2

.

Hence, it follows that

‖Y ‖ ‖Dm‖−1 ≤ ∥∥Y D−1
m

∥∥ ≤ ‖Y ‖ ∥∥D−1
m

∥∥ .
By Corollary 5.5, the proof is complete.

Proposition 5.1 implies directly the following.

Corollary 5.8. Let P (λ) in (2.1) be normal, and let Q(λ) ∈ B(P, ε,w) for
some ε > 0. Then for any µ ∈ σ(Q)\σ(P ), it holds that

min
λ∈σ(P )

|µ− λ| ≤ εw(|µ|) ∥∥A−1
m

∥∥ θ2m − 1
θ2m − θ2(m−1)

.

Remark 5.9. In the construction of the above bounds, we have assumed that
Θ and θ are different than 1. Suppose that this assumption fails for a normal matrix
polynomial P (λ). Then, keeping in mind the Jordan triple (X, J, Y ) of P̂ (λ) =
A−1

m P (λ) given by Proposition 5.3 and the proofs of Theorems 5.4 and 5.7, one can
easily see that k(P ) ≥ m ‖Am‖−1 when Θ = 1, and k(P ) ≤ m

∥∥A−1
m

∥∥ when θ = 1.

Finally, as an example, recall the monic normal matrix polynomial P (λ) in (3.1).
For the weights w0 = w1 = w2 = 1, Theorem 5.4 yields k(P ) = 2, i.e., the eigenprob-
lem of P (λ) is well-conditioned. Note also that θ = 1 and the value 2 coincides with
the upper bound given in Remark 5.9.
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