GENERAL PRESERVERS OF QUASI-COMMUTATIVITY ON HERMITIAN MATRICES*

GREGOR DOLINAR ${ }^{\dagger}$ AND BOJAN KUZMA \ddagger

Abstract

Let H_{n} be the set of all $n \times n$ hermitian matrices over $\mathbb{C}, n \geq 3$. It is said that $A, B \in H_{n}$ quasi-commute if there exists a nonzero $\xi \in \mathbb{C}$ such that $A B=\xi B A$. Bijective not necessarily linear maps on hermitian matrices which preserve quasi-commutativity in both directions are classified.

Key words. General preserver, Hermitian matrices, Quasi-Commutativity.

AMS subject classifications. 15A04, 15A27, 15A57.

1. Introduction. Let H_{n} be the real vector space of $n \times n$ complex hermitian matrices with the usual involution $A^{*}=\bar{A}^{t}$. Note that A^{*} can be defined also for $A \in M_{m \times n}$, i.e., a rectangular complex $m \times n$ matrix. A hermitian matrix P is called a projection if $P=P^{2}$. Recall that all eigenvalues of hermitian matrices are real, so the set Diag of all diagonal hermitian matrices equals the set of all real diagonal matrices.

We say that $A, B \in H_{n}$ quasi-commute if there exists a nonzero $\xi \in \mathbb{C}$ such that $A B=\xi B A$. Note that there is a simple geometric interpretation of this relation: A and B quasi-commute if and only if $A B$ and $B A$ are linearly dependent and both products are either zero or else both are nonzero. We remark that, in case of hermitian matrices, we have a special phenomenon. Namely, two hermitian matrices A, B quasicommute if and only if they commute $(A B=B A)$ or anti-commute $(A B=-B A)$; see for example [1, Theorem 1.1]. Given a subset $\Omega \subset H_{n}$, we define its quasi-commutant by

$$
\Omega^{\#}=\left\{X \in H_{n}: \quad X \text { quasi-commutes with every } A \in \Omega\right\}
$$

and we write $A^{\#}=\{A\}^{\#}$. It follows from [1, Theorem 1.1] that

$$
A^{\#}=\left\{X \in H_{n}: X A=A X\right\} \cup\left\{X \in H_{n}: X A=-A X\right\} .
$$

[^0]We remark that quasi-commutativity has important applications in quantum mechanics. We refer the reader to [1] for more information. Furthermore, transformations on quantum structures which preserve some relation or operation are usually called symmetries in physics and have been studied by different authors [2]. From a mathematical point of view, maps preserving given algebraic property are called preserves and are extensively studied. Linear maps that preserve quasi-commutativity were already characterized by Molnár [6], Radjavi and Šemrl [7]. In our recent paper [3], we classified nonlinear bijective preservers of quasi-commutativity in both directions on the whole matrix algebra of $n \times n$ complex matrices. Since in quantum mechanics self-adjoint operators are important, we continued with our study and classified such maps also on H_{n}.

For a bijection $\Phi: H_{n} \rightarrow H_{n}$ it is easy to see that it preserves quasi-commutativity in both directions if and only if $\Phi\left(X^{\#}\right)=\Phi(X)^{\#}$ for every $X \in H_{n}$. Hence, we introduce an equivalence relation $A \simeq B$ whenever $A^{\#}=B^{\#}$ and denote the equivalence class of A by $[A]$. If $\Phi(X) \in[X]$, i.e., $\Phi(X)^{\#}=X^{\#}$ for every hermitian X, then it follows that Φ preserves quasi-commutativity in both directions. In particular, this shows that Φ can be characterized only up to equivalence classes.

The other simple examples of bijections which also preserve quasi-commutativity in both directions are the maps $X \mapsto X^{t}$ and $X \mapsto U X U^{*}$ for some unitary U, i.e., $U U^{*}=\mathrm{Id}$. We will prove in our theorem that every map which preserves quasicommutativity in both directions is a composition of above three simple types.

THEOREM 1.1. Let $\Phi: H_{n} \rightarrow H_{n}, n \geq 3$, be a bijective map such that A quasicommutes with B if and only if $\Phi(A)$ quasi-commutes with $\Phi(B)$. Then either $\Phi(X) \in$ $\left[U X U^{*}\right]$ for every X or $\Phi(X) \in\left[U X^{t} U^{*}\right]$ for every X, where U is unitary.

We remark that in the case of a matrix algebra M_{n}, bijections which preserve quasi-commutativity in both directions do not have a nice structure on all of M_{n}, as is the case with hermitian matrices; see [3].

Example 1.2. Suppose $A=\operatorname{Id}_{k} \oplus-\operatorname{Id}_{n-k}$ and $P=\operatorname{Id}_{k} \oplus 0_{n-k}$. Then it is easily seen that

$$
A^{\#}=\left(H_{k} \oplus H_{n-k}\right) \cup\left\{\left[\begin{array}{lr}
0 & X \\
X^{*} & 0
\end{array}\right]: X \in M_{k \times(n-k)}\right\}
$$

and

$$
P^{\#}=H_{k} \oplus H_{n-k}
$$

Observe that $A^{\#}$ is not a linear subspace. Observe also that $P^{\#} \subseteq A^{\#}$.
A matrix A is minimal if $A^{\#} \supseteq B^{\#}$ implies $A^{\#}=B^{\#}$. Similarly a non-scalar matrix A is maximal if $A^{\#} \subseteq B^{\#}$ implies $A^{\#}=B^{\#}$ for every non-scalar matrix B.

Example 1.3. If $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ with $\left|d_{i}\right| \neq\left|d_{j}\right|, i \neq j$, then $D^{\#}$ is equal to the set of all hermitian diagonal matrices.

Namely, by [1], $X=\left(x_{i j}\right)_{i j} \in D^{\#}$ precisely when $X D=D X$ or when $X D=$ $-D X$. Comparing the absolute values of $(i j)$ entry on the both sides gives $\left|x_{i j} d_{j}\right|=$ $\left|d_{i} x_{i j}\right|$. When $i \neq j$, the only solution is $\left|x_{i j}\right|=0$, hence X is diagonal. Conversely, any diagonal X clearly quasi-commutes with D.

2. Proofs.

2.1. Preliminary lemmas.

Lemma 2.1. Let D be a diagonal matrix. If $D^{\#} \subseteq A^{\#}$ then A is also diagonal.
Proof. As usual, let $E_{i j}$ be the matrix with 1 at the (i, j)-th position and zeros elsewhere. Assume $A=\left(a_{i j}\right)$ is not diagonal. Then there exists $a_{i_{0} j_{0}} \neq 0$ with $i_{0} \neq j_{0}$. Since $\left(i_{0}, j_{0}\right)$-th entry of $E_{i_{0} i_{0}} A$ is $a_{i_{0} j_{0}}$, but $\left(i_{0}, j_{0}\right)$-th entry of $A E_{i_{0} i_{0}}$ is zero, we see that $E_{i_{0} i_{0}} \notin A^{\#}$. However, D is diagonal and therefore $E_{i_{0} i_{0}} \in D^{\#} \backslash A^{\#}$, a contradiction.

Lemma 2.2. Let $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $B=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right)$ be diagonal matrices. Then $A^{\#}=B^{\#}$ if and only if all of the following three conditions are satisfied for every indices $i, j, k, i \neq j$:
(i) $\lambda_{i}=\lambda_{j}$ if and only if $\mu_{i}=\mu_{j}$,
(ii) $\lambda_{i}=-\lambda_{j}$ if and only if $\mu_{i}=-\mu_{j}$,
(iii) $\lambda_{i}=-\lambda_{j} \neq 0$ and $\lambda_{k}=0$ if and only if $\mu_{i}=-\mu_{j} \neq 0$ and $\mu_{k}=0$.

Proof. Assume first that $A^{\#}=B^{\#}$. (i) If $\lambda_{i}=\lambda_{j}$, then $E_{i j}+E_{j i}+E_{i i} \in A^{\#}=$ $B^{\#}$, hence $\mu_{i}=\mu_{j}$. Similarly $\mu_{i}=\mu_{j}$ implies $\lambda_{i}=\lambda_{j}$. (ii) If $\lambda_{i}=-\lambda_{j}$ and $\lambda_{i} \neq 0$, then $E_{i j}+E_{j i}+E_{i i} \notin A^{\#}=B^{\#}$, hence $\mu_{i} \neq \mu_{j}$, however $E_{i j}+E_{j i} \in A^{\#}=B^{\#}$, hence $\mu_{i}=-\mu_{j}$. The case $\lambda_{i}=-\lambda_{j}=0$ reduces to (i). Similarly $\mu_{i}=-\mu_{j}$ implies $\lambda_{i}=-\lambda_{j}$. (iii) If $\lambda_{i}=-\lambda_{j} \neq 0$ and $\lambda_{k}=0$ then by (i)-(ii), $\mu_{i}=-\mu_{j} \neq 0$ and since $E_{i j}+E_{j i}+E_{k k} \in A^{\#}=B^{\#}$, we obtain $\mu_{k}=0$. In the same way $\mu_{i}=-\mu_{j} \neq 0$, $\mu_{k}=0$ implies $\lambda_{i}=-\lambda_{j} \neq 0, \lambda_{k}=0$.

Second, assume (i)-(iii) hold. We distinguish two options. To begin with, suppose there exist indices $i_{0} \neq j_{0}$ such that $\lambda_{i_{0}}=-\lambda_{j_{0}} \neq 0$. Let $X=\left(x_{i j}\right)_{i j} \in A^{\#}$. Then either $A X=X A$ or $A X=-X A$. Comparing the (i, j)-th entries we obtain $\lambda_{i} x_{i j}=\lambda_{j} x_{i j}$ for every i, j or $\lambda_{i} x_{i j}=-\lambda_{j} x_{i j}$ for every i, j. In the former case we easily obtain by (i) that $\mu_{i} x_{i j}=\mu_{j} x_{i j}$ for every i, j, hence $X \in B^{\#}$. In the latter case, if $x_{i j}=0$ then clearly $\mu_{i} x_{i j}=-\mu_{j} x_{i j}$, if $x_{i j} \neq 0$ and $i \neq j$, then also $\mu_{i} x_{i j}=-\mu_{j} x_{i j}$ by (ii), and if $x_{k k} \neq 0$ then $\lambda_{k}=0$ and by (iii) also $\mu_{k}=0$, hence $\mu_{k} x_{k k}=-\mu_{k} x_{k k}$. Therefore $X \in B^{\#}$ also in this case, so $A^{\#} \subseteq B^{\#}$. Lastly, suppose for no indices $i \neq j$ we have $\lambda_{i}=-\lambda_{j} \neq 0$. Then $X \in A^{\#}$ implies $A X=X A$ or $A X=-X A$. However,
as $\lambda_{i} \neq-\lambda_{j}$ when $\lambda_{i} \neq 0$, the latter is equivalent to $A X=X A$. So, from (i) we easily deduce $B X=X B$. Hence, $A^{\#} \subseteq B^{\#}$. The inclusion $B^{\#} \subseteq A^{\#}$ follows in the same way.

Corollary 2.3. A matrix is equivalent to $E_{i i}$ if and only if it equals $\lambda E_{i i}+$ $\mu\left(\operatorname{Id}-E_{i i}\right)$ for some real numbers λ, μ with $|\lambda| \neq|\mu|$.

Proof. We prove only the nontrivial implication. Pick any matrix A with $A^{\#}=$ $E_{i i}^{\#}$. Then, by Lemma 2.1, A is also diagonal. The rest follows from Lemma 2.2. $\mathrm{\square}$

Lemma 2.4. A matrix A is minimal if and only if there exists a unitary matrix U and a real diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ with $\left|d_{i}\right| \neq\left|d_{j}\right|, i \neq j$, such that $A=U D U^{*}$.

Proof. Suppose A is minimal. Hermitian matrices are unitarily diagonalizable, therefore there exists a unitary matrix U and a real diagonal matrix $D=$ $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ such that $A=U D U^{*}$. Assume erroneously that $\left|d_{i}\right|=\left|d_{j}\right|$ for some $i \neq j$. Consider a matrix $A_{0}=U \operatorname{diag}(1, \ldots, n) U^{*}$. By Example 1.3, $A_{0}^{\#}=U \operatorname{Diag} U^{*}$, and clearly $U \operatorname{Diag} U^{*} \subseteq A^{\#}$. However, $U\left(E_{i j}+E_{j i}\right) U^{*} \in A^{\#} \backslash A_{0}^{\#}$, which contradicts minimality of A.

To prove the opposite direction, assume $A=U \operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) U^{*}$ for some unitary U and real scalars d_{i} with $\left|d_{i}\right| \neq\left|d_{j}\right|, i \neq j$. Without loss of generality we may assume $U=\mathrm{Id}$. Suppose $B^{\#} \subseteq A^{\#}$. Then, $B \in B^{\#} \subseteq A^{\#}$ and Example 1.3 gives that B is diagonal. Moreover, $A^{\#}=$ Diag, and clearly, each diagonal matrix quasi-commutes with B. Hence, $A^{\#} \subseteq B^{\#}$, so A is minimal. \square

Note that all minimal diagonal matrices are equivalent.
Lemma 2.5. If B is an immediate successor of a minimal diagonal matrix D, then $B=\operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)$ is invertible and there exists i_{0}, j_{0} such that $b_{i_{0}}=-b_{j_{0}}$ while $\left|b_{i}\right| \neq\left|b_{j}\right|$ for $i \neq j$ and $i \in\{1, \ldots, n\} \backslash\left\{i_{0}, j_{0}\right\}$.

Proof. Since all minimal diagonal matrices are equivalent we may assume that $D=\operatorname{diag}(1, \ldots, n)$. By Lemma 2.1, $D^{\#} \subseteq B^{\#}$ implies $B=\operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)$ is also diagonal. Since B is not minimal it follows by Lemma 2.4 that $\left|b_{i_{0}}\right|=\left|b_{j_{0}}\right|$ for some $i_{0} \neq j_{0}$. Assume erroneously that B is not as stated in the lemma. Then B has at least one of the following properties: (i) $\left|b_{i_{0}}\right|=\left|b_{j_{0}}\right|=\left|b_{k_{0}}\right|$ for some $k_{0} \notin\left\{i_{0}, j_{0}\right\}$, or (ii) $\left|b_{k_{0}}\right|=\left|b_{l_{0}}\right|, k_{0} \neq l_{0}, k_{0}, l_{0} \notin\left\{i_{0}, j_{0}\right\}$, or (iii) $b_{k_{0}}=0, k_{0} \notin\left\{i_{0}, j_{0}\right\}$, or (iv) $b_{i_{0}}=b_{j_{0}}$.

Let us define a diagonal matrix $C=D-\left(i_{0}+j_{0}\right) E_{i_{0} i_{0}}$. Observe that $C^{\#}=$ $\operatorname{Diag} \cup\left\{\lambda E_{i_{0} j_{0}}+\bar{\lambda} E_{j_{0} i_{0}}: \lambda \in \mathbb{C}\right\}$, hence $D^{\#} \subsetneq C^{\#} \subseteq B^{\#}$. If B has the property (i) then $E_{i_{0} k_{0}}+E_{k_{0} i_{0}} \in B^{\#} \backslash C^{\#}$, if (ii) then $E_{k_{0} l_{0}}+E_{l_{0} k_{0}} \in B^{\#} \backslash C^{\#}$, if (iii) then $E_{i_{0} j_{0}}+E_{j_{0} i_{0}}+E_{k_{0} k_{0}} \in B^{\#} \backslash C^{\#}$, and if (iv) then $E_{i_{0} j_{0}}+E_{j_{0} i_{0}}+E_{i_{0} i_{0}} \in B^{\#} \backslash C^{\#}$.

In any of these cases B is not an immediate successor.
Corollary 2.6. If A is an immediate successor of a minimal diagonal matrix, then $A^{\#}=\operatorname{Diag} \cup\left\{\lambda E_{i j}+\bar{\lambda} E_{j i}: \lambda \in \mathbb{C}\right\}$ for some indices $i \neq j$.

Lemma 2.7. A non-scalar diagonal hermitian matrix is maximal if and only if absolute values of all its eigenvalues are equal and nonzero.

Proof. Let non-scalar $M=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$, where $d_{i} \in\{-\alpha, \alpha\}$ for every i and some nonzero $\alpha \in \mathbb{R}$. Assume $B^{\#} \supseteq M^{\#}$. By Lemma $2.1, B=\operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)$ is diagonal. If $\left|b_{i}\right| \neq\left|b_{j}\right|$ then $E_{i j}+E_{j i} \notin B^{\#}$, but $E_{i j}+E_{j i} \in M^{\#}$, a contradiction. Hence $b_{i} \in\{-b, b\}$ for some $b \in \mathbb{R}$ and every i. Suppose $d_{i}=d_{j}$ for $i \neq j$. Then $E_{i i}+E_{i j}+E_{j i} \in M^{\#} \subseteq B^{\#}$, and consequently $b_{i}=b_{j}$. Therefore if $d_{i} \neq d_{j}$ and $b_{i}=b_{j}$ for some $i \neq j$ then B is a scalar matrix. Otherwise, if $d_{i} \neq d_{j}$ implies $b_{i} \neq b_{j}$, then $B= \pm(b / \alpha) M$ and $B^{\#}=M^{\#}$.

Conversely, let $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \in H_{n}$. We need to show that, unless $\left|d_{i}\right|=$ $\left|d_{j}\right|$ for every indices i, j, a matrix D is not maximal. Assume $\left|d_{i_{0}}\right| \neq\left|d_{j_{0}}\right|$ for some indices i_{0}, j_{0}. We define a non-scalar matrix $M=\operatorname{diag}\left(m_{1}, \ldots, m_{n}\right)$, where $m_{i_{0}}=1$ for every i with $\left|d_{i}\right|=\left|d_{i_{0}}\right|$ and $m_{i}=-1$ otherwise. It is easy to see that every matrix which quasi-commutes with D actually commutes with M. So $D^{\#} \subseteq M^{\#}$. Since $E_{i_{0} j_{0}}+E_{j_{0} i_{0}} \in M^{\#}$, but $E_{i_{0} j_{0}}+E_{j_{0} i_{0}} \notin D^{\#}$, we see that D cannot be maximal. \square

In the next lemma the projections are classified up to equivalence in terms of quasi-commutativity.

Lemma 2.8. Suppose $A \in \operatorname{Diag}$ is non-maximal and non-scalar. Then A is equivalent to a projection if and only if A is an immediate predecessor of some maximal matrix, and, up to equivalence, there exists precisely one maximal matrix which A connects to.

Proof. Suppose A is not equivalent to a projection. We will prove that when A is invertible, it connects to two nonequivalent maximal matrices, and when A is singular, there exists at least one maximal matrix which A connects to, but which is not its immediate predecessor.

Now, since A is not a scalar matrix, it must have at least two eigenvalues. Actually, it must have more than two eigenvalues because $\alpha \operatorname{Id}_{r} \oplus(-\alpha) \operatorname{Id}_{n-r}, \alpha \neq 0$ is maximal by Lemma 2.7, and $\alpha \mathrm{Id}_{r} \oplus \beta \mathrm{Id}_{n-r}, \alpha \neq \pm \beta$, is equivalent to a projection $\operatorname{Id}_{r} \oplus 0_{n-r}$. Without loss of generality, we may assume that $A=\alpha_{1} \operatorname{Id}_{n_{1}} \oplus \ldots \oplus$ $\alpha_{k} \operatorname{Id}_{n_{k}}, \alpha_{i} \neq \alpha_{j}$ for $i \neq j$, and if there are two nonzero eigenvalues with the same absolute value, that $\alpha_{1}=-\alpha_{2}$. When A is singular, we may also assume that $\alpha_{k}=0$.

We now construct two diagonal matrices B and C, where $B=\beta_{1} \operatorname{Id}_{n_{1}} \oplus \ldots \oplus$ $\beta_{k} \operatorname{Id}_{n_{k}}, C=\left(-\beta_{1}\right) \operatorname{Id}_{n_{1}} \oplus\left(-\beta_{2}\right) \operatorname{Id}_{n_{2}} \oplus \beta_{3} \operatorname{Id}_{n_{3}} \oplus \ldots \oplus \beta_{k} \operatorname{Id}_{n_{k}}$, and $\beta_{i} \in\{-1,0,1\}$
are recursively defined as follows. Start with $\beta_{1}=1$. Assume $\beta_{1}, \ldots, \beta_{i}, i<k$ are already defined. If $i+1=k$ and $\alpha_{k}=0$ let $\beta_{k}=0$. If $\alpha_{i+1}=-\alpha_{j}$ for some $j \leq i$, let $\beta_{i+1}=-\beta_{j}$. Otherwise, $\beta_{i+1}=-\beta_{i}$. Observe that $\beta_{1}=-\beta_{2} \neq 0$, hence B and C are non-scalar.

We now consider two cases separately. Firstly, if A is invertible, then B and C are maximal and moreover $\beta_{1}=1, \beta_{2}=-1, \beta_{3}=1$. It follows that $E_{11}+E_{1\left(n_{1}+n_{2}+1\right)}+$ $E_{\left(n_{1}+n_{2}+1\right) 1} \in B^{\#} \backslash C^{\#}$, so B and C are nonequivalent, maximal matrices and it is easy to see that $A^{\#} \subseteq B^{\#}$ and $A^{\#} \subseteq C^{\#}$.

Secondly, if A is singular, then $\beta_{k}=0$. Again, it is easy to see that $A^{\#} \subseteq B^{\#}$, and also $B^{\#} \subsetneq P^{\#}$, where $P=\operatorname{Id}_{n_{1}} \oplus \ldots \oplus \operatorname{Id}_{n_{k-1}} \oplus 0_{n_{k}}$ is a projection, which connects to a maximal matrix $M=\mathrm{Id}_{n_{1}} \oplus \ldots \oplus \mathrm{Id}_{n_{k-1}} \oplus\left(-\mathrm{Id}_{n_{k}}\right)$. Therefore, A is not an immediate predecessor of at least one maximal matrix.

Let us prove the other implication. We can assume that A is a projection and $A=\operatorname{Id}_{r} \oplus 0_{n-r}$. It is easy to see that A connects to $M_{0}=\left(\operatorname{Id}_{r} \oplus-\operatorname{Id}_{n-r}\right)$, which is maximal. It remains to show that, up to equivalence, A connects to no other maximal matrix and that A is an immediate predecessor of M_{0}. Indeed, let M be any maximal matrix such that $A^{\#} \subseteq M^{\#}$. By Lemma $2.1, M=\operatorname{diag}\left(m_{1}, \ldots, m_{n}\right)$ is diagonal. For $i \leq r$, note that $E_{11}+E_{1 i}+E_{i 1} \in A^{\#} \subseteq M^{\#}$, which forces $m_{1}=m_{i}$, for every $i \leq r$. Likewise we see that $m_{j}=m_{n}$ for every $j>r$. Moreover, by Lemma 2.7, $\left|m_{i}\right|=\left|m_{j}\right| \neq 0$ for every i, j. Therefore, $M=m\left(\operatorname{Id}_{r} \oplus-\operatorname{Id}_{n-r}\right)$, and hence $M^{\#}=M_{0}^{\#}$. It remains to show that A is an immediate predecessor of M_{0}. To this end, assume $A^{\#} \subseteq B^{\#} \subseteq M_{0}^{\#}$ for some B. As above we see that $B=\alpha \operatorname{Id}_{r} \oplus \beta \operatorname{Id}_{n-r}$. Clearly, $\alpha \neq \beta$. Now, if $\alpha=-\beta$ then B is equivalent to M_{0}. In all other possibilities, B is equivalent to A.
2.2. Proof of the Theorem. We divide the proof in several steps.

Step 1. Clearly, the bijection Φ preserves the set of minimal matrices. So, if D is minimal diagonal then by Lemma $2.4, \Phi(D)=U D_{1} U^{*}$ for some unitary U and some minimal diagonal D_{1}, recall that $D^{\#}=D_{1}^{\#}$. We may assume $U=\mathrm{Id}$, otherwise we replace Φ with a bijection $X \mapsto U^{*} \Phi(X) U$.

Step 2. Let us continue by proving that several sets are preserved by Φ. Since $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is minimal, Lemma 2.4 implies $\left|d_{i}\right| \neq\left|d_{j}\right|$ for $i \neq j$. Therefore $D^{\#}=$ Diag by Example 1.3 and since $\Phi\left(D^{\#}\right)=\Phi(D)^{\#}=D_{1}^{\#}=D^{\#}$, the bijection Φ satisfies $\Phi($ Diag $)=$ Diag.

It is easy to see, by Lemma 2.1 and Lemma 2.2, that A is a scalar matrix precisely when $A^{\#}=H_{n}$. So, $\Phi\left(\mathbb{R} \operatorname{Id}_{n}\right)=\mathbb{R} \operatorname{Id}_{n}$.

Since Φ preserves maximal diagonal matrices as well as non-maximal ones, it also
preserves the set of equivalence classes of diagonal projections by Lemma 2.8.
The map Φ preserves the set of all immediate successors of a minimal diagonal matrix. Hence, it also permutes their quasi-commutants. By Corollary 2.6 and since $\Phi($ Diag $)=$ Diag, the bijective map Φ maps the set $\mathfrak{D}_{i j}=\left\{\lambda E_{i j}+\bar{\lambda} E_{j i}: \lambda \in \mathbb{C}\right\}$ onto $\mathfrak{D}_{u v}$ for some indices u, v.

Let a matrix P be equivalent to a diagonal projection of rank- k. It is easy to see that $\mathfrak{D}_{i j} \subseteq P^{\#}$ for exactly $\frac{k(k-1)}{2}+\frac{(n-k)(n-k-1)}{2}$ different sets $\mathfrak{D}_{i j}$. Therefore P is equivalent to a diagonal projection of rank-one if and only if $\mathfrak{D}_{i j} \subseteq P^{\#}$ for exactly $\frac{1}{2}(n-1)(n-2)$ different sets $\mathfrak{D}_{i j}$ (note that a projection $E_{i i}$ of rank-one is equivalent to a projection $\mathrm{Id}_{n}-E_{i i}$ of rank $(n-1)$). Since Φ bijectively permutes the sets $\mathfrak{D}_{i j}$ among themselves, this shows that P is equivalent to a diagonal projection of rank-one if and only if $\Phi(P)$ is equivalent to a diagonal projection of rank-one.

Let P be an arbitrary matrix equivalent to a rank-one projection. Since Φ is determined only up to equivalence we can assume that P is already a projection of rank-one, that is $P=V E_{11} V^{*}$ for some unitary V. We temporarily replace Φ by $\Psi: X \mapsto U_{P} \Phi\left(V X V^{*}\right) U_{P}^{*}$, where a unitary U_{P} is such that Ψ fixes the equivalence class of a minimal diagonal matrix. Applying the above arguments to Ψ we see that $\Psi\left(E_{11}\right)=U_{P} \Phi(P) U_{P}^{*}$ is equivalent to a diagonal rank-one projection. Therefore Φ preserves the set of rank one projections up to equivalence.

Step 3. By Corollary 2.3, each equivalence class contains at most one projection of rank-one. Hence Φ induces the well defined bijection on the set of rank-one projections, which we denote by ϕ. We claim that ϕ preserves orthogonality among rank-one projections. Namely, if P, Q are orthogonal rank-one projections, then they are simultaneously unitarily diagonalizable, that is $P=V_{2} E_{11} V_{2}^{*}$ and $Q=V_{2} E_{22} V_{2}^{*}$ for some unitary V_{2}. Consider temporarily a bijection $\Psi: X \mapsto U_{2} \Phi\left(V_{2} X V_{2}^{*}\right) U_{2}^{*}$, where unitary U_{2} is such that Ψ fixes the equivalence class of a minimal diagonal matrix. By the above, $\Psi\left(E_{11}\right) \in\left[E_{i i}\right]$ and $\Psi\left(E_{22}\right) \in\left[E_{j j}\right]$ for some i, j, where $i \neq j$ because E_{11} and E_{22} are not equivalent. By Corollary 2.3 there exists precisely one rank-one idempotent inside $\left[U_{2}^{*} E_{i i} U_{2}\right]$ and precisely one inside $\left[U_{2}^{*} E_{j j} U_{2}\right.$], so $\phi(P)=U_{2}^{*} E_{i i} U_{2}$ and $\phi(Q)=U_{2}^{*} E_{j j} U_{2}$ are indeed orthogonal.

Step 4. It can be deduced from Wigner's unitary-antiunitary Theorem, see [4, Theorem 4.1], that there exists a unitary matrix U_{3} such that $\phi(P)=U_{3} P U_{3}^{*}$ for every rank-one projection P or $\phi(P)=U_{3} \bar{P} U_{3}^{*}=U_{3} P^{t} U_{3}^{*}$ for every rank-one projection P, where \bar{P} denotes complex conjugation applied entry-wise (see also [5] for more details). So, $\Phi\left(E_{i i}\right) \in\left[U_{3} E_{i i} U_{3}^{*}\right]$ for every i. Let us show that $U_{3} \operatorname{Diag} U_{3}^{*} \subseteq$ Diag. Since $\Phi(\mathrm{Diag})=$ Diag, it follows that $\Phi\left(E_{i i}\right)$ is diagonal, hence the equivalence class $\left[U_{3} E_{i i} U_{3}^{*}\right]$ contains at least one diagonal matrix. Since $\left[U_{3} E_{i i} U_{3}^{*}\right]=U_{3}\left[E_{i i}\right] U_{3}^{*}=$ $\left\{\lambda U_{3} E_{i i} U_{3}^{*}+\mu\left(\operatorname{Id}-U_{3} E_{i i} U_{3}^{*}\right): \lambda, \mu \in \mathbb{R},|\lambda| \neq|\mu|\right\}$ by Corollary 2.3, it follows that
$\left[U_{3} E_{i i} U_{3}^{*}\right] \subseteq$ Diag, so $U_{3} E_{i i} U_{3}^{*} \in$ Diag for every i. Every diagonal matrix is a linear combination of matrices $E_{i i}$ and therefore $U_{3} \operatorname{Diag} U_{3}^{*} \subseteq$ Diag.

Step 5. If necessary, we replace Φ by the map $X \mapsto U_{3}^{*} \Phi(X) U_{3}$ or by the map $X \mapsto U_{3}^{*} \Phi\left(X^{t}\right) U_{3}$, which we again denote by Φ, so that $\Phi(P) \in[P]$ for every rankone projection P. Observe that Φ still satisfies the property $\Phi(\operatorname{Diag})=$ Diag and therefore also all its properties proven up to now remain valid.

Step 6. Let $\mathbf{x} \in \mathbb{C}^{n}$ be a column vector, i.e., a matrix of dimension $n \times 1$, with Euclidean norm 1. It easily follows that a rank-one projection $\mathbf{x x}^{*}$ quasi-commutes with A precisely when \mathbf{x} is an eigenvector of A. Since quasi-commutativity is preserved in both directions, and $\Phi\left(\mathbf{x x}^{*}\right)^{\#}=\left(\mathbf{x x}^{*}\right)^{\#}$, we see that A and $\Phi(A)$ have exactly the same eigenvectors. In particular, if $A=U_{A}\left(\lambda_{1} \operatorname{Id}_{n_{1}} \oplus \ldots \oplus \lambda_{k} \operatorname{Id}_{n_{k}}\right) U_{A}^{*}$ with λ_{i} pairwise distinct and U_{A} unitary, then also $\Phi(A)=U_{A}\left(\mu_{1} \mathrm{Id}_{n_{1}} \oplus \ldots \oplus \mu_{k} \mathrm{Id}_{n_{k}}\right) U_{A}^{*}$, with μ_{i} pairwise distinct. In particular, $\Phi\left(U_{A} \operatorname{Diag} U_{A}^{*}\right)=U_{A} \operatorname{Diag} U_{A}^{*}$.

Step 7. Next let us show that $\Phi\left(V \mathfrak{D}_{i j} V^{*}\right)=V \mathfrak{D}_{i j} V^{*}$, where V is an arbitrary unitary matrix. Recall $\mathfrak{D}_{i j}=\left\{\lambda E_{i j}+\bar{\lambda} E_{j i}: \lambda \in \mathbb{C}\right\}$, and introduce temporarily $\Psi: X \mapsto V^{*} \Phi\left(V X V^{*}\right) V$. By the above, Ψ (Diag) $=$ Diag, and Ψ fixes all rank-one projections up to equivalence. Hence, as we have already proved, $\Psi\left(\mathfrak{D}_{i j}\right)=\mathfrak{D}_{u v}$ for some (u, v). Observe that a rank-one projection $E_{k k} \in \mathfrak{D}_{i j}^{\#}$ if and only if $k \notin\{i, j\}$. So, $\mathfrak{D}_{u v}=\Psi\left(\mathfrak{D}_{i j}\right) \subset \Psi\left(E_{k k}\right)^{\#}=E_{k k}^{\#}$ whenever $k \notin\{i, j\}$, which is possible only when $\mathfrak{D}_{u v}=\mathfrak{D}_{i j}$. Clearly then $\Phi\left(V \mathfrak{D}_{i j} V^{*}\right)=V \Psi\left(\mathfrak{D}_{i j}\right) V^{*}=V \mathfrak{D}_{i j} V^{*}$ as claimed.

Step 8. Consider a general hermitian matrix $A=U_{A}\left(\lambda_{1} \operatorname{Id}_{n_{1}} \oplus \ldots \oplus \lambda_{k} \operatorname{Id}_{n_{k}}\right) U_{A}^{*}$, where U_{A} is unitary and $\lambda_{i} \in \mathbb{R}$ are pairwise distinct. We already know that $\Phi(A)=$ $U_{A}\left(\mu_{1} \operatorname{Id}_{n_{1}} \oplus \ldots \oplus \mu_{k} \operatorname{Id}_{n_{k}}\right) U_{A}^{*}$ for pairwise distinct $\mu_{i} \in \mathbb{R}$. Moreover, $\lambda_{i}=-\lambda_{j} \neq 0$ if and only if $\mu_{i}=-\mu_{j} \neq 0$, since $U_{A} \mathfrak{D}_{\left(n_{1}+\ldots+n_{i-1}+1\right)\left(n_{1}+\ldots+n_{j-1}+1\right)} U_{A}^{*} \subseteq A^{\#}$ precisely when $\lambda_{i}=-\lambda_{j}$. Consequently, if $\left|\lambda_{i}\right|$ are pairwise distinct then $\Phi(A) \in[A]$. In particular, Φ fixes the equivalence class of a matrix $1 \mathrm{Id}_{n_{1}} \oplus 2 \mathrm{Id}_{n_{2}} \oplus \ldots \oplus k \mathrm{Id}_{n_{k}}$ for any choice of a positive integer k and any choice of positive integers n_{1}, \ldots, n_{k} with $n_{1}+\ldots+n_{k}=n$. Hence Φ also bijectively maps its quasi-commutant, which equals $H_{n_{1}} \oplus \ldots \oplus H_{n_{k}}$, onto itself. Since Φ is injective no other matrix can be mapped into this set.

Step 9. We next show that Φ fixes equivalence classes of each matrix of the form $F=V\left(\operatorname{diag}(\lambda,-\lambda, \mu) \oplus 0_{n-3}\right) V^{*}$, where $\lambda, \mu \neq 0,|\lambda| \neq|\mu|$, and V unitary. Assume with no loss of generality that $V=$ Id. We already know that $\Phi(F)=$ $\operatorname{diag}(\nu,-\nu, \eta) \oplus \zeta \operatorname{Id}_{n-3}$, where $|\nu|,|\eta|,|\zeta|$ are pairwise distinct, and $\nu \neq 0$. When $n \geq 4$ we have to consider three options either (i) $\eta, \zeta \neq 0$, or (ii) $\eta=0, \zeta \neq 0$, or (iii) $\eta \neq 0, \zeta=0$. If $\Phi(F)$ has the property (i) then $\Phi(F)^{\#}=\left(H_{1} \oplus H_{1} \oplus H_{1} \oplus H_{n-3}\right) \cup \mathfrak{D}_{12}$. By Step 7 and Step 8 , the set $\Omega=\Phi(F)^{\#}$ is bijectively mapped onto itself by Φ. Note that $\left(E_{12}+E_{21}+E_{n n}\right) \in F^{\#} \backslash \Omega$. Since Φ is injective, $\Phi\left(E_{12}+E_{21}+E_{n n}\right) \notin \Phi(\Omega)=$
$\Omega=\Phi(F)^{\#}=\Phi\left(F^{\#}\right)$, a contradiction.
Suppose $\Phi(F)$ has the property (ii). Then there exists $X=\left(E_{12}+E_{21}+E_{n n}\right) \in$ $F^{\#} \backslash\left(H_{1} \oplus H_{1} \oplus H_{1} \oplus H_{n-3}\right)$ with the property that $X^{\#}$ contains the set $\left\{\lambda\left(E_{1 n}+\right.\right.$ $\left.\left.E_{2 n}\right)+\bar{\lambda}\left(E_{n 1}+E_{n 2}\right): \lambda \in \mathbb{C}\right\}=V_{3} \mathfrak{D}_{12} V_{3}^{*}$ for unitary $V_{3}=\frac{1}{\sqrt{2}}\left(E_{11}+E_{13}+E_{21}-\right.$ $\left.E_{23}\right)+E_{n 2}+\sum_{i=3}^{n-1} E_{i(i+1)}$. Observe that

$$
\begin{aligned}
\Phi(X) & \in \Phi(F)^{\#} \backslash \Phi\left(H_{1} \oplus H_{1} \oplus H_{1} \oplus H_{n-3}\right) \\
& =\left(\operatorname{diag}(\nu,-\nu, 0) \oplus \zeta \operatorname{Id}_{n-3}\right)^{\#} \backslash\left(H_{1} \oplus H_{1} \oplus H_{1} \oplus H_{n-3}\right) \\
& =\left\{\lambda E_{12}+\bar{\lambda} E_{21}+\beta E_{33}: \lambda \in \mathbb{C} \backslash\{0\}, \beta \in \mathbb{R}\right\}=\Xi
\end{aligned}
$$

It is now easy to see that, for an arbitrary $Y \in \Xi$, the set $Y^{\#}$ does not contain the set $\Phi\left(V_{3} \mathfrak{D}_{12} V_{3}^{*}\right)=V_{3} \mathfrak{D}_{12} V_{3}^{*}$, a contradiction.

Hence $\Phi(F)$ has the property (iii) for $n \geq 4$. When $n=3$ we have only two options (i) $\eta \neq 0$ or (ii) $\eta=0$. Note that $F^{\#}=\left(H_{1} \oplus H_{1} \oplus H_{1}\right) \cup \mathfrak{D}_{12}$ is a union of two sets invariant for Φ. Hence, $\Phi\left(F^{\#}\right)=F^{\#}$. Since $\operatorname{diag}(\nu,-\nu, 0)^{\#} \supsetneq F^{\#}$, the second case is contradictory, as anticipated.

Step 10. Finally, we can show that Φ fixes equivalence class of an arbitrary hermitian matrix A. Decompose A as in Step 8. We already know that $\Phi(A)=$ $U_{A}\left(\mu_{1} \operatorname{Id}_{n_{1}} \oplus \ldots \oplus \mu_{k} \operatorname{Id}_{n_{k}}\right) U_{A}^{*}$, with μ_{i} pairwise distinct and $\mu_{i}=-\mu_{j}$ precisely when $\lambda_{i}=-\lambda_{j}, i \neq j$. By Lemma 2.2 it remains to show that in the case when $\lambda_{i_{0}}=$ $-\lambda_{j_{0}} \neq 0$ we have $\lambda_{k}=0$ if and only if $\mu_{k}=0$. So assume $\lambda_{k}=0$. Note that $X=$ $E_{i_{0} j_{0}}+E_{j_{0} i_{0}}+2 E_{k k} \in A^{\#}$. Since X is unitarily equivalent to $\operatorname{diag}(1,-1,2,0, \ldots, 0)$, Step 9 implies that its equivalence class is fixed by Φ, hence $[X]=[\Phi(X)] \subseteq \Phi(A)^{\#}$. So also $\mu_{k}=0$. In the same way we obtain that $\lambda_{k} \neq 0$ implies $\mu_{k} \neq 0$.

REFERENCES

[1] J.A. Brooke, P. Busch, and D.B. Pearson. Commutativity up to a factor of bounded operators in complex Hilbert space. Proc. R. Soc. Lond., Ser. A Math. Phys. Eng. Sci., 458:109-118, 2002.
[2] G. Cassinelli, E. De Vito, P. J. Lahti, and A. Levrero. The theory of symmetry actions in quantum mechanics. With an application to the Galilei group. Lecture Notes in Physics, 654, Springer-Verlag, Berlin, 2004.
[3] G. Dolinar and B. Kuzma. General preservers of quasi-commutativity. Preprint.
[4] C.-A. Faure. An elementary proof of the fundamental theorem of projective geometry. Geom. Dedicata, 90:145-151, 2002.
[5] A. Fošner and B. Kuzma. Preserving zeros of Jordan product on hermitian and symmetric matrices. Preprint.
[6] L. Molnár. Linear maps on matrices preserving commutativity up to a factor. Linear Multilinear Algebra, to appear.
[7] H. Radjavi and P. Šemrl. Linear maps preserving quasi-commutativity. Studia Math., 184:191204, 2008.

[^0]: *Received by the editors June 9, 2008. Accepted for publication September 14, 2008. Handling Editor: Harm Bart. The authors were supported by a grant from the Ministry of Higher Education, Science and Technology, Slovenia.
 \dagger Faculty of Electrical Engineering, University of Ljubljana (gregor.dolinar@fe.uni-lj.si).
 ${ }^{\ddagger}$ University of Primorska, Koper and Institute of Mathematics, Physics, and Mechanics, Ljubljana (bojan.kuzma@pef.upr.si).

