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GENERAL PRESERVERS OF QUASI-COMMUTATIVITY ON
HERMITIAN MATRICES∗
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Abstract. Let Hn be the set of all n × n hermitian matrices over C, n ≥ 3. It is said

that A, B ∈ Hn quasi-commute if there exists a nonzero ξ ∈ C such that AB = ξBA. Bijective not

necessarily linear maps on hermitian matrices which preserve quasi-commutativity in both directions

are classified.
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1. Introduction. Let Hn be the real vector space of n × n complex hermitian
matrices with the usual involution A∗ = Āt. Note that A∗ can be defined also for
A ∈ Mm×n, i.e., a rectangular complex m×n matrix. A hermitian matrix P is called
a projection if P = P 2. Recall that all eigenvalues of hermitian matrices are real,
so the set Diag of all diagonal hermitian matrices equals the set of all real diagonal
matrices.

We say that A,B ∈ Hn quasi-commute if there exists a nonzero ξ ∈ C such that
AB = ξBA. Note that there is a simple geometric interpretation of this relation:
A and B quasi-commute if and only if AB and BA are linearly dependent and both
products are either zero or else both are nonzero. We remark that, in case of hermitian
matrices, we have a special phenomenon. Namely, two hermitian matrices A,B quasi-
commute if and only if they commute (AB = BA) or anti-commute (AB = −BA); see
for example [1, Theorem 1.1]. Given a subset Ω ⊂ Hn, we define its quasi-commutant
by

Ω# = {X ∈ Hn : X quasi-commutes with every A ∈ Ω}

and we write A# = {A}#. It follows from [1, Theorem 1.1] that

A# = {X ∈ Hn : XA = AX} ∪ {X ∈ Hn : XA = −AX}.
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We remark that quasi-commutativity has important applications in quantum me-
chanics. We refer the reader to [1] for more information. Furthermore, transforma-
tions on quantum structures which preserve some relation or operation are usually
called symmetries in physics and have been studied by different authors [2]. From a
mathematical point of view, maps preserving given algebraic property are called pre-
serves and are extensively studied. Linear maps that preserve quasi-commutativity
were already characterized by Molnár [6], Radjavi and Šemrl [7]. In our recent pa-
per [3], we classified nonlinear bijective preservers of quasi-commutativity in both
directions on the whole matrix algebra of n × n complex matrices. Since in quan-
tum mechanics self-adjoint operators are important, we continued with our study and
classified such maps also on Hn.

For a bijection Φ : Hn → Hn it is easy to see that it preserves quasi-commutativity
in both directions if and only if Φ(X#) = Φ(X)# for every X ∈ Hn. Hence, we intro-
duce an equivalence relation A 	 B whenever A# = B# and denote the equivalence
class of A by [A]. If Φ(X) ∈ [X ], i.e., Φ(X)# = X# for every hermitian X , then it
follows that Φ preserves quasi-commutativity in both directions. In particular, this
shows that Φ can be characterized only up to equivalence classes.

The other simple examples of bijections which also preserve quasi-commutativity
in both directions are the maps X 
→ Xt and X 
→ UXU∗ for some unitary U , i.e.,
UU∗ = Id. We will prove in our theorem that every map which preserves quasi-
commutativity in both directions is a composition of above three simple types.

Theorem 1.1. Let Φ:Hn → Hn, n ≥ 3, be a bijective map such that A quasi-
commutes with B if and only if Φ(A) quasi-commutes with Φ(B). Then either Φ(X) ∈
[UXU∗] for every X or Φ(X) ∈ [UXtU∗] for every X, where U is unitary.

We remark that in the case of a matrix algebra Mn, bijections which preserve
quasi-commutativity in both directions do not have a nice structure on all of Mn, as
is the case with hermitian matrices; see [3].

Example 1.2. Suppose A = Idk ⊕− Idn−k and P = Idk ⊕0n−k. Then it is easily
seen that

A# = (Hk ⊕Hn−k) ∪
{[

0 X

X∗ 0

]
: X ∈ Mk×(n−k)

}

and

P# = Hk ⊕Hn−k.

Observe that A# is not a linear subspace. Observe also that P# ⊆ A#.

A matrix A is minimal if A# ⊇ B# implies A# = B#. Similarly a non-scalar
matrix A is maximal if A# ⊆ B# implies A# = B# for every non-scalar matrix B.
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Example 1.3. If D = diag(d1, . . . , dn) with |di| �= |dj |, i �= j, then D# is equal
to the set of all hermitian diagonal matrices.

Namely, by [1], X = (xij)ij ∈ D# precisely when XD = DX or when XD =
−DX . Comparing the absolute values of (ij) entry on the both sides gives |xijdj | =
|dixij |. When i �= j, the only solution is |xij | = 0, hence X is diagonal. Conversely,
any diagonal X clearly quasi-commutes with D.

2. Proofs.

2.1. Preliminary lemmas.

Lemma 2.1. Let D be a diagonal matrix. If D# ⊆ A# then A is also diagonal.

Proof. As usual, let Eij be the matrix with 1 at the (i, j)-th position and zeros
elsewhere. Assume A = (aij) is not diagonal. Then there exists ai0j0 �= 0 with
i0 �= j0. Since (i0, j0)-th entry of Ei0i0A is ai0j0 , but (i0, j0)-th entry of AEi0i0 is
zero, we see that Ei0i0 /∈ A#. However, D is diagonal and therefore Ei0i0 ∈ D# \A#,
a contradiction.

Lemma 2.2. Let A = diag(λ1, . . . , λn) and B = diag(µ1, . . . , µn) be diagonal
matrices. Then A# = B# if and only if all of the following three conditions are
satisfied for every indices i, j, k, i �= j:
(i) λi = λj if and only if µi = µj,
(ii) λi = −λj if and only if µi = −µj,
(iii) λi = −λj �= 0 and λk = 0 if and only if µi = −µj �= 0 and µk = 0.

Proof. Assume first that A# = B#. (i) If λi = λj , then Eij + Eji + Eii ∈ A# =
B#, hence µi = µj . Similarly µi = µj implies λi = λj . (ii) If λi = −λj and λi �= 0,
then Eij + Eji + Eii /∈ A# = B#, hence µi �= µj , however Eij + Eji ∈ A# = B#,
hence µi = −µj . The case λi = −λj = 0 reduces to (i). Similarly µi = −µj implies
λi = −λj . (iii) If λi = −λj �= 0 and λk = 0 then by (i)–(ii), µi = −µj �= 0 and since
Eij + Eji + Ekk ∈ A# = B#, we obtain µk = 0. In the same way µi = −µj �= 0,
µk = 0 implies λi = −λj �= 0, λk = 0.

Second, assume (i)–(iii) hold. We distinguish two options. To begin with, suppose
there exist indices i0 �= j0 such that λi0 = −λj0 �= 0. Let X =

(
xij

)
ij

∈ A#.
Then either AX = XA or AX = −XA. Comparing the (i, j)-th entries we obtain
λixij = λjxij for every i, j or λixij = −λjxij for every i, j. In the former case we
easily obtain by (i) that µixij = µjxij for every i, j, hence X ∈ B#. In the latter case,
if xij = 0 then clearly µixij = −µjxij , if xij �= 0 and i �= j, then also µixij = −µjxij

by (ii), and if xkk �= 0 then λk = 0 and by (iii) also µk = 0, hence µkxkk = −µkxkk.
Therefore X ∈ B# also in this case, so A# ⊆ B#. Lastly, suppose for no indices i �= j

we have λi = −λj �= 0. Then X ∈ A# implies AX = XA or AX = −XA. However,
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as λi �= −λj when λi �= 0, the latter is equivalent to AX = XA. So, from (i) we easily
deduce BX = XB. Hence, A# ⊆ B#. The inclusion B# ⊆ A# follows in the same
way.

Corollary 2.3. A matrix is equivalent to Eii if and only if it equals λEii +
µ(Id−Eii) for some real numbers λ, µ with |λ| �= |µ|.

Proof. We prove only the nontrivial implication. Pick any matrix A with A# =
E#

ii . Then, by Lemma 2.1, A is also diagonal. The rest follows from Lemma 2.2.

Lemma 2.4. A matrix A is minimal if and only if there exists a unitary matrix
U and a real diagonal matrix D = diag(d1, . . . , dn) with |di| �= |dj |, i �= j, such that
A = UDU∗.

Proof. Suppose A is minimal. Hermitian matrices are unitarily diagonaliz-
able, therefore there exists a unitary matrix U and a real diagonal matrix D =
diag(d1, . . . , dn) such that A = UDU∗. Assume erroneously that |di| = |dj | for some
i �= j. Consider a matrix A0 = U diag(1, . . . , n)U∗. By Example 1.3, A#

0 = U DiagU∗,
and clearly U DiagU∗ ⊆ A#. However, U(Eij+Eji)U∗ ∈ A# \A#

0 , which contradicts
minimality of A.

To prove the opposite direction, assume A = U diag(d1, . . . , dn)U∗ for some uni-
tary U and real scalars di with |di| �= |dj |, i �= j. Without loss of generality we
may assume U = Id. Suppose B# ⊆ A#. Then, B ∈ B# ⊆ A# and Example 1.3
gives that B is diagonal. Moreover, A# = Diag, and clearly, each diagonal matrix
quasi-commutes with B. Hence, A# ⊆ B#, so A is minimal.

Note that all minimal diagonal matrices are equivalent.

Lemma 2.5. If B is an immediate successor of a minimal diagonal matrix D,
then B = diag(b1, . . . , bn) is invertible and there exists i0, j0 such that bi0 = −bj0
while |bi| �= |bj | for i �= j and i ∈ {1, . . . , n} \ {i0, j0}.

Proof. Since all minimal diagonal matrices are equivalent we may assume that
D = diag(1, . . . , n). By Lemma 2.1, D# ⊆ B# implies B = diag(b1, . . . , bn) is also
diagonal. Since B is not minimal it follows by Lemma 2.4 that |bi0 | = |bj0 | for some
i0 �= j0. Assume erroneously that B is not as stated in the lemma. Then B has at
least one of the following properties: (i) |bi0 | = |bj0 | = |bk0 | for some k0 /∈ {i0, j0},
or (ii) |bk0 | = |bl0 |, k0 �= l0, k0, l0 /∈ {i0, j0}, or (iii) bk0 = 0, k0 /∈ {i0, j0}, or (iv)
bi0 = bj0 .

Let us define a diagonal matrix C = D − (i0 + j0)Ei0i0 . Observe that C# =
Diag∪{λEi0j0 + λEj0i0 : λ ∈ C}, hence D# � C# ⊆ B#. If B has the property
(i) then Ei0k0 + Ek0i0 ∈ B# \ C#, if (ii) then Ek0l0 + El0k0 ∈ B# \ C#, if (iii) then
Ei0j0 + Ej0i0 + Ek0k0 ∈ B# \ C#, and if (iv) then Ei0j0 + Ej0i0 + Ei0i0 ∈ B# \ C#.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 436-444, September 2008



ELA

440 G. Dolinar and B. Kuzma

In any of these cases B is not an immediate successor.

Corollary 2.6. If A is an immediate successor of a minimal diagonal matrix,
then A# = Diag∪{λEij + λEji : λ ∈ C} for some indices i �= j.

Lemma 2.7. A non-scalar diagonal hermitian matrix is maximal if and only if
absolute values of all its eigenvalues are equal and nonzero.

Proof. Let non-scalar M = diag(d1, . . . , dn), where di ∈ {−α, α} for every i and
some nonzero α ∈ R. Assume B# ⊇ M#. By Lemma 2.1, B = diag(b1, . . . , bn) is
diagonal. If |bi| �= |bj | then Eij + Eji /∈ B#, but Eij + Eji ∈ M#, a contradiction.
Hence bi ∈ {−b, b} for some b ∈ R and every i. Suppose di = dj for i �= j. Then
Eii + Eij + Eji ∈ M# ⊆ B#, and consequently bi = bj . Therefore if di �= dj and
bi = bj for some i �= j then B is a scalar matrix. Otherwise, if di �= dj implies bi �= bj ,
then B = ±(b/α)M and B# =M#.

Conversely, let D = diag(d1, . . . , dn) ∈ Hn. We need to show that, unless |di| =
|dj | for every indices i, j, a matrix D is not maximal. Assume |di0 | �= |dj0 | for some
indices i0, j0. We define a non-scalar matrix M = diag(m1, . . . ,mn), where mi0 = 1
for every i with |di| = |di0 | and mi = −1 otherwise. It is easy to see that every
matrix which quasi-commutes with D actually commutes with M . So D# ⊆ M#.
Since Ei0j0+Ej0i0 ∈ M#, but Ei0j0+Ej0i0 /∈ D#, we see that D cannot be maximal.

In the next lemma the projections are classified up to equivalence in terms of
quasi-commutativity.

Lemma 2.8. Suppose A ∈ Diag is non-maximal and non-scalar. Then A is
equivalent to a projection if and only if A is an immediate predecessor of some maximal
matrix, and, up to equivalence, there exists precisely one maximal matrix which A

connects to.

Proof. Suppose A is not equivalent to a projection. We will prove that when
A is invertible, it connects to two nonequivalent maximal matrices, and when A is
singular, there exists at least one maximal matrix which A connects to, but which is
not its immediate predecessor.

Now, since A is not a scalar matrix, it must have at least two eigenvalues. Ac-
tually, it must have more than two eigenvalues because α Idr ⊕(−α) Idn−r, α �= 0
is maximal by Lemma 2.7, and α Idr ⊕β Idn−r, α �= ±β, is equivalent to a projec-
tion Idr ⊕0n−r. Without loss of generality, we may assume that A = α1 Idn1 ⊕ . . .⊕
αk Idnk

, αi �= αj for i �= j, and if there are two nonzero eigenvalues with the same
absolute value, that α1 = −α2. When A is singular, we may also assume that αk = 0.

We now construct two diagonal matrices B and C, where B = β1 Idn1 ⊕ . . . ⊕
βk Idnk

, C = (−β1) Idn1 ⊕(−β2) Idn2 ⊕β3 Idn3 ⊕ . . . ⊕ βk Idnk
, and βi ∈ {−1, 0, 1}
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are recursively defined as follows. Start with β1 = 1. Assume β1, . . . , βi, i < k are
already defined. If i+ 1 = k and αk = 0 let βk = 0. If αi+1 = −αj for some j ≤ i,
let βi+1 = −βj . Otherwise, βi+1 = −βi. Observe that β1 = −β2 �= 0, hence B and C
are non-scalar.

We now consider two cases separately. Firstly, if A is invertible, then B and C are
maximal and moreover β1 = 1, β2 = −1, β3 = 1. It follows that E11 +E1(n1+n2+1) +
E(n1+n2+1)1 ∈ B# \ C#, so B and C are nonequivalent, maximal matrices and it is
easy to see that A# ⊆ B# and A# ⊆ C#.

Secondly, if A is singular, then βk = 0. Again, it is easy to see that A# ⊆ B#, and
also B# � P#, where P = Idn1 ⊕ . . . ⊕ Idnk−1 ⊕0nk

is a projection, which connects
to a maximal matrix M = Idn1 ⊕ . . . ⊕ Idnk−1 ⊕(− Idnk

). Therefore, A is not an
immediate predecessor of at least one maximal matrix.

Let us prove the other implication. We can assume that A is a projection and
A = Idr ⊕0n−r. It is easy to see that A connects to M0 = (Idr ⊕ − Idn−r), which
is maximal. It remains to show that, up to equivalence, A connects to no other
maximal matrix and that A is an immediate predecessor of M0. Indeed, let M be
any maximal matrix such that A# ⊆ M#. By Lemma 2.1, M = diag(m1, . . . ,mn) is
diagonal. For i ≤ r, note that E11 + E1i + Ei1 ∈ A# ⊆ M#, which forces m1 = mi,
for every i ≤ r. Likewise we see that mj = mn for every j > r. Moreover, by
Lemma 2.7, |mi| = |mj | �= 0 for every i, j. Therefore, M = m(Idr ⊕ − Idn−r),
and hence M# = M#

0 . It remains to show that A is an immediate predecessor of
M0. To this end, assume A# ⊆ B# ⊆ M#

0 for some B. As above we see that
B = α Idr ⊕β Idn−r. Clearly, α �= β. Now, if α = −β then B is equivalent to M0. In
all other possibilities, B is equivalent to A.

2.2. Proof of the Theorem. We divide the proof in several steps.

Step 1. Clearly, the bijection Φ preserves the set of minimal matrices. So, if D is
minimal diagonal then by Lemma 2.4, Φ(D) = UD1U

∗ for some unitary U and some
minimal diagonal D1, recall that D# = D#

1 . We may assume U = Id, otherwise we
replace Φ with a bijection X 
→ U∗Φ(X)U .

Step 2. Let us continue by proving that several sets are preserved by Φ. Since
D = diag(d1, . . . , dn) is minimal, Lemma 2.4 implies |di| �= |dj | for i �= j. Therefore
D# = Diag by Example 1.3 and since Φ(D#) = Φ(D)# = D#

1 = D#, the bijection Φ
satisfies Φ(Diag) = Diag.

It is easy to see, by Lemma 2.1 and Lemma 2.2, that A is a scalar matrix precisely
when A# = Hn. So, Φ(R Idn) = R Idn.

Since Φ preserves maximal diagonal matrices as well as non-maximal ones, it also
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preserves the set of equivalence classes of diagonal projections by Lemma 2.8.

The map Φ preserves the set of all immediate successors of a minimal diagonal
matrix. Hence, it also permutes their quasi-commutants. By Corollary 2.6 and since
Φ(Diag) = Diag, the bijective map Φ maps the set Dij = {λEij + λEji : λ ∈ C} onto
Duv for some indices u, v.

Let a matrix P be equivalent to a diagonal projection of rank-k. It is easy to
see that Dij ⊆ P# for exactly k(k−1)

2 + (n−k)(n−k−1)
2 different sets Dij . Therefore

P is equivalent to a diagonal projection of rank-one if and only if Dij ⊆ P# for
exactly 1

2 (n − 1)(n − 2) different sets Dij (note that a projection Eii of rank-one is
equivalent to a projection Idn −Eii of rank (n− 1)). Since Φ bijectively permutes the
sets Dij among themselves, this shows that P is equivalent to a diagonal projection
of rank-one if and only if Φ(P ) is equivalent to a diagonal projection of rank-one.

Let P be an arbitrary matrix equivalent to a rank-one projection. Since Φ is
determined only up to equivalence we can assume that P is already a projection of
rank-one, that is P = V E11V

∗ for some unitary V . We temporarily replace Φ by
Ψ : X 
→ UPΦ(V XV ∗)U∗

P , where a unitary UP is such that Ψ fixes the equivalence
class of a minimal diagonal matrix. Applying the above arguments to Ψ we see that
Ψ(E11) = UPΦ(P )U∗

P is equivalent to a diagonal rank-one projection. Therefore Φ
preserves the set of rank one projections up to equivalence.

Step 3. By Corollary 2.3, each equivalence class contains at most one projection
of rank-one. Hence Φ induces the well defined bijection on the set of rank-one projec-
tions, which we denote by φ. We claim that φ preserves orthogonality among rank-one
projections. Namely, if P,Q are orthogonal rank-one projections, then they are si-
multaneously unitarily diagonalizable, that is P = V2E11V

∗
2 and Q = V2E22V

∗
2 for

some unitary V2. Consider temporarily a bijection Ψ : X 
→ U2Φ(V2XV ∗
2 )U∗

2 , where
unitary U2 is such that Ψ fixes the equivalence class of a minimal diagonal matrix.
By the above, Ψ(E11) ∈ [Eii] and Ψ(E22) ∈ [Ejj ] for some i, j, where i �= j because
E11 and E22 are not equivalent. By Corollary 2.3 there exists precisely one rank-one
idempotent inside [U∗

2EiiU2] and precisely one inside [U∗
2EjjU2], so φ(P ) = U∗

2EiiU2

and φ(Q) = U∗
2EjjU2 are indeed orthogonal.

Step 4. It can be deduced from Wigner’s unitary-antiunitary Theorem, see [4,
Theorem 4.1], that there exists a unitary matrix U3 such that φ(P ) = U3PU

∗
3 for every

rank-one projection P or φ(P ) = U3P̄U
∗
3 = U3P

tU∗
3 for every rank-one projection

P , where P̄ denotes complex conjugation applied entry-wise (see also [5] for more

details). So, Φ(Eii) ∈ [U3EiiU
∗
3 ] for every i. Let us show that U3DiagU∗

3 ⊆ Diag.
Since Φ(Diag) = Diag, it follows that Φ(Eii) is diagonal, hence the equivalence class
[U3EiiU

∗
3 ] contains at least one diagonal matrix. Since [U3EiiU

∗
3 ] = U3[Eii]U∗

3 =
{λU3EiiU

∗
3 + µ(Id−U3EiiU

∗
3 ) : λ, µ ∈ R, |λ| �= |µ|} by Corollary 2.3, it follows that
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[U3EiiU
∗
3 ] ⊆ Diag, so U3EiiU

∗
3 ∈ Diag for every i. Every diagonal matrix is a linear

combination of matrices Eii and therefore U3DiagU∗
3 ⊆ Diag.

Step 5. If necessary, we replace Φ by the map X 
→ U∗
3Φ(X)U3 or by the map

X 
→ U∗
3Φ(X

t)U3, which we again denote by Φ, so that Φ(P ) ∈ [P ] for every rank-
one projection P . Observe that Φ still satisfies the property Φ(Diag) = Diag and
therefore also all its properties proven up to now remain valid.

Step 6. Let x ∈ Cn be a column vector, i.e., a matrix of dimension n× 1, with
Euclidean norm 1. It easily follows that a rank-one projection xx∗ quasi-commutes
with A precisely when x is an eigenvector ofA. Since quasi-commutativity is preserved
in both directions, and Φ(xx∗)# = (xx∗)#, we see that A and Φ(A) have exactly
the same eigenvectors. In particular, if A = UA(λ1 Idn1 ⊕ . . . ⊕ λk Idnk

)U∗
A with λi

pairwise distinct and UA unitary, then also Φ(A) = UA(µ1 Idn1 ⊕ . . . ⊕ µk Idnk
)U∗

A,
with µi pairwise distinct. In particular, Φ(UADiagU∗

A) = UADiagU∗
A.

Step 7. Next let us show that Φ(VDijV
∗) = VDijV

∗, where V is an arbitrary
unitary matrix. Recall Dij = {λEij + λEji : λ ∈ C}, and introduce temporarily
Ψ : X 
→ V ∗Φ(V XV ∗)V . By the above, Ψ(Diag) = Diag, and Ψ fixes all rank-one
projections up to equivalence. Hence, as we have already proved, Ψ(Dij) = Duv for
some (u, v). Observe that a rank-one projection Ekk ∈ D#

ij if and only if k /∈ {i, j}.
So, Duv = Ψ(Dij) ⊂ Ψ(Ekk)# = E#

kk whenever k /∈ {i, j}, which is possible only
when Duv = Dij . Clearly then Φ(VDijV

∗) = VΨ(Dij)V ∗ = VDijV
∗ as claimed.

Step 8. Consider a general hermitian matrix A = UA(λ1 Idn1 ⊕ . . .⊕λk Idnk
)U∗

A,
where UA is unitary and λi ∈ R are pairwise distinct. We already know that Φ(A) =
UA(µ1 Idn1 ⊕ . . .⊕µk Idnk

)U∗
A for pairwise distinct µi ∈ R. Moreover, λi = −λj �= 0 if

and only if µi = −µj �= 0, since UAD(n1+...+ni−1+1) (n1+...+nj−1+1)U
∗
A ⊆ A# precisely

when λi = −λj . Consequently, if |λi| are pairwise distinct then Φ(A) ∈ [A]. In
particular, Φ fixes the equivalence class of a matrix 1 Idn1 ⊕2 Idn2 ⊕ . . . ⊕ k Idnk

for
any choice of a positive integer k and any choice of positive integers n1, . . . , nk with
n1 + . . .+ nk = n. Hence Φ also bijectively maps its quasi-commutant, which equals
Hn1 ⊕ . . .⊕Hnk

, onto itself. Since Φ is injective no other matrix can be mapped into
this set.

Step 9. We next show that Φ fixes equivalence classes of each matrix of the
form F = V (diag(λ,−λ, µ) ⊕ 0n−3)V ∗, where λ, µ �= 0, |λ| �= |µ|, and V unitary.
Assume with no loss of generality that V = Id. We already know that Φ(F ) =
diag(ν,−ν, η) ⊕ ζ Idn−3, where |ν|, |η|, |ζ| are pairwise distinct, and ν �= 0. When
n ≥ 4 we have to consider three options either (i) η, ζ �= 0, or (ii) η = 0, ζ �= 0, or (iii)
η �= 0, ζ = 0. If Φ(F ) has the property (i) then Φ(F )# = (H1⊕H1⊕H1⊕Hn−3)∪D12.
By Step 7 and Step 8, the set Ω = Φ(F )# is bijectively mapped onto itself by Φ. Note
that (E12+E21+Enn) ∈ F# \Ω. Since Φ is injective, Φ(E12+E21+Enn) /∈ Φ(Ω) =
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Ω = Φ(F )# = Φ(F#), a contradiction.

Suppose Φ(F ) has the property (ii). Then there exists X = (E12 +E21 +Enn) ∈
F# \ (H1 ⊕H1 ⊕H1 ⊕Hn−3) with the property that X# contains the set {λ(E1n +
E2n) + λ̄(En1 + En2) : λ ∈ C} = V3D12V

∗
3 for unitary V3 = 1√

2
(E11 + E13 + E21 −

E23) + En2 +
∑n−1

i=3 Ei (i+1). Observe that

Φ(X) ∈ Φ(F )# \ Φ(H1 ⊕H1 ⊕H1 ⊕Hn−3)

= (diag(ν,−ν, 0)⊕ ζ Idn−3)# \ (H1 ⊕H1 ⊕H1 ⊕Hn−3)

= {λE12 + λE21 + βE33 : λ ∈ C \ {0}, β ∈ R} = Ξ.

It is now easy to see that, for an arbitrary Y ∈ Ξ, the set Y # does not contain the
set Φ(V3D12V

∗
3 ) = V3D12V

∗
3 , a contradiction.

Hence Φ(F ) has the property (iii) for n ≥ 4. When n = 3 we have only two
options (i) η �= 0 or (ii) η = 0. Note that F# = (H1 ⊕ H1 ⊕ H1) ∪ D12 is a union
of two sets invariant for Φ. Hence, Φ(F#) = F#. Since diag(ν,−ν, 0)# � F#, the
second case is contradictory, as anticipated.

Step 10. Finally, we can show that Φ fixes equivalence class of an arbitrary
hermitian matrix A. Decompose A as in Step 8. We already know that Φ(A) =
UA(µ1 Idn1 ⊕ . . .⊕µk Idnk

)U∗
A, with µi pairwise distinct and µi = −µj precisely when

λi = −λj , i �= j. By Lemma 2.2 it remains to show that in the case when λi0 =
−λj0 �= 0 we have λk = 0 if and only if µk = 0. So assume λk = 0. Note that X =
Ei0j0 + Ej0i0 + 2Ekk ∈ A#. Since X is unitarily equivalent to diag(1,−1, 2, 0, . . . , 0),
Step 9 implies that its equivalence class is fixed by Φ, hence [X ] = [Φ(X)] ⊆ Φ(A)#.
So also µk = 0. In the same way we obtain that λk �= 0 implies µk �= 0.
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